Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Noise modeling and variance stabilization of a computed radiography (CR) mammography system subject to fixed-pattern noise

Borges, Lucas R.; Brochi, Marco A.C.; Xu, Zhongwei; Foi, Alessandro; Vieira, Marcelo A.C.; Azevedo-Marques, Paulo M. (2020-11-11)

 
Avaa tiedosto
Borges_NoiseFPN_PMB_2020.pdf (2.915Mt)
Lataukset: 



Borges, Lucas R.
Brochi, Marco A.C.
Xu, Zhongwei
Foi, Alessandro
Vieira, Marcelo A.C.
Azevedo-Marques, Paulo M.
11.11.2020


225035
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited
doi:10.1088/1361-6560/abbb74
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202301121353

Kuvaus

Peer reviewed
Tiivistelmä
In this work we model the noise properties of a computed radiography (CR) mammography system by adding an extra degree of freedom to a well-established noise model, and derive a variance-stabilizing transform (VST) to convert the signal-dependent noise into approximately signal-independent. The proposed model relies on a quadratic variance function, which considers fixed-pattern (structural), quantum and electronic noise. It also accounts for the spatial-dependency of the noise by assuming a space-variant quantum coefficient. The proposed noise model was compared against two alternative models commonly found in the literature. The first alternative model ignores the spatial-variability of the quantum noise, and the second model assumes negligible structural noise. We also derive a VST to convert noisy observations contaminated by the proposed noise model into observations with approximately Gaussian noise and constant variance equals to one. Finally, we estimated a look-up table that can be used as an inverse transform in denoising applications. A phantom study was conducted to validate the noise model, VST and inverse VST. The results show that the space-variant signal-dependent quadratic noise model is appropriate to describe noise in this CR mammography system (errors< 2.0% in terms of signal-to-noise ratio). The two alternative noise models were outperformed by the proposed model (errors as high as 14.7% and 9.4%). The designed VST was able to stabilize the noise so that it has variance approximately equal to one (errors< 4.1%), while the two alternative models achieved errors as high as 26.9% and 18.0%, respectively. Finally, the proposed inverse transform was capable of returning the signal to the original signal range with virtually no bias.
Kokoelmat
  • TUNICRIS-julkaisut [15325]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste