The ACROBAT 2022 challenge : Automatic registration of breast cancer tissue
Weitz, Philippe; Valkonen, Masi; Solorzano, Leslie; Carr, Circe; Kartasalo, Kimmo; Boissin, Constance; Koivukoski, Sonja; Kuusela, Aino; Rasic, Dusan; Feng, Yanbo; Pouplier, Sandra Sinius; Sharma, Abhinav; Eriksson, Kajsa Ledesma; Robertson, Stephanie; Marzahl, Christian; Gatenbee, Chandler D.; Anderson, Alexander R.A.; Wodzinski, Marek; Jurgas, Artur; Marini, Niccolò; Atzori, Manfredo; Müller, Henning; Budelmann, Daniel; Weiss, Nick; Heldmann, Stefan; Lotz, Johannes; Wolterink, Jelmer M.; De Santi, Bruno; Patil, Abhijeet; Sethi, Amit; Kondo, Satoshi; Kasai, Satoshi; Hirasawa, Kousuke; Farrokh, Mahtab; Kumar, Neeraj; Greiner, Russell; Latonen, Leena; Laenkholm, Anne Vibeke; Hartman, Johan; Ruusuvuori, Pekka; Rantalainen, Mattias (2024-10)
Weitz, Philippe
Valkonen, Masi
Solorzano, Leslie
Carr, Circe
Kartasalo, Kimmo
Boissin, Constance
Koivukoski, Sonja
Kuusela, Aino
Rasic, Dusan
Feng, Yanbo
Pouplier, Sandra Sinius
Sharma, Abhinav
Eriksson, Kajsa Ledesma
Robertson, Stephanie
Marzahl, Christian
Gatenbee, Chandler D.
Anderson, Alexander R.A.
Wodzinski, Marek
Jurgas, Artur
Marini, Niccolò
Atzori, Manfredo
Müller, Henning
Budelmann, Daniel
Weiss, Nick
Heldmann, Stefan
Lotz, Johannes
Wolterink, Jelmer M.
De Santi, Bruno
Patil, Abhijeet
Sethi, Amit
Kondo, Satoshi
Kasai, Satoshi
Hirasawa, Kousuke
Farrokh, Mahtab
Kumar, Neeraj
Greiner, Russell
Latonen, Leena
Laenkholm, Anne Vibeke
Hartman, Johan
Ruusuvuori, Pekka
Rantalainen, Mattias
10 / 2024
103257
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202408228243
https://urn.fi/URN:NBN:fi:tuni-202408228243
Kuvaus
Peer reviewed
Tiivistelmä
The alignment of tissue between histopathological whole-slide-images (WSI) is crucial for research and clinical applications. Advances in computing, deep learning, and availability of large WSI datasets have revolutionised WSI analysis. Therefore, the current state-of-the-art in WSI registration is unclear. To address this, we conducted the ACROBAT challenge, based on the largest WSI registration dataset to date, including 4,212 WSIs from 1,152 breast cancer patients. The challenge objective was to align WSIs of tissue that was stained with routine diagnostic immunohistochemistry to its H&E-stained counterpart. We compare the performance of eight WSI registration algorithms, including an investigation of the impact of different WSI properties and clinical covariates. We find that conceptually distinct WSI registration methods can lead to highly accurate registration performances and identify covariates that impact performances across methods. These results provide a comparison of the performance of current WSI registration methods and guide researchers in selecting and developing methods.
Kokoelmat
- TUNICRIS-julkaisut [18324]