Maximal perpendicularity in certain Abelian groups
Mattila, Mika; Merikoski, Jorma K.; Haukkanen, Pentti; Tossavainen, Timo (2017)
Mattila, Mika
Merikoski, Jorma K.
Haukkanen, Pentti
Tossavainen, Timo
2017
Julkaisun pysyvä osoite on
https://urn.fi/urn:nbn:fi:tty-201708291840Julkaisun pysyvä osoite on
https://urn.fi/urn:nbn:fi:uta-201808242386
https://urn.fi/urn:nbn:fi:tty-201708291840Julkaisun pysyvä osoite on
https://urn.fi/urn:nbn:fi:uta-201808242386
Kuvaus
Peer reviewed
Tiivistelmä
We define perpendicularity in an Abelian group G as a binary relation satisfying certain five axioms. Such a relation is maximal if it is not a subrelation of any other perpendicularity in G. A motivation for the study is that the poset (P, ⊆) of all perpendicularities in G is a lattice if G has a unique maximal perpendicularity, and only a meet-semilattice if not. We study the cardinality of the set of maximal perpendicularities and, on the other hand, conditions on the existence of a unique maximal perpendicularity in the following cases: G ≅ ℤn, G is finite, G is finitely generated, and G = ℤ ⊕ ℤ ⊕⋯. A few such conditions are found and a few conjectured. In studying ℝn, we encounter perpendicularity in a vector space.
Kokoelmat
- TUNICRIS-julkaisut [19265]