Optimizing Flying Base Station Connectivity by RAN Slicing and Reinforcement Learning
Melgarejo, Dick Carrillo; Pokorny, Jiri; Seda, Pavel; Narayanan, Arun; Nardelli, Pedro H.J.; Rasti, Mehdi; Hosek, Jiri; Seda, Milos; Rodriguez, Demostenes Z.; Koucheryavy, Yevgeni; Fraidenraich, Gustavo (2022)
Melgarejo, Dick Carrillo
Pokorny, Jiri
Seda, Pavel
Narayanan, Arun
Nardelli, Pedro H.J.
Rasti, Mehdi
Hosek, Jiri
Seda, Milos
Rodriguez, Demostenes Z.
Koucheryavy, Yevgeni
Fraidenraich, Gustavo
2022
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202212229743
https://urn.fi/URN:NBN:fi:tuni-202212229743
Kuvaus
Peer reviewed
Tiivistelmä
The application of flying base stations (FBS) in wireless communication is becoming a key enabler to improve cellular wireless connectivity. Following this tendency, this research work aims to enhance the spectral efficiency of FBSs using the radio access network (RAN) slicing framework; this optimization considers that FBSs' location was already defined previously. This framework splits the physical radio resources into three RAN slices. These RAN slices schedule resources by optimizing individual slice spectral efficiency by using a deep reinforcement learning approach. The simulation indicates that the proposed framework generally outperforms the spectral efficiency of the network that only considers the heuristic predefined FBS location, although the gains are not always significant in some specific cases. Finally, spectral efficiency is analyzed for each RAN slice resource and evaluated in terms of service-level agreement (SLA) to indicate the performance of the framework.
Kokoelmat
- TUNICRIS-julkaisut [18384]