Design and Control of a Flexible Joint as a Hydraulic Series Elastic Actuator for Manipulation Applications
Cao, Xuepeng; Aref, Mohammad M.; Mattila, Jouni (2019)
Cao, Xuepeng
Aref, Mohammad M.
Mattila, Jouni
IEEE
2019
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202110257812
https://urn.fi/URN:NBN:fi:tuni-202110257812
Kuvaus
Peer reviewed
Tiivistelmä
Lightweight arms with electrical servomotor drives have demonstrated outstanding performance and speed in exoskeletons, prosthesis, and legged robot applications. They all share a similarity in actuation, which is based on series elastic actuators (SEAs). In SEAs, the system benefits from known compliance in the actuation that improves the overall performance, especially in contact with an environment that can have an unknown stiffness in assembly tasks. In some of these cases, harmonic drives or gears on the power transmission lines create the robot's compliance. For hydraulically actuated SEAs, Pratt and Krupp addressed the SEA challenges for lightweight hydraulic manipulators. However, this paper focuses on the design and control architecture of SEAs in heavy-duty manipulation having hydraulic load dynamics with variable stiffness or damping of fluid flexibility. This system faces challenging issues of payload dynamics and compressibility of fluid with high order system. A hydraulic SEA concept is designed, and a fifth-order state space SEA model is feedback controlled in a free space motion to demonstrate load dynamics of hydraulic actuation. In addition, a P controller and a controller based on integral of time-weighted absolute error (ITAE) are designed. The simulation results show the latter has better performance in the spring deflection of the SEA. A mixed working condition that changes from a purely inertia payload to an inertia and elastic reaction force is designed to examine the switching smoothness for varying payloads, and the control adaptability of controllers in different working conditions.
Kokoelmat
- TUNICRIS-julkaisut [19767]