Molecular understanding of new-particle formation from α-pinene between −50 and +25 °C
Simon, Mario; Dada, Lubna; Heinritzi, Martin; Scholz, Wiebke; Stolzenburg, Dominik; Fischer, Lukas; C. Wagner, Andrea; Kürten, Andreas; Rörup, Birte; He, Xu Cheng; Almeida, Joao; Baalbaki, Rima; Baccarini, Andrea; S. Bauer, Paulus; Beck, Lisa; Bergen, Anton; Bianchi, Federico; Bräkling, Steffen; Brilke, Sophia; Caudillo, Lucia; Chen, Dexian; Chu, Biwu; Dias, Antonio; C. Draper, Danielle; Duplissy, Jonathan; El-Haddad, Imad; Finkenzeller, Henning; Frege, Carla; Gonzalez-Carracedo, Loic; Gordon, Hamish; Granzin, Manuel; Hakala, Jani; Hofbauer, Victoria; R. Hoyle, Christopher; Kim, Changhyuk; Kong, Weimeng; Lamkaddam, Houssni; P. Lee, Chuan; Lehtipalo, Katrianne; Leiminger, Markus; Mai, Huajun; Manninen, Hanna E.; Marie, Guillaume; Marten, Ruby; Mentler, Bernhard; Molteni, Ugo; Nichman, Leonid; Nie, Wei; Ojdanic, Andrea; Onnela, Antti; Partoll, Eva; Petäjä, Tuukka; Pfeifer, Joschka; Philippov, Maxim; L. J. Quéléver, Lauriane; Ranjithkumar, Ananth; P. Rissanen, Matti; Schallhart, Simon; Schobesberger, Siegfried; Schuchmann, Simone; Shen, Jiali; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Tauber, Christian; J. Tham, Yee; Tome, Antonio R.; Vazquez-Pufleau, Miguel; L. Vogel, Alexander; Wagner, Robert; Wang, Mingyi; S. Wang, Dongyu; Wang, Yonghong; K. Weber, Stefan; Wu, Yusheng; Xiao, Mao; Yan, Chao; Ye, Penglin; Ye, Qing; Zauner-Wieczorek, Marcel; Zhou, Xueqin; Baltensperger, Urs; Dommen, Josef; C. Flagan, Richard; Hansel, Armin; Kulmala, Markku; Volkamer, Rainer; M. Winkler, Paul; R. Worsnop, Douglas; M. Donahue, Neil; Kirkby, Jasper; Curtius, Joachim (2020-08-03)
Simon, Mario
Dada, Lubna
Heinritzi, Martin
Scholz, Wiebke
Stolzenburg, Dominik
Fischer, Lukas
C. Wagner, Andrea
Kürten, Andreas
Rörup, Birte
He, Xu Cheng
Almeida, Joao
Baalbaki, Rima
Baccarini, Andrea
S. Bauer, Paulus
Beck, Lisa
Bergen, Anton
Bianchi, Federico
Bräkling, Steffen
Brilke, Sophia
Caudillo, Lucia
Chen, Dexian
Chu, Biwu
Dias, Antonio
C. Draper, Danielle
Duplissy, Jonathan
El-Haddad, Imad
Finkenzeller, Henning
Frege, Carla
Gonzalez-Carracedo, Loic
Gordon, Hamish
Granzin, Manuel
Hakala, Jani
Hofbauer, Victoria
R. Hoyle, Christopher
Kim, Changhyuk
Kong, Weimeng
Lamkaddam, Houssni
P. Lee, Chuan
Lehtipalo, Katrianne
Leiminger, Markus
Mai, Huajun
Manninen, Hanna E.
Marie, Guillaume
Marten, Ruby
Mentler, Bernhard
Molteni, Ugo
Nichman, Leonid
Nie, Wei
Ojdanic, Andrea
Onnela, Antti
Partoll, Eva
Petäjä, Tuukka
Pfeifer, Joschka
Philippov, Maxim
L. J. Quéléver, Lauriane
Ranjithkumar, Ananth
P. Rissanen, Matti
Schallhart, Simon
Schobesberger, Siegfried
Schuchmann, Simone
Shen, Jiali
Sipilä, Mikko
Steiner, Gerhard
Stozhkov, Yuri
Tauber, Christian
J. Tham, Yee
Tome, Antonio R.
Vazquez-Pufleau, Miguel
L. Vogel, Alexander
Wagner, Robert
Wang, Mingyi
S. Wang, Dongyu
Wang, Yonghong
K. Weber, Stefan
Wu, Yusheng
Xiao, Mao
Yan, Chao
Ye, Penglin
Ye, Qing
Zauner-Wieczorek, Marcel
Zhou, Xueqin
Baltensperger, Urs
Dommen, Josef
C. Flagan, Richard
Hansel, Armin
Kulmala, Markku
Volkamer, Rainer
M. Winkler, Paul
R. Worsnop, Douglas
M. Donahue, Neil
Kirkby, Jasper
Curtius, Joachim
03.08.2020
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202008246604
https://urn.fi/URN:NBN:fi:tuni-202008246604
Kuvaus
Peer reviewed
Tiivistelmä
Highly oxygenated organic molecules (HOMs) contribute substantially to the formation and growth of atmospheric aerosol particles, which affect air quality, human health and Earth s climate. HOMs are formed by rapid, gasphase autoxidation of volatile organic compounds (VOCs) such as -pinene, the most abundant monoterpene in the atmosphere. Due to their abundance and low volatility, HOMs can play an important role in new-particle formation (NPF) and the early growth of atmospheric aerosols, even without any further assistance of other low-volatility compounds such as sulfuric acid. Both the autoxidation reaction forming HOMs and their NPF rates are expected to be strongly dependent on temperature. However, experimental data on both effects are limited. Dedicated experiments were performed at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN to address this question. In this study, we show that a decrease in temperature (from C25 to 50 C) results in a reduced HOM yield and reduced oxidation state of the products, whereas the NPF rates (J1:7 nm) increase substantially. Measurements with two different chemical ionization mass spectrometers (using nitrate and protonated water as reagent ion, respectively) provide the molecular composition of the gaseous oxidation products, and a two-dimensional volatility basis set (2D VBS) model provides their volatility distribution. The HOM yield decreases with temperature from 6.2% at 25 C to 0.7% at 50 C. However, there is a strong reduction of the saturation vapor pressure of each oxidation state as the temperature is reduced. Overall, the reduction in volatility with temperature leads to an increase in the nucleation rates by up to 3 orders of magnitude at 50 C compared with 25 C. In addition, the enhancement of the nucleation rates by ions decreases with decreasing temperature, since the neutral molecular clusters have increased stability against evaporation. The resulting data quantify how the interplay between the temperature-dependent oxidation pathways and the associated vapor pressures affect biogenic NPF at the molecular level. Our measurements, therefore, improve our understanding of pure biogenic NPF for a wide range of tropospheric temperatures and precursor concentrations.
Kokoelmat
- TUNICRIS-julkaisut [18384]