Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Accelerating Neural ODEs Using Model Order Reduction

Lehtimäki, Mikko; Paunonen, Lassi; Linne, Marja-Leena (2022)

 
Avaa tiedosto
Accelerating_Neural_ODEs_Using_Model_Order_Reduction.pdf (2.079Mt)
Lataukset: 



Lehtimäki, Mikko
Paunonen, Lassi
Linne, Marja-Leena
2022


IEEE Transactions on Neural Networks and Learning Systems
doi:10.1109/TNNLS.2022.3175757
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202301191554

Kuvaus

Peer reviewed
Tiivistelmä
Embedding nonlinear dynamical systems into artificial neural networks is a powerful new formalism for machine learning. By parameterizing ordinary differential equations (ODEs) as neural network layers, these Neural ODEs are memory-efficient to train, process time series naturally, and incorporate knowledge of physical systems into deep learning (DL) models. However, the practical applications of Neural ODEs are limited due to long inference times because the outputs of the embedded ODE layers are computed numerically with differential equation solvers that can be computationally demanding. Here, we show that mathematical model order reduction (MOR) methods can be used for compressing and accelerating Neural ODEs by accurately simulating the continuous nonlinear dynamics in low-dimensional subspaces. We implement our novel compression method by developing Neural ODEs that integrate the necessary subspace-projection and interpolation operations as layers of the neural network. We validate our approach by comparing it to neuron pruning and singular value decomposition (SVD)-based weight truncation methods from the literature in image and time-series classification tasks. The methods are evaluated by acceleration versus accuracy when adjusting the level of compression. On this spectrum, we achieve a favorable balance over existing methods by using MOR when compressing a convolutional Neural ODE. In compressing a recurrent Neural ODE, SVD-based weight truncation yields good performance. Based on our results, our integration of MOR with Neural ODEs can facilitate efficient, dynamical system-driven DL in resource-constrained applications.
Kokoelmat
  • TUNICRIS-julkaisut [15287]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste