Quality and Capacity Analysis of Molecular Communications in Bacterial Synthetic Logic Circuits
Martins, Daniel P.; Barros, Michael Taynnan; Balasubramaniam, Sasitharan (2019)
Martins, Daniel P.
Barros, Michael Taynnan
Balasubramaniam, Sasitharan
2019
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202111258671
https://urn.fi/URN:NBN:fi:tuni-202111258671
Kuvaus
Peer reviewed
Tiivistelmä
Synthetic logic circuits have been proposed as potential solutions for theranostics of biotechnological problems. One proposed model is the engineering of bacteria cells to create logic gates, and the communication between the bacteria populations will enable the circuit operation. In this paper, we analyse the quality of bacteria-based synthetic logic circuit through molecular communications that represent communication along a bus between three gates. In the bacteria-based synthetic logic circuit, the system receives environmental signals as molecular inputs and will process this information through a cascade of synthetic logic gates and free diffusion channels. We analyse the performance of this circuit by evaluating its quality and its relationship to the channel capacity of the molecular communications links that interconnect the bacteria populations. Our results show the effect of the molecular environmental delay and molecular amplitude differences over both the channel capacity and circuit quality. Furthermore, based on these metrics we also obtain an optimum region for the circuit operation resulting in an accuracy of 80% for specific conditions. These results show that the performance of synthetic biology circuits can be evaluated through molecular communications, and lays the groundwork for combined systems that can contribute to future biomedical and biotechnology applications.
Kokoelmat
- TUNICRIS-julkaisut [19236]