CDTB : A Color and Depth Visual Object Tracking Dataset and Benchmark
Lukezic, Alan; Kart, Ugur; Käpylä, Jani; Durmush, Ahmed; Kämäräinen, Joni-Kristian; Matas, Jiri; Kristan, Matej (2019)
Lukezic, Alan
Kart, Ugur
Käpylä, Jani
Durmush, Ahmed
Kämäräinen, Joni-Kristian
Matas, Jiri
Kristan, Matej
IEEE
2019
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202006055935
https://urn.fi/URN:NBN:fi:tuni-202006055935
Kuvaus
Peer reviewed
Tiivistelmä
We propose a new color-and-depth general visual object tracking benchmark (CDTB). CDTB is recorded by several passive and active RGB-D setups and contains indoor as well as outdoor sequences acquired in direct sunlight. The CDTB dataset is the largest and most diverse dataset in RGB-D tracking, with an order of magnitude larger number of frames than related datasets. The sequences have been carefully recorded to contain significant object pose change, clutter, occlusion, and periods of long-term target absence to enable tracker evaluation under realistic conditions. Sequences are per-frame annotated with 13 visual attributes for detailed analysis. Experiments with RGB and RGB-D trackers show that CDTB is more challenging than previous datasets. State-of-the-art RGB trackers outperform the recent RGB-D trackers, indicating a large gap between the two fields, which has not been previously detected by the prior benchmarks. Based on the results of the analysis we point out opportunities for future research in RGB-D tracker design.
Kokoelmat
- TUNICRIS-julkaisut [18592]