Investigations on System Integration Method and Optimum Design Method of Electro-Mechanical Actuator System
Zheng, Shicheng; Fu, Yongling; Han, Xu; Sun, Jian (2023-01)
Zheng, Shicheng
Fu, Yongling
Han, Xu
Sun, Jian
01 / 2023
23
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202304033398
https://urn.fi/URN:NBN:fi:tuni-202304033398
Kuvaus
Peer reviewed
Tiivistelmä
With technological advances and industrial upgrading, high-performance equipment has put higher demands on the performance of electro-mechanical actuators. With a view to making electro-mechanical actuators more reliable and integrated, firstly, an integrated electro-mechanical actuator module (IEMM) with multiple structural forms was proposed in this paper, and a comparative analysis was performed on the characteristics of different transmission schemes. Then, the feasibility of manufacturing the IEMM’s main bearing components using Carbon Fiber Reinforced Polymer (CFRP) with higher specific stiffness, specific modulus and specific strength was demonstrated by finite element simulation (FEA) software, in a bid to further reduce the weight of the IEMM. Next, a parameter estimation model, a heating power calculation model, and a thermal resistance calculation model were built, so that there is no need to rebuild the whole system model under different demand indexes. On this basis, a multi-objective optimization design model was built with light weight, low power loss, and high level of integration as optimization aims to achieve better comprehensive performance in the early design phase of the IEMM system. However, IEMM’s higher level of integration and its shell made of CFRP with a thermal conductivity of less than 5 W/m°C posed a challenge to the heat dissipation of the motor stator. Therefore, a thermal network model needs to be created in AMESim to evaluate the temperature of IEMM’s parts and components under different working conditions. Finally, the process of IEMM performance optimization design was described and improved, and performance optimization design was conducted by taking one of IEMM’s transmission schemes as an example.
Kokoelmat
- TUNICRIS-julkaisut [18569]