Genome-wide characterization of circulating metabolic biomarkers
Karjalainen, Minna K.; Karthikeyan, Savita; Oliver-Williams, Clare; Sliz, Eeva; Allara, Elias; Fung, Wing Tung; Surendran, Praveen; Zhang, Weihua; Jousilahti, Pekka; Kristiansson, Kati; Salomaa, Veikko; Goodwin, Matt; Hughes, David A.; Boehnke, Michael; Fernandes Silva, Lilian; Yin, Xianyong; Mahajan, Anubha; Neville, Matt J.; van Zuydam, Natalie R.; de Mutsert, Renée; Li-Gao, Ruifang; Mook-Kanamori, Dennis O.; Demirkan, Ayse; Liu, Jun; Noordam, Raymond; Trompet, Stella; Chen, Zhengming; Kartsonaki, Christiana; Li, Liming; Lin, Kuang; Hagenbeek, Fiona A.; Hottenga, Jouke Jan; Pool, René; Ikram, M. Arfan; van Meurs, Joyce; Haller, Toomas; Milaneschi, Yuri; Kähönen, Mika; Mishra, Pashupati P.; Joshi, Peter K.; Macdonald-Dunlop, Erin; Mangino, Massimo; Zierer, Jonas; Acar, Ilhan E.; Hoyng, Carel B.; Lechanteur, Yara T.E.; Franke, Lude; Kurilshikov, Alexander; Zhernakova, Alexandra; Beekman, Marian; van den Akker, Erik B.; Kolcic, Ivana; Polasek, Ozren; Rudan, Igor; Gieger, Christian; Waldenberger, Melanie; Asselbergs, Folkert W.; Hayward, Caroline; Fu, Jingyuan; den Hollander, Anneke I.; Menni, Cristina; Spector, Tim D.; Wilson, James F.; Lehtimäki, Terho; Raitakari, Olli T.; Penninx, Brenda W.J.H.; Esko, Tonu; Walters, Robin G.; Jukema, J. Wouter; Sattar, Naveed; Ghanbari, Mohsen; Willems van Dijk, Ko; Karpe, Fredrik; McCarthy, Mark I.; Laakso, Markku; Järvelin, Marjo Riitta; Timpson, Nicholas J.; Perola, Markus; Kooner, Jaspal S.; Chambers, John C.; van Duijn, Cornelia; Slagboom, P. Eline; Boomsma, Dorret I.; Danesh, John; Ala-Korpela, Mika; Butterworth, Adam S.; Kettunen, Johannes (2024)
Karjalainen, Minna K.
Karthikeyan, Savita
Oliver-Williams, Clare
Sliz, Eeva
Allara, Elias
Fung, Wing Tung
Surendran, Praveen
Zhang, Weihua
Jousilahti, Pekka
Kristiansson, Kati
Salomaa, Veikko
Goodwin, Matt
Hughes, David A.
Boehnke, Michael
Fernandes Silva, Lilian
Yin, Xianyong
Mahajan, Anubha
Neville, Matt J.
van Zuydam, Natalie R.
de Mutsert, Renée
Li-Gao, Ruifang
Mook-Kanamori, Dennis O.
Demirkan, Ayse
Liu, Jun
Noordam, Raymond
Trompet, Stella
Chen, Zhengming
Kartsonaki, Christiana
Li, Liming
Lin, Kuang
Hagenbeek, Fiona A.
Hottenga, Jouke Jan
Pool, René
Ikram, M. Arfan
van Meurs, Joyce
Haller, Toomas
Milaneschi, Yuri
Kähönen, Mika
Mishra, Pashupati P.
Joshi, Peter K.
Macdonald-Dunlop, Erin
Mangino, Massimo
Zierer, Jonas
Acar, Ilhan E.
Hoyng, Carel B.
Lechanteur, Yara T.E.
Franke, Lude
Kurilshikov, Alexander
Zhernakova, Alexandra
Beekman, Marian
van den Akker, Erik B.
Kolcic, Ivana
Polasek, Ozren
Rudan, Igor
Gieger, Christian
Waldenberger, Melanie
Asselbergs, Folkert W.
Hayward, Caroline
Fu, Jingyuan
den Hollander, Anneke I.
Menni, Cristina
Spector, Tim D.
Wilson, James F.
Lehtimäki, Terho
Raitakari, Olli T.
Penninx, Brenda W.J.H.
Esko, Tonu
Walters, Robin G.
Jukema, J. Wouter
Sattar, Naveed
Ghanbari, Mohsen
Willems van Dijk, Ko
Karpe, Fredrik
McCarthy, Mark I.
Laakso, Markku
Järvelin, Marjo Riitta
Timpson, Nicholas J.
Perola, Markus
Kooner, Jaspal S.
Chambers, John C.
van Duijn, Cornelia
Slagboom, P. Eline
Boomsma, Dorret I.
Danesh, John
Ala-Korpela, Mika
Butterworth, Adam S.
Kettunen, Johannes
2024
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202404123496
https://urn.fi/URN:NBN:fi:tuni-202404123496
Kuvaus
Peer reviewed
Tiivistelmä
Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism1–7. This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases8–11. Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases.
Kokoelmat
- TUNICRIS-julkaisut [19879]