ICface : Interpretable and controllable face reenactment using GANs
Tripathy, Soumya; Kannala, Juho; Rahtu, Esa (2020-03-01)
Tripathy, Soumya
Kannala, Juho
Rahtu, Esa
IEEE
01.03.2020
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202303092845
https://urn.fi/URN:NBN:fi:tuni-202303092845
Kuvaus
Peer reviewed
Tiivistelmä
This paper presents a generic face animator that is able to control the pose and expressions of a given face image. The animation is driven by human interpretable control signals consisting of head pose angles and the Action Unit (AU) values. The control information can be obtained from multiple sources including external driving videos and manual controls. Due to the interpretable nature of the driving signal, one can easily mix the information between multiple sources (e.g. pose from one image and expression from another) and apply selective postproduction editing. The proposed face animator is implemented as a two stage neural network model that is learned in self-supervised manner using a large video collection. The proposed Interpretable and Controllable face reenactment network (ICface) is compared to the state-of-the-art neural network based face animation techniques in multiple tasks. The results indicate that ICface produces better visual quality, while being more versatile than most of the comparison methods. The introduced model could provide a lightweight and easy to use tool for multitude of advanced image and video editing tasks. The program code will be publicly available upon the acceptance of the paper.
Kokoelmat
- TUNICRIS-julkaisut [19236]