Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Low-latency EMG onset and termination detection for facial pacing

Kontunen,A.; Rantanen,V.; Vehkaoja,A.; Ilves,M.; Lylykangas,J.; Mäkelä,E.; Rautiainen,M.; Surakka,V.; Lekkala,J. (2018)

 
Tweet refworks
 
Avaa tiedosto
Low_latency_EMG_Onset_and_Termination_Detection_for_Facial_Pacing_postprint.pdf (215.2Kt)
Lataukset: 



Kontunen,A.
Rantanen,V.
Vehkaoja,A.
Ilves,M.
Lylykangas,J.
Mäkelä,E.
Rautiainen,M.
Surakka,V.
Lekkala,J.
Teoksen toimittaja(t)
Eskola,Hannu
Springer Verlag
2018


This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited

doi:10.1007/978-981-10-5122-7_254
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
http://urn.fi/urn:nbn:fi:tty-201708141678

Kuvaus

Peer reviewed
Tiivistelmä
An adaptive method for reliable and fast detection of muscle activity from surface electromyographic (sEMG) signals is introduced. The aim of this research was to minimize the delay of the onset and termination detection, while still retaining the reliability and simplicity of the detection algorithm. The proposed algorithm is based on a double-threshold detector. The algorithm applies the same principles as a constant false alarm rate (CFAR) processor that is often used to distinguish events from noisy environments with dynamic noise characteristics. The algorithm was tested with different noise conditions and frequencies. For each condition, a set of 1000 computer-simulated EMG signals were processed multiple times with different processing parameters in order to find the optimal settings for reliable muscle activity detection. The results for the detection delays were comparable to previously published results, and for low-noise conditions the detection worked without errors. The performance of the algorithm was verified using real sEMG signals. Performance in termination detection that has often been neglected in prior studies, is also reported. The results show that the method could be applied in the targeted real-time application: facial pacing.
Kokoelmat
  • TUNICRIS-julkaisut [4991]

Samankaltainen aineisto

Näytetään aineisto, joilla on samankaltaisia nimekkeitä, tekijöitä tai asiasanoja.

  • Automatic Detection of Facial Landmarks from AU-Coded Expressive Facial Images 

    Gizatdinova, Yulia; Surakka, Veikko (IEEE Computer Society, 2007)
    conferenceObject
  • Feature-Based Detection of Facial Landmarks from Neutral and Expressive Facial Images 

    Gizatdinova, Yulia; Surakka, Veikko (2006)
    article
  • Automatic edge-based localization of facial features from images with complex facial expressions 

    Gizatdinova, Yulia; Surakka, Veikko (2010)
    article
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Yhteydenotto | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Yhteydenotto | Tietosuoja | Saavutettavuusseloste