Robustifying correspondence based 6D object pose estimation
Hietanen, Antti; Halme, Jussi; Buch, Anders Glent; Latokartano, Jyrki; Kamarainen, J.-K. (2017-07-21)
Hietanen, Antti
Halme, Jussi
Buch, Anders Glent
Latokartano, Jyrki
Kamarainen, J.-K.
IEEE
21.07.2017
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201907151965
https://urn.fi/URN:NBN:fi:tty-201907151965
Kuvaus
Peer reviewed
Tiivistelmä
We propose two methods to robustify point correspondence based 6D object pose estimation. The first method, curvature filtering, is based on the assumption that low curvature regions provide false matches, and removing points in these regions improves robustness. The second method, region pruning, is more general by making no assumptions about local surface properties. Our region pruning segments a model point cloud into cluster regions and searches good region combinations using a validation set. The robustifying methods are general and can be used with any correspondence based method. For the experiments, we evaluated three correspondence selection methods, Geometric Consistency (GC) [1], Hough Grouping (HG) [2] and Search of Inliers (SI) [3] and report systematic improvements for their robustified versions with two distinct datasets.
Kokoelmat
- TUNICRIS-julkaisut [19225]