Unsupervised Algorithms for Microarray Sample Stratification
Fratello, Michele; Cattelani, Luca; Federico, Antonio; Pavel, Alisa; Scala, Giovanni; Serra, Angela; Greco, Dario (2022)
Fratello, Michele
Cattelani, Luca
Federico, Antonio
Pavel, Alisa
Scala, Giovanni
Serra, Angela
Greco, Dario
Teoksen toimittaja(t)
Agapito, Giuseppe
Humana Press
2022
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202301301856
https://urn.fi/URN:NBN:fi:tuni-202301301856
Kuvaus
Peer reviewed
Tiivistelmä
The amount of data made available by microarrays gives researchers the opportunity to delve into the complexity of biological systems. However, the noisy and extremely high-dimensional nature of this kind of data poses significant challenges. Microarrays allow for the parallel measurement of thousands of molecular objects spanning different layers of interactions. In order to be able to discover hidden patterns, the most disparate analytical techniques have been proposed. Here, we describe the basic methodologies to approach the analysis of microarray datasets that focus on the task of (sub)group discovery.
Kokoelmat
- TUNICRIS-julkaisut [19817]