Tailoring of the physical and mechanical properties of biocompatible graphene oxide/gelatin composite nanolaminates : Via altering the crystal structure and morphology
Layek, Rama K.; Parihar, Vijay Singh; Skrifvars, Mikael; Javanshour, Farzin; Kroon, Mart; Kanerva, Mikko; Vuorinen, Jyrki; Kellomäki, Minna; Sarlin, Essi (2021)
Layek, Rama K.
Parihar, Vijay Singh
Skrifvars, Mikael
Javanshour, Farzin
Kroon, Mart
Kanerva, Mikko
Vuorinen, Jyrki
Kellomäki, Minna
Sarlin, Essi
2021
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202108186607
https://urn.fi/URN:NBN:fi:tuni-202108186607
Kuvaus
Peer reviewed
Tiivistelmä
Despite substantial progress being made relating to 2D-nanofiller-based composite nanolaminates, the fabrication of composite nanolaminates with enhanced ductility and toughness is still challenging. In this study, layered structure graphene oxide (GO)/gelatin powder (GP) composites nanolaminates with enhanced ductility and toughness have been achieved by a simple vacuum filtration of aqueous dispersion of GO/GP composite solution containing 5 wt% of GO. The composite film containing 5 wt% GO shows outstanding improvement of 200% in the stress at break value, with simultaneous enhancement of 52% of the strain at break value compared to GP film. A significant improvement in toughness from 2.2 MJ m-3 to 9.5 MJ m-3 is observed in the composite film containing 5 wt% GO. These significant enhancements of the mechanical properties of the composite film are obtained via the formation of an intercalated nanolaminate structure, H-bonding interactions, and the tailoring of the crystal structure of GP in the composite film, as proved via field-emission scanning electron microscopy, Fourier-transform infrared spectroscopy, and wide-angle X-ray diffraction studies. The growing of fibroblast cells on the composite films signifies that they are not cytotoxic. These GO/GP composites with significant mechanical properties and biocompatibility are very promising for various biomedical applications. This journal is
Kokoelmat
- TUNICRIS-julkaisut [18569]