Benchmarking DFT methods with small basis sets for the calculation of halogen-bond strengths
Siiskonen, Antti; Priimägi, Arri (2017-02-01)
Siiskonen, Antti
Priimägi, Arri
01.02.2017
50
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202005085079
https://urn.fi/URN:NBN:fi:tuni-202005085079
Kuvaus
Peer reviewed
Tiivistelmä
In recent years, halogen bonding has become an important design tool in crystal engineering, supramolecular chemistry and biosciences. The fundamentals of halogen bonding have been studied extensively with high-accuracy computational methods. Due to its non-covalency, the use of triple-zeta (or larger) basis sets is often recommended when studying halogen bonding. However, in the large systems often encountered in supramolecular chemistry and biosciences, large basis sets can make the calculations far too slow. Therefore, small basis sets, which would combine high computational speed and high accuracy, are in great demand. This study focuses on comparing how well density functional theory (DFT) methods employing small, double-zeta basis sets can estimate halogen-bond strengths. Several methods with triple-zeta basis sets are included for comparison. Altogether, 46 DFT methods were tested using two data sets of 18 and 33 halogen-bonded complexes for which the complexation energies have been previously calculated with the high-accuracy CCSD(T)/CBS method. The DGDZVP basis set performed far better than other double-zeta basis sets, and it even outperformed the triple-zeta basis sets. Due to its small size, it is well-suited to studying halogen bonding in large systems.
Kokoelmat
- TUNICRIS-julkaisut [19853]