Mapping microscale wetting variations on biological and synthetic water-repellent surfaces
Liimatainen, Ville; Vuckovac, Maja; Jokinen, Ville; Sariola, Veikko; Hokkanen, Matti J.; Zhou, Quan; Ras, Robin H.A. (2017-12-01)
Liimatainen, Ville
Vuckovac, Maja
Jokinen, Ville
Sariola, Veikko
Hokkanen, Matti J.
Zhou, Quan
Ras, Robin H.A.
01.12.2017
1798
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201712112320
https://urn.fi/URN:NBN:fi:tty-201712112320
Kuvaus
Peer reviewed
Tiivistelmä
Droplets slip and bounce on superhydrophobic surfaces, enabling remarkable functions in biology and technology. These surfaces often contain microscopic irregularities in surface texture and chemical composition, which may affect or even govern macroscopic wetting phenomena. However, effective ways to quantify and map microscopic variations of wettability are still missing, because existing contact angle and force-based methods lack sensitivity and spatial resolution. Here, we introduce wetting maps that visualize local variations in wetting through droplet adhesion forces, which correlate with wettability. We develop scanning droplet adhesion microscopy, a technique to obtain wetting maps with spatial resolution down to 10 μm and three orders of magnitude better force sensitivity than current tensiometers. The microscope allows characterization of challenging non-flat surfaces, like the butterfly wing, previously difficult to characterize by contact angle method due to obscured view. Furthermore, the technique reveals wetting heterogeneity of micropillared model surfaces previously assumed to be uniform.
Kokoelmat
- TUNICRIS-julkaisut [19816]