Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Detection and Classification of Acoustic Scenes and Events : Outcome of the DCASE 2016 Challenge

Mesaros, Annamaria; Heittola, Toni; Benetos, Emmanouil; Foster, Peter; Lagrange, Mathieu; Virtanen, Tuomas; Plumbley, Mark D. (2018-02)

 
Avaa tiedosto
dcase2016_taslp.pdf (2.479Mt)
Lataukset: 



Mesaros, Annamaria
Heittola, Toni
Benetos, Emmanouil
Foster, Peter
Lagrange, Mathieu
Virtanen, Tuomas
Plumbley, Mark D.
02 / 2018


This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited
doi:10.1109/TASLP.2017.2778423
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201802081200

Kuvaus

Peer reviewed
Tiivistelmä
Public evaluation campaigns and datasets promote active development in target research areas, allowing direct comparison of algorithms. The second edition of the challenge on Detection and Classification of Acoustic Scenes and Events (DCASE 2016) has offered such an opportunity for development of state-of-the-art methods, and succeeded in drawing together a large number of participants from academic and industrial backgrounds. In this paper, we report on the tasks and outcomes of the DCASE 2016 challenge. The challenge comprised four tasks: acoustic scene classification, sound event detection in synthetic audio, sound event detection in real-life audio, and domestic audio tagging. We present in detail each task and analyse the submitted systems in terms of design and performance. We observe the emergence of deep learning as the most popular classification method, replacing the traditional approaches based on Gaussian mixture models and support vector machines. By contrast, feature representations have not changed substantially throughout the years, as mel frequency-based representations predominate in all tasks. The datasets created for and used in DCASE 2016 are publicly available and are a valuable resource for further research.
Kokoelmat
  • TUNICRIS-julkaisut [15251]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste