Methods for Doppler Radar Monitoring of Physiological Signals
Zakrzewski, Mari (2015)
Zakrzewski, Mari
Tampere University of Technology
2015
Teknis-taloudellinen tiedekunta - Faculty of Business and Technology Management
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Julkaisun pysyvä osoite on
https://urn.fi/URN:ISBN:978-952-15-3574-1
https://urn.fi/URN:ISBN:978-952-15-3574-1
Tiivistelmä
Unobtrusive health monitoring includes advantages such as long-term monitoring of rarely occurring conditions or of slow changes in health, at reasonable costs. In addition, the preparation of electrodes or other sensors is not needed. Currently, the main limitation of remote patient monitoring is not in the existing communication infrastructure but the lack of reliable, easy-to-use, and well-studied sensors.
The aim of this thesis was to develop methods for monitoring cardiac and respiratory activity with microwave continuous wave (CW) Doppler radar. When considering cardiac and respiration monitoring, the heart and respiration rates are often the first monitored parameters. The motivation of this thesis, however, is to measure not only rate-related parameters but also the cardiac and respiratory waveforms, including the chest wall displacement information.
This dissertation thoroughly explores the signal processing methods for accurate chest wall displacement measurement with a radar sensor. The sensor prototype and measurement setup choices are reported. The contributions of this dissertation encompass an I/Q imbalance estimation method and a nonlinear demodulation method for a quadrature radar sensor. Unlike the previous imbalance estimation methods, the proposed method does not require the use of laboratory equipment. The proposed nonlinear demodulation method, on the other hand, is shown to be more accurate than other methods in low-noise cases. In addition, the separation of the cardiac and respiratory components with independent component analysis (ICA) is discussed. The developed methods were validated with simulations and with simplified measurement setups in an office environment. The performance of the nonlinear demodulation method was also studied with three patients for sleep-time respiration monitoring. This is the first time that whole-night measurements have been analyzed with the method in an uncontrolled environment. Data synchronization between the radar sensor and a commercial polysomnographic (PSG) device was assured with a developed infrared (IR) link, which is reported as a side result.
The developed methods enable the extraction of more useful information from a radar sensor and extend its application. This brings Doppler radar sensors one step closer to large-scale commercial use for a wide range of applications, including home health monitoring, sleep-time respiration monitoring, and measuring gating signals for medical imaging.
The aim of this thesis was to develop methods for monitoring cardiac and respiratory activity with microwave continuous wave (CW) Doppler radar. When considering cardiac and respiration monitoring, the heart and respiration rates are often the first monitored parameters. The motivation of this thesis, however, is to measure not only rate-related parameters but also the cardiac and respiratory waveforms, including the chest wall displacement information.
This dissertation thoroughly explores the signal processing methods for accurate chest wall displacement measurement with a radar sensor. The sensor prototype and measurement setup choices are reported. The contributions of this dissertation encompass an I/Q imbalance estimation method and a nonlinear demodulation method for a quadrature radar sensor. Unlike the previous imbalance estimation methods, the proposed method does not require the use of laboratory equipment. The proposed nonlinear demodulation method, on the other hand, is shown to be more accurate than other methods in low-noise cases. In addition, the separation of the cardiac and respiratory components with independent component analysis (ICA) is discussed. The developed methods were validated with simulations and with simplified measurement setups in an office environment. The performance of the nonlinear demodulation method was also studied with three patients for sleep-time respiration monitoring. This is the first time that whole-night measurements have been analyzed with the method in an uncontrolled environment. Data synchronization between the radar sensor and a commercial polysomnographic (PSG) device was assured with a developed infrared (IR) link, which is reported as a side result.
The developed methods enable the extraction of more useful information from a radar sensor and extend its application. This brings Doppler radar sensors one step closer to large-scale commercial use for a wide range of applications, including home health monitoring, sleep-time respiration monitoring, and measuring gating signals for medical imaging.
Kokoelmat
- Väitöskirjat [4865]