Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Incorporating Aircraft Kinematics and Radar Cross Section into the Performance Prediction of Air Surveillance

Jylhä,Juha; Ruotsalainen,Marja; Väilä,Minna; Perälä,Henna (2019-07-01)

 
Tweet refworks
 
Avaa tiedosto
Air_surveillance_perf.pdf (2.238Mt)
Lataukset: 



Jylhä,Juha
Ruotsalainen,Marja
Väilä,Minna
Perälä,Henna
IEEE
01.07.2019


FUSION 2019 - 22nd International Conference on Information Fusion
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited

Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
http://urn.fi/URN:NBN:fi:tuni-202005145300

Kuvaus

Peer reviewed
Tiivistelmä
The evolution of modern radar is heading toward a networked, multifunctional, adaptive, and cognitive system. The network of software-controllable fast-adapting radars follows a highly complex control and operation logic. It is not straightforward to assess its instantaneous capability to detect, track, and recognize targets. To be able to predict or optimize the system performance, one has to understand its behavior not only on a general level, but also in various operating conditions and considering the target behavior and properties accurately. In this paper, we propose the fusion of radar and tracker recordings with an extensive database of cooperative aircraft navigation recordings and radar cross section data to assess and learn the performance measures for the air surveillance. The main contribution of this paper is the incorporation of the aircraft kinematics, orientation, and radar cross section into an automated measurement-based analysis. We consider the employment of the measurement-based metrics and machine learning in the performance prediction. Simulations and experiments with real-life data demonstrate the feasibility and potential of the proposed concept.
Kokoelmat
  • TUNICRIS-julkaisut [5035]

Samankaltainen aineisto

Näytetään aineisto, joilla on samankaltaisia nimekkeitä, tekijöitä tai asiasanoja.

  • A disparity range estimation technique for stereo-video streaming applications 

    Smirnov,Sergey; Gotchev,Atanas; Hannuksela,Miska
    IEEE International Conference on Multimedia and Expo (2013)
    /dk/atira/pure/researchoutput/researchoutputtypes/contributiontobookanthology/conference
  • Joint de-noising and fusion of 2D video and depth map sequences sensed by low-powered tof range sensor 

    Georgiev,Mihail; Gotchev,Atanas; Hannuksela,Miska
    IEEE International Conference on Multimedia and Expo (Institute of Electrical and Electronics Engineers IEEE, 2013)
    /dk/atira/pure/researchoutput/researchoutputtypes/contributiontobookanthology/conference
  • Influence of camera imaging pipeline on stereo-matching quality: An experimental study 

    Georgiev,Mihail; Gotchev,Atanas; Hannuksela,Miska
    IEEE International Symposium on Circuits and Systems (Institute of Electrical and Electronics Engineers IEEE, 2013)
    /dk/atira/pure/researchoutput/researchoutputtypes/contributiontobookanthology/conference
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Yhteydenotto | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Yhteydenotto | Tietosuoja | Saavutettavuusseloste