Design Guidelines for Multi-Loop Perturbative Maximum Power Point Tracking Algorithms
Kivimäki, Jyri; Kolesnik, Sergei; Sitbon, Moshe; Suntio, Teuvo; Kuperman, Alon (2018)
Avaa tiedosto
Lataukset:
Kivimäki, Jyri
Kolesnik, Sergei
Sitbon, Moshe
Suntio, Teuvo
Kuperman, Alon
2018
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201802141237
https://urn.fi/URN:NBN:fi:tty-201802141237
Kuvaus
Peer reviewed
Tiivistelmä
Due to relatively good performance and simple implementation, fixed-step direct maximum power point tracking techniques such as perturb & observe and incremental conductance are the most popular algorithms aimed to maximize the energy yield of photovoltaic energy conversion systems. In order to optimize maximum power point tracking process performance, two design parameters – perturbation frequency and perturbation step size – need to be set a priori, taking into account the properties of both interfacing power converter and photovoltaic generator. While perturbation frequency is limited by the combined energy conversion system settling time, perturbation step size must be high enough to differentiate system response from that caused by irradiation variation. Recent studies have provided explicit design guidelines for single-loop maximum power point tracking structures only, where the algorithm directly sets the interfacing converter duty cycle. It was shown that dynamic resistance of the photovoltaic generator, which is both operation point and environmental conditions dependent, significantly affects the combined energy conversion system settling time. On the other hand, no design guidelines were explicitly given for multi-loop maximum power point tracking structures, where the algorithm sets the reference signal for photovoltaic generator voltage and inner voltage controller performs the regulation task. This paper introduces perturbation frequency and perturbation step size design guidelines for such systems. It is shown that while perturbation step size design is similar to that of single-loop structures, perturbation frequency design is quite different. It is revealed that once the inner voltage loop is properly closed, the influence of photovoltaic generator dynamic resistance on settling time (and thus on perturbation frequency design) is negligible. Experimental results are provided to verify the proposed guidelines validity.
Kokoelmat
- TUNICRIS-julkaisut [19273]