Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • Kandidaatintutkielmat
  • Näytä viite
  •   Etusivu
  • Trepo
  • Kandidaatintutkielmat
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Learning For Portfolio Optimization With Delta Controlled

Nguyen, Quoc Minh (2022)

 
Avaa tiedosto
NguyenQuoc.pdf (1.390Mt)
Lataukset: 



Nguyen, Quoc Minh
2022

Bachelor's Programme in Science and Engineering
Informaatioteknologian ja viestinnän tiedekunta - Faculty of Information Technology and Communication Sciences
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2022-05-02
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202204273818
Tiivistelmä
The cryptocurrency market is considered high-risk compared to traditional investment channels such as stocks or bonds. The whole market trend is primarily affected by only a few top-of-the-market capitalization cryptocurrencies like Bitcoin or Ethereum. This significantly affects the ability to diversify a portfolio of cryptocurrencies. In 2020, Binance introduced a new set of derivative assets called Binance Leveraged Tokens that allow traders to perform hedging. While there have been a few attempts to develop Machine Learning algorithms for portfolio optimization or hedging, no work takes advantage of this new class of assets in a data-driven manner to make profits.
In this thesis, the author proposes a deep learning based algorithm to take advantage of the above-mentioned investment product. The proposed algorithm constructs a portfolio that contains a pair of Binance Leveraged Token. A deep neural network generates the allocation weights for each asset in the portfolio, and the asset allocation is re-adjusted at a certain timeframe. The neural network is optimized to maximize the Sharpe ratio of the portfolio. In addition, we propose additional loss terms that regulate the network's bias towards a specific asset. These additional loss terms help the network to learn an allocation strategy that is close to a delta-neural strategy, which is a strategy that preserves the value of the portfolio over time.
In order to validate the proposed method, the author conducted an extensive set of experiments using the data from Binance spanning 20 months. The experiment results demonstrate that the proposed loss terms can enable the neural networks to make profits in different market situations.
Kokoelmat
  • Kandidaatintutkielmat [9001]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste