Scaling the Power and Tailoring the Wavelength of Semiconductor Disk Lasers
Rantamäki, Antti (2015)
Rantamäki, Antti
Tampere University of Technology
2015
Luonnontieteiden ja ympäristötekniikan tiedekunta - Faculty of Science and Environmental Engineering
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Julkaisun pysyvä osoite on
https://urn.fi/URN:ISBN:978-952-15-3489-8
https://urn.fi/URN:ISBN:978-952-15-3489-8
Tiivistelmä
Optically pumped semiconductor disk lasers (SDLs) provide a unique combination of high output power, high beam quality and possible emission wavelengths spanning from the ultraviolet to the mid-infrared spectral range. In essence, SDLs combine the wavelength versatility of semiconductor gain media with the power scaling principles of optically pumped solid state disk lasers. The emission wavelength of SDLs can be tailored to match the desired application simply by altering the composition of the gain material. High power operation, however, requires efficient thermal management, which can be realized using thin structures that are integrated with industrial diamond heat spreaders.
The main objective of this thesis was to develop methods for increasing the output power of optically pumped SDLs, especially in challenging wavelength regions. The work included integrating SDL gain elements onto diamond heat spreaders using thin intermediate gold layers. This configuration enabled 45–50 % higher output powers than conventional bonding with indium solder. In addition, the reflectivity of the SDL gain mirror was enhanced using a semiconductor-dielectric-metal compound mirror. This procedure enabled 30 % thinner mirror structures when compared with the conventional design, where the reflectivity of the semiconductor mirror is enhanced with a metal layer. Finally, thin GaAs-based semiconductor mirrors were integrated with InP-based active regions. Such integration is necessary for high power operation in the spectral range 1.3–1.6 µm, because InP-based compounds for a highly reflective thin mirror section are not available. The configuration enabled record-high output powers of 6.6 W and 4.6 W at the wavelengths of 1.3 µm and 1.58 µm, respectively.
The second objective of this thesis was to generate high output powers in single-frequency operation and via intracavity frequency-doubling. In single-frequency operation, record-high output powers of 4.6 W and 1 W were demonstrated at the wavelengths of 1.05 µm and 1.56 µm, respectively. Such light sources are required for numerous applications including free-space communications and high resolution spectroscopy. In addition, second-harmonic generation was demonstrated with SDLs emitting at 1.3 µm and 1.57 µm. The output powers reached 3 W at 650 nm and 1 W at 785 nm, which represent record-high output powers from SDLs in this wavelength range. These types of lasers could be especially useful in biophotonics and medical applications.
The main objective of this thesis was to develop methods for increasing the output power of optically pumped SDLs, especially in challenging wavelength regions. The work included integrating SDL gain elements onto diamond heat spreaders using thin intermediate gold layers. This configuration enabled 45–50 % higher output powers than conventional bonding with indium solder. In addition, the reflectivity of the SDL gain mirror was enhanced using a semiconductor-dielectric-metal compound mirror. This procedure enabled 30 % thinner mirror structures when compared with the conventional design, where the reflectivity of the semiconductor mirror is enhanced with a metal layer. Finally, thin GaAs-based semiconductor mirrors were integrated with InP-based active regions. Such integration is necessary for high power operation in the spectral range 1.3–1.6 µm, because InP-based compounds for a highly reflective thin mirror section are not available. The configuration enabled record-high output powers of 6.6 W and 4.6 W at the wavelengths of 1.3 µm and 1.58 µm, respectively.
The second objective of this thesis was to generate high output powers in single-frequency operation and via intracavity frequency-doubling. In single-frequency operation, record-high output powers of 4.6 W and 1 W were demonstrated at the wavelengths of 1.05 µm and 1.56 µm, respectively. Such light sources are required for numerous applications including free-space communications and high resolution spectroscopy. In addition, second-harmonic generation was demonstrated with SDLs emitting at 1.3 µm and 1.57 µm. The output powers reached 3 W at 650 nm and 1 W at 785 nm, which represent record-high output powers from SDLs in this wavelength range. These types of lasers could be especially useful in biophotonics and medical applications.
Kokoelmat
- Väitöskirjat [4865]