Of the Complexity of Boolean Network State Trajectories
Mäki-Marttunen, Tuomo; Kesseli, Juha; Kauffman, Stuart; Yli-Harja, Olli; Nykter, Matti (2011)
Lataukset:
Mäki-Marttunen, Tuomo
Kesseli, Juha
Kauffman, Stuart
Yli-Harja, Olli
Nykter, Matti
Teoksen toimittaja(t)
Koeppl, Heinz
Acimovic, Jugoslava
Kesseli, Juha
Mäki-Marttunen, Tuomo
Larjo, Antti
Yli-Harja, Olli
WCSB 2011
2011
Julkaisun pysyvä osoite on
https://urn.fi/urn:nbn:fi:tty-201401151039
https://urn.fi/urn:nbn:fi:tty-201401151039
Kuvaus
Peer reviewed
Tiivistelmä
We study the complexity of network dynamics in a couple of very different model classes: The traditional random Boolean networks (RBN) and Frisch-Hasslacher-Pomeau lattice gas automata (FHP). For this we formulate the FHP dynamics as a probabilistic Boolean network (PBN). We use the set complexity of successive network states to assess the complexity of the dynamics. We find that the complexity is maximised near a transition state in both types of dynamical systems.
Kokoelmat
- TUNICRIS-julkaisut [15239]