Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards Accelerated Localization Performance Across Indoor Positioning Datasets

Klus, Lucie; Quezada-Gaibor, Darwin; Torres-Sospedra, Joaquín; Lohan, Elena Simona; Granell, Carlos; Nurmi, Jari (2022)

 
Avaa tiedosto
_ICL_GNSS2022_Final_Towards_Accelerated_Localization_Performance_Across_Indoor_Positioning_Datasets_1_.pdf (258.5Kt)
Lataukset: 



Klus, Lucie
Quezada-Gaibor, Darwin
Torres-Sospedra, Joaquín
Lohan, Elena Simona
Granell, Carlos
Nurmi, Jari
Teoksen toimittaja(t)
Nurmi, Jari
Lohan, Elena-Simona
Sospedra, Joaquin Torres
Kuusniemi, Heidi
Ometov, Aleksandr
IEEE
2022


2022 International Conference on Localization and GNSS, ICL-GNSS 2022 - Proceedings
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited
doi:54081.2022.9797035
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202210287984

Kuvaus

Peer reviewed
Tiivistelmä
The localization speed and accuracy in the indoor scenario can greatly impact the Quality of Experience of the user. While many individual machine learning models can achieve comparable positioning performance, their prediction mechanisms offer different complexity to the system. In this work, we propose a fingerprinting positioning method for multi-building and multi-floor deployments, composed of a cascade of three models for building classification, floor classification, and 2D localization regression. We conduct an exhaustive search for the optimally performing one in each step of the cascade while validating on 14 different openly available datasets. As a result, we bring forward the best-performing combination of models in terms of overall positioning accuracy and processing speed and evaluate on independent sets of samples. We reduce the mean prediction time by 71% while achieving comparable positioning performance across all considered datasets. Moreover, in case of voluminous training dataset, the prediction time is reduced down to 1% of the benchmark's.
Kokoelmat
  • TUNICRIS-julkaisut [15325]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste