ML-Assisted Beam Selection via Digital Twins for Time-Sensitive Industrial IoT
Zeulin, Nikita; Ponomarenko-Timofeev, Aleksei; Galinina, Olga; Andreev, Sergey (2022-03)
Zeulin, Nikita
Ponomarenko-Timofeev, Aleksei
Galinina, Olga
Andreev, Sergey
03 / 2022
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202212169252
https://urn.fi/URN:NBN:fi:tuni-202212169252
Kuvaus
Peer reviewed
Tiivistelmä
In this article, we propose a machine learning (ML)-assisted beam selection framework that leverages the availability of digital twins to reduce beam training overheads and thus facilitate the efficient operation of time-sensitive IoT applications in dynamic industrial environments. Our approach employs a digital twin of the environment to create an accurate map-based channel model and train a beam predictor that narrows the beam search space to a set of candidate configurations. To verify the proposed concept, we perform shooting-and-bouncing ray (SBR) modeling for a reconstructed 3D model of an industrial vehicle calibrated using the real-world millimeter-wave (mmWave) propagation data collected during a measurement campaign. We confirm that lightweight ML models are capable of predicting the optimal beam configuration while enjoying considerably smaller size compared to the map-based channel model.
Kokoelmat
- TUNICRIS-julkaisut [18234]