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This thesis is part of SMARTFIBRE project. The objective of the project is 
development of new functionalization concepts for smart fibre products. SMARTFIBRE 
is a collaborative effort divided into several subprojects. In the subproject assigned to 
Tampere  University  of  Technology,  a  microrobotic  platform  (MP)  capable  of  
characterizing interactions of individual paper fibres is developed to determine the 
mechanical key factors effecting quality of paper.  
 Hardware  of  MP  consists  of  three  separate  subsystems.  The  core  of  MP  is  
Micromanipulation system including several microrobotic actuators. Vision system 
which consists of a camera and related optics is used to obtain visual information of an 
ongoing characterization procedure. The third subsystem, Data acquisition system, 
contains the sensors required to measure desired parameters of the studied interaction. 
The operator has to be able to control each subsystem of MP. 

This thesis introduces CoSMic, a control software designed for the needs of MP.  
The final goal of CoSMic is autonomous characterization of paper fibres with 
throughput of several tens of paper fibres per hour. CoSMic is based on distributed 
architecture hosting different parts of the software on separate network nodes. The 
approach was selected to enhance scalability of the software. In its current state, 
CoSMic provides the operator with functionality required to control each of the 
subsystems of MP.  
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Tämä diplomityö on tehty osana SMARTFIBRE-projektia, jonka tarkoituksena on 
kehittää uusia toiminnallisia paperikuituja älykkäiden paperituotteiden valmistamiseen. 
Projektin osapuolina ovat Tampereen teknillisen yliopiston systeemitekniikan laitos, 
Åbo Akademin kuitu- ja selluloosateknologian laboratorio, Latvian valtiollinen 
puukemian tutkimuslaitos, UPM-Kymmene Oyj, Stora Enso Oyj sekä Metsä-Botnia Oy. 
Tampereen teknillisen yliopiston vastuualue projektissa on paperikuitujen välisten 
vuorovaikutusten tutkiminen yksittäisten paperikuitujen tasolla  paperin mekaanisiin 
ominaisuuksiin vaikuttavien tekijöiden määrittämiseksi. Paperikuitujen mekaanisten 
ominaisuuksien karakterisointi suoritetaan projektissa kehitetyn 
mikrorobottijärjestelmän avulla.  

Tampereen teknillisellä yliopistolla kehitetty mikrorobottijärjestelmä 
mahdollistaa yksittäisten paperikuitujen manipuloinnin, havainnoinnin sekä 
paperikuidun mekaanisten ominaisuuksien karakterisoinnin. Järjestelmä jakautuu 
kolmeen alijärjestelmään, joista kullakin on oma vastuualueensa. Paperikuitujen 
manipulointi tapahtuu mikromanipulaatiojärjestelmässä, joka mahdollistaa 
paperikuitujen manipuloinnin järjestelmään kuuluvien toimilaitteiden avulla.  
Paperikuitujen havainnointi tapahtuu järjestelmään liitetyn kamerasta, moottoroidusta 
objektiivista sekä valaisujärjestelmästä koostuvan konenäköjärjestelmän avulla. 
Havainnoinnin lisäksi konenäköjärjestelmällä voidaan suorittaa kuvaan perustuvia 
mittauksia. Mikrorobottijärjestelmään kuuluu myös anturijärjestelmä, joka kerää 
mittausinformaatiota karakterisoitavista paperikuiduista. 

Tässä diplomityössä suunnitellaan ja toteutetaan mikrorobottijärjestelmän 
ohjaamiseen soveltuva ohjelmisto. Ohjausohjelmiston pääasiallinen tarkoitus on 
järjestelmään kuuluvien toimilaitteiden ohjaaminen sekä tiedonkeruu järjestelmän 
mittalaitteilta. Lopullisena tavoitteena on paperikuitujen karakterisointiprosessin 
automatisointi. Täysin automatisoidun mikrorobottijärjestelmän kapasiteetin on 
tarkoitus yltää useiden kymmenien paperikuitujen karakterisointiin tunnissa. 

Tämä diplomityö esittelee hajautettuun arkkitehtuuriin perustuvan 
alustariippumattomuuteen pyrkivän mikrorobottijärjestelmän ohjausohjelmiston. 
Ohjausohjelmiston nimeksi on annettu CoSMic, joka on lyhenne sanoista Control 
Software for Microrobotic Platform. Vaikka lopullisena tavoitteena onkin kehittää 
täysin automatisoitu ohjausjärjestelmä, kehitetään tässä vaiheessa teleoperoinnin 
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mahdollistava ohjelmisto, joka tarjoaa graafisen käyttöliittymän jokaiseen 
mikrorobottijärjestelmän alijärjestelmään.  

Työn selvitysosuudessa käsitellään hajautettuihin järjestelmiin liittyviä yleisiä 
hyöty- ja haittanäkökulmia. Hajautuksella voidaan saavuttaa huomattavia etuja 
järjestelmän suorituskyvyssä, skaalattavuudessa ja virheensietokyvyssä. Toisaalta 
järjestelmän moninaisuus ja hajanaisuus kasvaa. Hajautuksen mukanaan tuomia 
ongelmia voidaan vähentää ohjelmiston rakenteen huolellisella suunnittelulla.. Tähän 
osuudessa paneudutaan esittelemällä suunnittelumallin käsite. Suunnittelumallilla 
tarkoitetaan ohjelmistotekniikassa olio-ohjelmointiin liittyvää tapaa, jolla usein 
esiintyvä ongelma voidaan ratkaista. Suunnittelumalleja esiintyy usealla tasolla ja ne 
kuvaavat olioiden tai luokkien välisiä vaikutussuhteita ja kommunikaatiota.  

Mikrorobottijärjestelmän turvallisuuteen liittyen paneudutaan törmäysten 
tunnistamiseen kolmiulotteisessa avaruudessa. Törmäysten tunnistamisen tarkoituksena 
on estää mikrorobottijärjestelmän eri osien törmääminen toisiinsa. Tyypillisesti 
törmäysten tunnistaminen suoritetaan mallintamalla todellisen laitteiston geometria 
virtuaalitodellisuudessa, jossa törmäykset havaitaan mallinnettujen geometrioiden 
leikatessa toisensa. Leikkauspisteiden etsiminen vaatii huomattavan määrän 
laskentatehoa ja useita erilaisia algoritmeja tarvittavan laskentatehon vähentämiseksi on 
saatavilla. Työssä esitellään törmäyksen tunnisteen liittyviä algoritmeja sekä luodaan 
katsaus olemassa oleviin avoimen lähdekoodin toteutuksiin. 

Edellä mainittujen perustavanlaatuisten konseptien tutkimisen jälkeen esitellään 
mikrorobottijärjestelmän laitteisto, lähinnä sen ohjauksen kannalta sekä määritellään 
vaatimukset. Laitteiston ohjauksen yhteydessä tutustutaan saatavilla oleviin 
ohjelmakirjastoihin ja tutkitaan niiden soveltuvuutta mikrorobottijärjestelmään. 
Jokaisen alijärjestelmän ohjaamiseen valitaan oma ohjelmakirjasto, jonka tarkoitus on 
tukea koko järjestelmän pitkäaikaista kehittämistä. Lisäksi ohjelmiston kehitykseen 
valitaan erillinen ohjelmistokehitysympäristö, jonka tarkoituksena on tukea kehitettävän 
ohjausohjelmiston alustariippumattomuutta. 

Työn soveltava osa keskittyy suurelta osin ohjausohjelmiston arkkitehtuuriin ja 
suunnitteluun. Ohjelmiston arkkitehtuuria suunniteltaessa tutkitaan hajautettuihin 
järjestelmiin soveltuvia arkkitehtuuritason suunnittelumalleja. Valittuja 
suunnittelumalleja käytetään perustana työssä kehitetylle ohjelmistokehykselle, jonka 
tarkoituksena on yhdenmukaistaa mikrorobottijärjestelmään liitettävien ohjelmistojen 
kehitysprosessi. Ohjelmiston eri osien välinen kommunikaatio pyritään irrottamaan 
erilliseksi osaksi, jotta ohjelmisto ei olisi riippuvainen käytetystä verkkotekniikasta. 
Ohjelmiston suunnitteluun liittyvässä osassa keskitytään tarkastelemaan 
mikromanipulaatiota ja mittausinformaation tiedonkeruuta ohjaavia ohjelmiston osia. 
Molemmat osat toteutetaan monisäikeisinä arkkitehtuurin yhteydessä kuvattuja 
suunnittelumalleja noudattaen. Lisäksi esitellään ohjausohjelmiston tämänhetkinen 
toteutus    ja graafinen käyttöliittymä. Osuuden lopuksi käsitellään ohjausohjelmiston 
toteutuksessa havaittuja ongelmia ja kerrotaan ohjelmiston kehittämiseen liittyvistä 
tulevaisuudensuunnitelmista. 
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Työn tuloksena on suunniteltu hajautettu ohjausohjelmisto paperikuitujen 
mekaaniseen karakterisointiin tarkoitetulle mikrorobottijärjestelmälle. Ohjelmistosta on 
toteutettu kaksi alijärjestelmää, joiden avulla voidaan ohjata mikromanipulaatioon ja 
mittausinformaation tiedonkeruuseen liittyvää laitteistoa.  
 
 
 
 
 
 
 
 
 
 

 
 



 VI 

FOREWORD 
 
 
This thesis has been made in the Department of Automation Science and Engineering at 
Tampere University of Technology (TUT). The work has been funded by the Finnish 
Funding Agency for Technology and Innovation (TEKES). 
 
I  would  like  to  express  my  gratitude  to  Prof.  Pasi  Kallio  who  has  supported  and  
encouraged me throughout the thesis. His experience and knowledge has indeed helped 
me to accomplish this work. I am grateful to Prof. Seppo Kuikka whose hints and 
comments I have found invaluable. I would also like to thank all my colleagues in 
Micro- and Nanosystems Research Group – one could not wish for a better working 
atmosphere. 
 
I would like to thank my parents for supporting me throughout my studies. I would also 
like to thank Evelína for all the inspirational trips we have had. Finally, I would like to 
express my deepest gratitude to my fiancée Magdaléna Va ková. 
 
 
 
Tampere, June 2010 
 
 
 
 
Mathias von Essen 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 VII 

CONTENTS 
Abstract ....................................................................................................................... II 
Tiivistelmä .................................................................................................................. III 
Foreword .................................................................................................................... VI 
Symbols and Abbreviations......................................................................................... IX 
1. Introduction........................................................................................................... 1 

1.1. Scope ............................................................................................................ 2 
1.2. Outline .......................................................................................................... 2 

2. Overview of Distributed Control Software for Microrobotic Platform ................... 3 
2.1. Introduction to Distributed Systems ............................................................... 3 
2.2. Software Design Patterns ............................................................................... 4 
2.3. Real-Time Systems ........................................................................................ 6 

2.3.1. Scheduling ..................................................................................... 7 
2.3.2. Linux in Real-time Systems ........................................................... 7 

2.4. Collision Detection ........................................................................................ 8 
2.4.1. Collision Detection Pipeline ........................................................... 8 
2.4.2. Collision Detection Implementations ............................................ 12 

3. Microrobotic Platform ......................................................................................... 14 
3.1. Overview of the Microrobotic Platform ....................................................... 14 
3.2. Requirements for Control Software ............................................................. 16 

3.2.1. Requirements of Micromanipulation System ................................ 16 
3.2.2. Requirements of Vision System ................................................... 17 
3.2.3. Requirements of Data Acquisition System.................................... 17 
3.2.4. Requirements of Real-Time Controller ......................................... 17 

3.3. Related Hardware ........................................................................................ 17 
3.3.1. Micromanipulation System .......................................................... 18 
3.3.2. Vision System .............................................................................. 19 
3.3.3. Data Acquisition System .............................................................. 21 

3.4. Control Modes ............................................................................................. 22 
3.4.1. Manual and Semi-automatic Control Modes ................................. 22 
3.4.2. Enhanced Manual Control Mode .................................................. 22 
3.4.3. Automatic Control Mode .............................................................. 23 

4. Selection of Implementation Technologies .......................................................... 24 
4.1. Qt – an Application Development Framework for C++ ................................ 24 

4.1.1. Signals and Slots .......................................................................... 25 
4.1.2. Threading in Qt ............................................................................ 25 
4.1.3. Qt Integration with Real-time Operating Systems ......................... 26 

4.2. Application Programming Interface for SmarAct Micropositioners .............. 26 
4.2.1. Communication Modes ................................................................ 26 
4.2.2. Control Methods .......................................................................... 28 

4.3. Application Programming Interfaces for Data Acquisition ........................... 29 
4.3.1. DAQmx ....................................................................................... 29 



 VIII 

4.3.2. Data Acquisition in Real-time Linux ............................................ 29 
4.3.3. Selection ...................................................................................... 30 

4.4. Selection of Collision Detection Library ...................................................... 30 
4.4.1. CollDet ........................................................................................ 31 
4.4.2. Testing of Selected Collision Detection Library ........................... 31 

4.5. Key Findings ............................................................................................... 33 
4.6. Selected Technologies and Design Principles .............................................. 35 

5. Architecture ........................................................................................................ 36 
5.1. Selected Architectural Patterns for Distributed Computing .......................... 36 

5.1.1. Broker Pattern .............................................................................. 37 
5.1.2. Client Proxy Pattern ..................................................................... 37 
5.1.3. Invoker Pattern ............................................................................. 38 

5.2. Distributed Architecture for Microrobotic Platform ..................................... 39 
5.2.1. Network Communication ............................................................. 41 
5.2.2. Communication on Network Node Level ..................................... 43 

5.3. CoSMic-Frame ............................................................................................ 46 
5.3.1. Structure ...................................................................................... 46 
5.3.2. Network Communication ............................................................. 47 

5.4. Architecture of MiCo................................................................................... 48 
5.5. Architecture of DAQCo ............................................................................... 50 
5.6. Summary ..................................................................................................... 51 

6. Design and Implementation ................................................................................. 52 
6.1. MiCo ........................................................................................................... 52 

6.1.1. Overview ..................................................................................... 52 
6.1.2. MiCo API .................................................................................... 55 
6.1.3. Communication ............................................................................ 58 
6.1.4. User Interfaces ............................................................................. 62 

6.2. DAQCo ....................................................................................................... 62 
6.2.1. Callback Functions and Data Exchange ........................................ 63 
6.2.2. Graphical User Interface .............................................................. 65 

6.3. Integration of MiCo and DAQCo With An Input Device ............................. 66 
6.4. Current Implementation ............................................................................... 67 

7. Conclusions and Future Work ............................................................................. 70 
7.1. Conclusions ................................................................................................. 70 
7.2. Future Work ................................................................................................ 71 

8. References .......................................................................................................... 73 



 IX 

SYMBOLS AND ABBREVIATIONS 
 
 
 
Symbols 
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1. INTRODUCTION 

The development of the actuators used in microrobotics has undergone rapid evolution 
during the past decade. In its current state, the technology has reached a certain level of 
maturity and more commercial solutions are penetrating to market. The evolution 
however, is still on the hardware level and more resources are required in the 
development of control software. Software development for microrobotic hardware 
differs in many ways from that for conventional robotics. The products available are 
often immature – at least in the sense of software development. Moreover, the mere size 
and the possibly unknown characteristics of the actuator may hinder development of the 
software. The movements produced by the microrobotic actuators are often measured in 
micro- or nanometres and the movement may not be visible for naked eye. A lack of 
standardization and well established practises incurs a situation where the provided 
application programming interfaces (API) do not have common features, making 
creation of general-purpose control software virtually impossible, thus forcing the 
application developers to content with the manufacturer’s API. 
This thesis is part of SMARTFIBRE project funded by The Finnish Funding Agency for 
Technology and Innovation (TEKES). It is accomplished in Micro and Nanosystems 
Research Group at Department of Automation Science and Engineering, part of the 
Faculty of Automation, Mechanical and Materials Engineering of Tampere University 
of Technology. 
The objective of the project is development of new functionalisation concepts for smart 
fibre  products.  The  project  is  a  collaborative  effort  of  two  research  partners,  
responsibilities between the partners is divided as follows. Laboratory of Fibre and 
Cellulose  Technology  at  Åbo  Akademi  is  responsible  for  development  of  the  new  
functionalization concepts. Main activities include design and multifunctionalisation of 
fibres and papers in order to enhance existing and to innovate new functionalities for 
fibre based materials. 

Micro and Nanosystems research group is responsible for investigating 
individual fibre-fibre and fibre-chemical interactions using a novel Microrobotic 
Platform  (MP)  developed  as  part  of  the  project.  The  final  goal  of  the  MP  is  fully  
automated characterization of paper fibres. In order to collect sufficient quantities of 
data, several hundreds of fibres should be characterized on a daily basis. Thus, the MP 
should be able to autonomously characterize several tens of fibres per hour.   

Development of the microrobotic platform includes two separate phases. The 
first part, presented in [16], concentrates on selection and implementation of the 
hardware of the MP. In addition, control software capable of performing the 
autonomous characterization needs to be developed. This thesis work concentrates on 
the development of the control software, scope of the thesis work is described in detail 
in Section 1.1. 
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1.1. Scope 

The objective of the work is to develop scalable, robust and partly real-time capable 
distributed control software for the purposes of paper fibre characterization. The scope 
of this thesis is limited to cover architectural design of Control Software for 
Microrobotic  platform  (CoSMic)  and  implementation  of  its  two  core  parts,  namely  
Control of Micromanipulation System (MiCo) and Control of Data Acquisition System 
(DAQCo). 

1.2. Outline 

The structure of the thesis is organized as follows. Chapter 2provides background 
relating to the concepts later implemented in this work. Chapter 3presents Microrobotic 
Platform (MP), the user requirements for the developed control software and related 
hardware. Chapter 4concentrates on selection of implementation technologies. Chapter 
5elucidates the proposed architecture. Chapter 6describes design and implementation of 
MiCo and DAQCo. The final part, Chapter 7 concludes the thesis and presents 
proposals for future work. 



2. OVERVIEW OF DISTRIBUTED CONTROL 
SOFTWARE FOR MICROROBOTIC PLATFORM 

 
This chapter includes theoretical aspects involved in the development of control 
software for the microrobotic platform (MP). Section 2.1 introduces the concept of 
distributed systems followed by introduction of software patterns in Section 2.2. Section 
2.3 encompasses the general aspects of a real-time system. Finally, Section 2.4 presents 
the concept of collision detection. 

2.1. Introduction to Distributed Systems 

Traditionally computer software was thought as a stand-alone system residing on a 
single computer. A typical stand-alone system has been responsible for reacting to 
inputs through a user interface, performing the desired processes and managing the 
persistent data. The constantly increasing complexity of the developed software has led 
to the point where the required level of computation is often too much to be handled by 
a single computer. Therefore, more and more systems are developed in a distributed 
manner.  Distributed  systems  split  the  structure  of  the  software  into  logical  entities  
which are allocated to number of independent computers. The computers are able to 
cooperate over a communication network in order to achieve the desired objective. 
 The benefits of distributed systems over centralized solutions are widely 
recognized, some of the most important aspects include: 
 

 Performance 
 Economics 
 Failure tolerance 
 Scalability 

 
Distributed systems have better performance when compared with mainframe solutions 
due to increased concurrency; different nodes of the distributed system are able to 
execute different tasks simultaneously. The parallel execution of several applications 
increases the system’s performance in comparison with centralized solutions. In 
addition, a well-designed distributed system is easily scalable by adding components 
into the system. Also economical factors support usage of distributed systems because 
they offer a better price/performance ratio than mainframe systems. For example, nodes 
with specialized properties, such as expensive high speed data acquisition can provide 
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services for the other parts of the system. Conversely in a centralized solution, each 
system requiring the high speed data acquisition system would require its own 
hardware. Failure tolerance of a distributed system can be reached by introducing 
sufficient redundancy to the system; the most essential parts of the system can be 
replicated to several nodes. Sufficient redundancy delimits failures to subsystems, thus 
the entire system can survive crashes of the network or a single computer node. [1][2] 

Distributed systems have also some disadvantages, most of which are tightly 
coupled with the benefits of networked computing: 

 Complexity 
 Heterogeneity 

Distribution increases system complexity due to the increased level of concurrency and 
asynchronous communication. Failure of a single component might affect the entire 
network if appropriate mechanisms for preventing such a situation do not exist. 
Introduction of each new component increases the risk of affecting the entire network in 
case of a failure. [1] 
 Distributed systems are often used over large geographical areas and the 
development time might be calculated in years. Large geographical coverage increases 
the likelihood for incorporation of different implementation technologies in different 
parts of the system. The long development time often increases the heterogeneity of the 
system,  as  some  parts  of  the  old  system  might  be  incompatible  with  planned  new  
features. [1][2] 

2.2. Software Design Patterns 

Software design patterns have been a largely discussed topic for more than a decade 
after reaching wide acceptance in 1994 followed by the publication of [3].  
 In object-oriented programming, the functionality of the developed program is 
provided through collaborative effort of several objects contributing into the system. 
Software developers often face problems which are identical or similar to issues solved 
in previous applications. Identification of recurring problems is even desirable, as 
object-oriented programming provides the means of reusing existing program code. 
Reusability provides obvious benefits through time saving, as the same program code 
can be used in multiple places. In addition, systems employing reusable components are 
likely to be less prone to errors due to the wider usage of the component; a large group 
of developer using the same library over long period of time is more likely to find the 
possible programming errors than a single developer. However reusability might be 
limited to tackle one single problem and cannot be used outside the original domain. 
[4][5] 
 For example in development of a distributed system, a developer of network 
related applications might have an off-the-shelf implementation of a client and a server 
class for socket communication over TCP/IP, which he employs in all network related 
applications. He couples the server class with the application code by mapping the 
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application’s functions to the server. If the developer is asked to develop an application 
based on other network protocol, he might have to rewrite most of the server-side 
program code.  
 Reusability can be increased by generalizing the  found  solution  into  a  set  of  
rules which describes a solution on more general level. In object-oriented programming 
such collections of rules and guidelines solving abstract problems are known as design 
patterns. Design patterns are documentations which include both, the problem and the 
solution within a given context. Description of design pattern is given in a consistent 
textual format. The ground for preferring textual format over graphical notation is 
reusability; graphical representation is often able to catch only the end product, hiding 
the original reasoning from the viewer. A typical format of design pattern consists of 
eight sections describing the pattern from different aspects. A typical layout of design 
pattern is presented in Table 2.1. [3][6] 
 

Table 2.1 Structure of a design pattern 

Section name Description 
Name Name of the pattern 
Context Motivation 

Domain of usage 
 
Example: 
application has been distributed between three nodes which are 
connected together with a bus.  

Problem 
Describes the original problem. 

 
Example: 
how to change the bus standard without changing the application 
code 

Forces Characterizes the pattern in detail. 
Describes what effective solution must take into account. 
 
Example: 
Scalability: system may consists of hundreds of nodes. 
Reusability: the bus may change during the life-cycle 
 

Solution Provides solution which solves the previously presented problem. 
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Consequences Describes the benefits and the pitfalls of the proposed solution 
 
Example: 
 - Abstraction may increase latency 
+ Increases the scalability of the system 

Resulting Context Describes the results 
 
Example: 
result is a highly scalable system where the bus standard can be 
changed without affecting the application code 

Related Patterns Describes this patterns relation to other. The pattern may turn out 
to be more useful when combined with another pattern. 

Known usage List of known users of the pattern 
 
Example: 
Complex platform for research purposes uses TCP/IP 
communication protocol between several nodes. The system is 
expected to be enhanced with real-time capable bus. Therefore a 
mechanism abstracting the network layer from the application 
code is required. 
 

 
Design patterns can be categorized by the domain they target and by the used level of 
abstraction. Patterns providing principle of solution for entire software architecture are 
called architectural patterns. Similarly, patterns related to the mechanistic design of the 
software are known as mechanistic design patterns.  

2.3. Real-Time Systems 

Real-time systems may include very different characteristics depending on their 
domain. Real-time systems are found in a variety of applications ranging from simple 
embedded systems to airplane manoeuvring systems and internet banking. The term 
real-time  is  often  falsely  though  as  a  measure  of  high  speed.  In  several  real-time  
applications high speed is essential, but it does not define the system as a real-time 
system. By definition a real-time system performs given operations in timely manner – 
the system guarantees to fulfil the given performance constraints. Real-time systems can 
be categorized to soft real-time and hard real-time systems. Hard real-time systems are 
the stricter category of real-time systems. In these systems, a missed deadline is equal to 
a system failure. Soft real-time systems give more flexibility to the time constraints. In 
soft real-time systems, deadlines can occasionally be completely missed and missing the 
deadline by small time deviation is also allowed. [7] 
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 Generally, all real-time systems interact with hardware in monitoring or 
controlling purposes. The interface between the application code and the hardware must 
have real-time implementation to maintain the system level real-time capabilities. For 
example, a standard Universal Serial Bus (USB) driver for Microsoft Windows can not 
comply with real-time constraints. Usage of such a driver in a real-time system will be 
problematic, since the behaviour is time wise undefined. However, different parts of a 
real-time system can have different level of constraints. In fact, most real-time systems 
include parts with soft and hard real-time requirements [7]. 

2.3.1. Scheduling 

The scheduler is an instance which determines how to commit resources between 
several different tasks. Execution order of outstanding processes is based on pre-defined 
criteria, such as priority. Conventional operating systems serialize the processes based 
on  their  priority,  thus  the  processes  with  highest  importance  are  processed  first.  The  
described scheduling method is for real-time system – a high priority does not 
automatically convert to meeting the deadline. [8][9] 
 A typical real-time operating system (RTOS) also uses priorities for scheduling, 
but with additional timeline constraints. The highest priority task pending for processing 
always  gets  a  time  slot  from  central  processing  unit  (CPU)  within  a  fixed  amount  of  
time. Thus, the latency of the system depends only on tasks running at higher priorities. 
[8][9] 

2.3.2. Linux in Real-time Systems 

Linux is a Unix-like high-performance open-source operating system used globally by 
millions of users. In a typical case, Linux is shipped as a Linux distribution which 
consists of an operating system kernel and supportive software. Linux is considered to 
be one of the most stable operating systems available for servers and standard desktop 
computers.  
 Suitability of Linux for real-time systems is a widely discussed topic for which 
multiple solutions are available. The pure Linux kernel, often referred as vanilla, is not 
suitable for real-time systems as such. However, the open-source source code allows the 
developers  to  modify  the  kernel  to  suit  better  for  the  purposes  of  real-time  systems.  
Currently there are several open-source real-time Linux implementations available. The 
following presents two well established open-source real-time kernel extensions for 
Linux. 

RTAI 

Real-Time Application Interface for Linux or shortly RTAI is a real-time kernel 
extension initially developed at Dipartimento di Ingegneria Aerospaziale / Politecnico di 
Milano. In its current state, RTAI is developed as a community effort. RTAI supports 
data acquisition (DAQ) through a real-time capable DAQ library called Linux Control 
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and Measurement Device Interface (Comedi). RTAI consists of two main parts: a Linux 
kernel patch introducing a hardware abstraction layer and a package of convenience 
services reducing the workload in development process of real-time applications. [11] 

XENOMAI 

Xenomai  is  another  effort  to  bring  RTOS  capabilities  to  Linux.  The  main  difference  
between Xenomai and RTAI is that the projects have slightly different focus. Xenomai 
considers extendibility, maintainability and portability as important goals. The 
portability is implemented as number of RTOS APIs referred as skins. Each skin 
supports one real-time API, currently available skins include POSIX, VxWorks, RTAI 
and several others. [10] 

2.4. Collision Detection 

Identification of colliding objects in a three-dimensional (3D) space is a fundamental 
problem  in  various  areas  of  software  development.  In  a  typical  application,  such  as  a  
simulator or a computer game, collision detection (CD) might be required to model 
physical interactions of objects in the real-world. An additional step known as collision 
handling is required to determine appropriate steps in a case of a collision. For example, 
CD between a falling object and a surface is required in recognizing the event of the 
object hitting the surface. The collision handling might then calculate possible 
deformation and new trajectory for the object. 
 CD between hardware of the real-world requires modeling which maps the real-
world situation into a virtual reality (VR). The modeling converts each real-world object 
into a VR object built from several polygons. 
 Mere detection of collisions does not suffice in cases where collisions may harm 
the system. Software interacting with hardware, such as robots, is a typical application 
where collision avoidance is essential. Moreover, autonomous systems should be able to 
reroute themselves in the case of a potential collision. Collision safe routing is often 
referred  as path-planning. Collision avoidance and path-planning require collision 
detection in order to determine which actions would lead to a possible collision. The 
task is not easy, as the 3D space may contain hundreds or thousands of objects with 
complex geometries. Collision detection is computationally intensive task by definition. 
This section provides an overview of CD by introducing the CD process and its 
different phases. 

2.4.1. Collision Detection Pipeline 

The basic idea behind most of CD implementations is finding intersecting pairs of 
polygons between two objects. A collision occurs when a polygon of one object 
intersects a polygon of another object. However, comparison of all possible polygon 
pairs would lead to tremendous amount of computation. Therefore advanced algorithms 
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are required to avoid as many polygon/polygon tests as possible. CD process can be 
thought as a pipeline where the objects are an input which is handled by a collision 
pipeline containing the different phases of CD process. The outcome of the process is a 
physical response, such as a detected collision or distance of two objects. The structure 
of CD pipeline is illustrated in Figure 2.1. 
 

 
Figure 2.1 Collision detection pipeline 

 
 In  order  to  relieve  the  computational  load  related  to  CD,  the  process  is  often  
divided into two stages, called broad phase and narrow phase. Broad phase can be 
thought as a filter which aims to avoid unnecessary intersection testing for objects that 
are far away from each other. Bounding volumes with simple geometry, such as box or 
sphere can be placed around each body to simplify the geometries analyzed in the broad 
phase; collisions may occur only if bounding volumes of two objects overlap. The 
objects which were found to have overlapping bounding volumes are passed to the 
narrow phase for further inspection. The narrow phase refines the previous collision 
detection to the level of individual polygons.  

Broad Phase 

The purpose of the broad phase algorithms is to quickly filter out as many objects as 
possible. Axis-aligned bounding boxes (AABB) and oriented bounding boxes (OBB) 
are typical approaches for implementation of the bounding volumes. Difference 
between the AABB and OBB is orientation of the bounding volume; AABB are aligned 
with the axis of the coordinate system, whereas OBB alignment is arbitrary. Figure 2.2 
illustrates the difference between the orientation of AABB and OBB. 
 

 
Figure 2.2 Axis-aligned bounding box (left) and Oriented bounding box (right) 

The simplest method for testing collisions between two bounding boxes is known as the 
brute-force algorithm. The idea behind the algorithm is as follows. Compare each edge 

Collision detection pipeline

Broad phase Narrow phase ResponseGeometric data

AABB OBB
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of one bounding volume against all edges of the other bounding volume, and vice versa. 
The  downside  of  this  very  simple  algorithm is  a  lack  of  performance.  The  amount  of  
comparisons required between two bounding volumes is n(n-1), where n represents the 
number of present bounding volumes. The performance of the broad phase algorithm 
can be optimized by several different strategies including spatial partitioning and the 
aforementioned bounding volumes.  
 Broad phase algorithm Sweep and Prune (SAP) presented in [39] uses AABB to 
determine whether two objects are sufficiently close to potentially collide. SAP 
determines overlapping bounding volumes by reducing the original three-dimensional 
problem into three one-dimensional problems; two AABB overlap only if all their 
projections overlap. For each sorting axis containing the projections, SAP stores 
intervals occupied by individual projections. The intervals are denoted as [si, ei], where 
si is the starting point for the interval of a single projection and ei is the respective end 
point. Figure 2.3 presents a single sorting axis with three different objects.  

 
Figure 2.3 SAP sorting axis with three projections 

The found intervals are stored in a list which is sorted in ascending order. Each node of 
the list includes a tag describing whether the node represents si or  ei of a particular 
object. The actual CD takes place by traversing the created list from the beginning to the 
end. Whenever the algorithm finds a si tag the object i is added to the active object list. 
In case of an ei tag, the respective object is removed from the active object list. Thus 
each object is compared only against the objects currently stored in the active object list. 
Finally  SAP  finds  the  objects  which  collide  in  all  projections  and  forms  a  list  of  
candidates. This list can be forwarded to narrow phase algorithms for further inspection. 
SAP has proven to be an efficient broad phase algorithm and it is widely implemented 
in  different  CD  libraries.  However,  the  usage  of  AABB  may  lead  to  large  amount  of  
redundant space within the bounding volume. The problem becomes obvious if the 
bounded object has strong diagonal orientation as indicated in Figure 2.2. [40] 
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Narrow Phase 

Narrow phase collision detection is responsible for detecting collisions between the 
pairs of objects which were found in the broad phase. The narrow phase should result in 
a list of individual polygons and exact coordinates of the points where collisions 
occurred. Several methods such as hierarchical methods and incremental distance 
computation have been proposed for the narrow phase collision detection. 
 Hierarchical methods decompose each object into a tree, where each node 
represents  certain  subset  of  the  original  object.  The  root  node  of  the  tree  contains  the  
whole object. An example describing possible decomposition of a simple object is 
provided in Figure 2.4. The decomposition should satisfy two opposing criteria guiding 
the selection of the bounding volume. The bounding volume should contain minimal 
amount of redundant space. However the intersection test should be as efficient as 
possible. That is the geometry of the bounding volume should be as simple as possible. 
[44][45] 

 
Figure 2.4 Hierarchical method – bounding volume tree 

Hierarchical  methods  aim  to  further  minimize  the  amount  of  polygons  required  to  
accurately determine the point of collision. In case where broad phase detects a collision 
between two objects, the hierarchical model is able to prune the irrelevant polygons by 
traversing the tree model of both of the colliding objects. Head-on collision of two cars 
based on the hierarchy presented in Figure 2.4 is taken as an example, the colliding cars 
are named as Car1 and Car2. Traversing of the trees starts by comparing the root nodes 
of Car1 and Car2. If the root nodes do not intersect, the objects cannot collide. If 
intersection between the root nodes is detected, the algorithm moves to next level by 
comparing the child nodes L1 and R1 of Car1 against the root node of Car2. If either of 
the child nodes of Car1 intersects with the root node of Car2, the bounding volume of 

Root node

R1L1

R2

R3 R4
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Car1 is replaced with the child node. In case of head-on collision, the node L1 of Car1 
would replace the original bounding volume and traversing would stop. The traversing 
continues until the maximum depth of recursion is reached. [44][45] 
 Incremental distance computation is a probabilistic method assuming that 
objects move only small distance between successive calls of the collision detection 
algorithm. In such a case, methods of linear programming can be used, which yield 
linear performance time by definition. However, linear programming is only applicable 
for convex polygons. Thus in 3D space, the polyhedral models must satisfy the rules of 
convexity, that is all faces of each polyhedral must join together and form bounded 3D 
shapes. One of the most known algorithms within this category is Lin-Canny algorithm 
presented in [32].  

2.4.2. Collision Detection Implementations 

The following presents few examples of open-source collision detection libraries 
available. A more thorough list is available at [33].  

OPCODE 

Optimized Collision Detection or OPCODE is a small CD library developed for C++ 
developed by Pierre Terdiman. OPCODE uses AABB together with bounding volume 
tree hierarchy. The objective of OPCODE is to reduce the memory footprint in 
comparison with other similar collision detection libraries such as SOLID [34] and 
RAPID [35]. The broad phase collision detection of OPCODE provides implementation 
of SAP, in addition radix-based box pruning algorithm is available. [13] 

SWIFT++ 

SWIFT++ is a C++ CD package developed by the Geometric Algorithms for Modeling, 
Motion, and Animation Group at University of North Carolina at Chapel Hill. The same 
group has produced numerous open-source collision libraries such as I-COLLIDE [36] , 
RAPID and SWIFT++ [15]. SWIFT++ is targeted for detection of intersection, 
computation of distances and determining contacts between pairs of objects. The objects 
are modelled by polyhedral geometries and allow several objects to share the same 
geometry. SWIFT++ employs SAP to detect overlapping of moving objects in the broad 
phase. The narrow phase collision detection is based on the Lin-Canny algorithm. 
[14][15] 

CollDet 

CollDet [46] is a C++ CD library developed by Computer Graphics group of Clausthal 
University of Technology (CGC). The primary application domain of CollDet is 3D 
real-time applications. The algorithms used in CollDet are developed at CGC. The 
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performance of these algorithms is in some cases significantly faster than the most 
typical approaches [40]. 
 



3. MICROROBOTIC PLATFORM 

The microrobotic platform (MP) targeted for the characterization of different kinds of 
fibres  has  been  developed  as  a  part  of  the  project  SmartFibre.  The  final  goal  of  the  
platform is to characterize several hundreds or thousands of fibres on a daily basis. MP 
consists of three separate subsystems: Micromanipulation system (MiS), Vision System 
(ViS) and Data Acquisition System (DAQS).  
 This chapter concentrates on presenting the microrobotic platform from several 
points of view. Section 3.1 presents an overview of the system, followed by the 
description of the user requirements in Section 3.2. The hardware related to the MP is 
described in Section 3.3. Different methods for performing paper fibre characterization 
on MP are proposed in Section 3.4. 

3.1. Overview of the Microrobotic Platform 

MP is built from three separate subsystems each responsible for a specific range of 
tasks, as illustrated in Figure 3.1. Micromanipulation System (MiS) containing a large 
number of actuators is used to manipulate the characterized object. Commonly 
performed MiS related tasks include grasping and moving of the characterized object. A 
single actuator is responsible for performing simple one-dimensional operations such as 
linear or rotational movement. The manipulation operations often require cooperation of 
several actuators in order to provide functionality in multiple dimensions. In such cases, 
the actuators may be physically coupled together to create a unit capable of providing 
movement  in  multiple  dimensions.  Such  units  are  herein  after  referred  as  assemblies. 
Assemblies containing N actuators are denoted as ND assemblies, where N represents 
degrees of freedom of the particular assembly. The actual manipulation of the target 
object is performed with end-effectors attached to assemblies. Cooperation of multiple 
assemblies is required when multiple end-effectors are involved in the same 
manipulation operation. 
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Figure 3.1 Overview of the system 

Vision System (ViS) provides the user with image data regarding the characterized 
object and position of each end-effector. The hardware of ViS may include several 
cameras and related peripherals, such as objectives and illumination systems. The third 
part, Data Acquisition System (DAQS), is responsible for measuring different properties 
of the characterized object. Hardware of DAQS contains sensors for measuring different 
properties of the characterized object.  
 Characterization of an object with MP may include multiple phases depending 
on the characterized object and the measured properties. Prior to the actual 
characterization procedure, the characterized object must be located and identified using 
the ViS. After the object has been located, a sequence of micromanipulation operations 
using  the  MiS  may  be  required.  In  a  typical  case,  the  MiS  is  used  to  grasp,  move  or  
align  the  object  to  desired  position  for  further  analysis.  In  the  next  phase,  interesting  
properties of the object can be measured using the sensors of DAQS.  Additionally, ViS 
can be used to measure properties, such as length of the object, from the acquired image 
data. Figure 3.2 presents a simplified characterization procedure. Responsible 
subsystem for each phase is indicated with respective abbreviation. 

 
Figure 3.2 Simplified characterization procedure 

The phases involving MiS may include cooperation of several actuators in order to 
accomplish the desired operation. For example, moving of a beam-like object may 
require separate actuators for both ends of the object. 
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3.2. Requirements for Control Software 

The requirements for Control Software for Microrobotic Platform (CoSMic) were 
mainly derived from the description of usage presented in [16]. The requirements were 
further  refined  based  on  the  user  experience  of  series  of  test  programs  controlling  
different parts of the described MP. On general level, CoSMic is responsible for 
controlling and monitoring of all the hardware attached into MP. A high-level 
requirement common to all subsystems of CoSMic is modularity. Different parts of MP 
should be controllable through separate stand-alone applications and as a single 
application seamlessly integrating different parts of the system. In the single application 
case, the set of included subsystems should be customizable. The following presents 
more detailed requirements separately for each subsystem of MP. The requirements 
related to communication between different subsystems are presented in Section 4.5. 

3.2.1. Requirements of Micromanipulation System 

Most  of  the  requirements  of  MP  concentrate  on  Micromanipulation  System  (MiS)  
containing possibly a large number of actuators. The number of actuators connected to 
MiS is dependent on the performed characterization procedure. Thus the requirement of 
scalability is obvious. 
 The characterization procedures performed using MiS can be very complex and 
may include tens of different unit functions, such as moving and grasping of the 
characterized object. In addition, parts of the characterization procedure are often 
repeated multiple times. In order to reduce laborious and time consuming manual 
control, CoSMic should be able to record and repeat the performed procedures.  Some 
of the procedures performed with MiS require simultaneous movement of several 
actuators.  For  example,  when  a  fibre  is  stretched  between  two  actuators,  both  of  the  
ends should move in a synchronized manner to maintain the alignment and a correct 
stretch level of the fibre. CoSMic should provide a mechanism for synchronized 
movement of different actuators.  
 Another important aspect of the control of MiS is security. Depending of the 
hardware configuration of MiS, the actuators have a potential risk of colliding with each 
other or other parts of the system. Collisions might cause errors to the performed task or 
permanently damage the hardware. Therefore, CoSMic should be able to prevent such 
situations. The issue of security arises also in a case of a system failure due to 
malfunction of software or hardware. In both of the cases CoSMic should guarantee that 
the system remains in a safe state. The current requirements regarding the level of 
automation are minimal. However, additional automation related requirements may 
arise in the future, thus CoSMic should provide sufficient extendability in order to 
increase the level of automation. Real-time aspects of MiS are not discussed within this 
section due to the limitations of the device driver controlling the hardware of the MiS 
presented in Section 3.3.1. The device driver and the provided API are further discussed 
in Section 4.2. 
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3.2.2. Requirements of Vision System 

Vision  System  (ViS)  consists  of  cameras  imaging  the  MP  and  related  MiS  from  
different angles. The main purpose of Vision System (ViS) is to provide the operator 
with visual feedback regarding the position and alignment of the manipulated object and 
the actuator. ViS may also contain peripherals, such as objectives and illumination 
systems, required to enhance the visual information acquired by the cameras.  
 CoSMic is responsible for controlling and monitoring all the ViS related 
hardware. The most essential features CoSMic should implement include visualization 
and recording of the acquired image data. In addition, CoSMic shall provide 
mechanisms for controlling all the peripherals attached into ViS. The implementation 
fulfilling the aforementioned requirements must be scalable; the number of cameras and 
peripherals attached to the system may vary depending on the requirements of a 
particular characterization process. The implementation should also support the most 
common communication busses for cameras. 
 Design of ViS should take into account the possibility of using the acquired 
image data to perform measurements, such as measuring the area or the length of the 
characterized object. In more general terms, ViS should provide an interface for future 
implementation of a machine vision system. 

3.2.3. Requirements of Data Acquisition System 

Data acquisition system (DAQS) contains several different sensors used for measuring 
different properties of the characterized object. The number of sensors attached into the 
system is entirely dependent on the characterization procedure. Moreover, the measured 
physical quantity might be different for each sensor. 
 The most important single feature CoSMic must comply with is visualization 
and recording of the acquired data. The data shall be provided in units corresponding to 
the measured physical quantity. The varying number of attached sensors implies that 
scalability should be included into the implementation.  

3.2.4. Requirements of Real-Time Controller 

MP is likely to be extended with additional features in the future.  The features are 
reached through scaling up the system with additional hardware, such as different kinds 
of actuators. Some of the additional features may increase performance demands for the 
controlling software. For example, a PI or PID controller may require real-time 
implementation  in  order  to  accurately  control  a  motor  or  an  actuator.  CoSMic  should  
provide mechanism for easy integration of real-time controllers. 

3.3. Related Hardware 

The hardware of MP includes a set of actuators, cameras and multiple sensors. The 
hardware was carefully selected to meet the functionality required in fibre 
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characterization. The following gives a brief overview of the used hardware, more 
detailed description of the hardware and the selection process can be found in [16]. 

3.3.1. Micromanipulation System 

MiS consists of several actuators performing the micromanipulation operations required 
to characterize the object of interest. MiS uses linear and rotational microactuators 
manufactured by SmarAct GmbH [17]. Teleoperation of the actuators requires a 
manufacturer specific control module, which couples the actuators and a computer via 
universal serial bus (USB). The control module is responsible for converting the 
commands  transferred  over  the  USB into  analogue  voltage  signals  used  to  actuate  the  
connected actuators. Internally the control module consists of two different modules, 
namely an interface module and a driver module. Structure and communication between 
different parts of SmarAct modular control system is presented in Figure 3.3. [20] 

 
Figure 3.3 Structure of SmarAct modular control system 

The interface module manages the actual communication between the computer and the 
control module. Each control system requires its own interface module, but several 
driver modules can use the same interface module. The driver module is responsible for 
creating the necessary signals for driving the attached actuators. A single driver module 
can control up to three actuators. The driver modules are capable of performing closed-
loop control, providing that the controlled actuator is equipped with a position sensor 
and a sensor module for reading the position data is present. [17] 
In its current state, MiS consists of eight linear micropositioners, two microgrippers and 
one rotational micropositioner. The linear micropositioners are used to create larger 
functional assemblies with several degrees of freedom. Two 3D assemblies with three 
degrees of freedom are used to move the characterized object. The 3D-assemblies 
include a microgripper which is used for grasping of the objects. The two remaining 
linear micropositioners form a 2D assembly which is used as a base for additional 
hardware. An overview of the system together with more detailed illustration of 3D 
assembly is provided in Figure 3.4. 
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Figure 3.4 Overview of the Microrobotic Platform (left) and 3D assembly with a microgrippers as an end-effector 
(right) 

3.3.2. Vision System 

The current setup of ViS consists of a camera, an objective, and an illumination system. 
The communication between the controlling software and the hardware of the ViS 
requires several different communication lines. A schematic overview of the required 
communication is shown in Figure 3.5.  
 The used camera, SONY XCD-U100, is equipped with IEEE1394b serial bus 
interface compliant with the 1394 Trade Association and Industrial Control Working 
Group (IIDC) standard [18]. The camera provides an image size of 1600*1200 pixels 
with a maximum frame rate of 15 frames per second. In addition an IEEE1394b 
compliant card is attached into the controlling computer to enable communication 
between the computer and the camera. 
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Figure 3.5 Structure of Vision System 

 
 The objective, Navitar 12x Zoom, selected to satisfy the needs of ViS includes 
two peripheral stepper motors allowing the adjustments of focus and zoom levels. The 
stepper motors are controlled via a control board including a serial communication 
interface using Recommended Standard 232 (RS-232) communication. Similar 
communication  can  be  used  to  communicate  with  the  illumination  system,  Navitar  
BrightLight  coaxial  illuminator  based  on  ligh  emitting  diode  (LED)  technology  .  The  
different parts of ViS related peripherals are shown in Figure 3.5. [19] 

 
Figure 3.6 Navitar Motorized 12x Zoom objective 
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3.3.3. Data Acquisition System 

DAQS  consists  of  sensors,  DAQ  units  and  other  DAQ  related  peripherals,  such  as  
amplifiers and filters. DAQS is used to measure the required properties of the analyzed 
object. In a typical case, the output received from a sensor is an analogue voltage signal 
varying  in  the  range  of  ±10  Volts.  In  order  to  forward  such  signals  to  the  computer  
system, an analog-to-digital (A/D) conversion is required. 

 
Figure 3.7 Scematic overview of the DAQS 

MP resolves the issue of A/D conversions with a data acquisition (DAQ) board, 
National Instruments PCI-6229, providing an interface for up to 32 differential analogue 
voltage input channels. An overview of the data acquisition related hardware is shown 
in Figure 3.7. 
 Currently, there are two sensors attached into the system. Sensors, namely FT-
S270-OEM and FT-S540-OEM, are capacitive force sensors manufactured by 
Femtotools. The sensors measure forces in the range of hundreds µN producing output 
voltage of 0-5V [16]. Figure 3.8 presents configuration of MP including a force sensor. 
 

 
Figure 3.8 Force sensor attached to Microrobotic Platform 

Force sensor 
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3.4. Control Modes 

Beginning of Chapter 3 stated that the desired throughput of MP is from several tens to 
hundreds of fibres per day. In order to reach such a high throughput, a certain level of 
automation in the control of MiS is required. The following describes three different 
control modes for MiS proposed to be implemented in CoSMic. 

3.4.1. Manual and Semi-automatic Control Modes 

Manual control mode (MCM) is the simplest of the three proposed control modes. The 
operator controls MiS through a graphical user interface (GUI) or uses an additional 
input device, such as a joystick or a haptic device. In MCM, CoSMic is responsible for 
performing collision detection and transferring legal commands to the hardware. MCM 
allows  the  operator  to  be  in  charge  of  all  operations  carried  out  in  the  system  and  is  
ideal for testing new operations and solving possible error states of the system. In 
addition, MCM can be used by the developers during implementation of new parts of 
the system. The downsides of MCM are repeatability and performance. Repetition of an 
existing characterization procedure in this mode is difficult, if not impossible. In order 
to repeat even a single sequence, the operator should remember the exact location of 
each actuator throughout the entire sequence. However, MCM provides the operator 
with possibility of recording movements of each actuator. Working principle of MCM is 
presented in Figure 3.9. 

 
Figure 3.9 Manual Control Mode 

Semi-automatic Control Mode (SCM) allows the operator to re-execute the movements 
recorded in MCM. SCM improves the repeatability of the performed characterization 
procedures. In addition, the movement sequences are performed faster. However, the 
system still lacks capability of decision making, which limits its performance. In a case 
of an abnormal situation, the system is not able to perform without user interference. 

3.4.2. Enhanced Manual Control Mode 

Enhanced Manual Control Mode (ECM), presented in Figure 3.10, introduces decision 
making in control of MiS. The goal of ECM is to provide significantly faster manual 
control, through optimization of the movement paths. In cases where the movement of 
an  actuator  does  not  cause  collision,  ECM  is  identical  with  SCM.  The  difference  
between the two control modes can be seen, when the movement of an actuator would 
cause collision. In such cases, ECM calculates optimum route to the destination and 
automatically redirects the actuator to newly calculated path. 



Microrobotic Platform  23 

 
Figure 3.10 Enhance Manual Control Mode 

3.4.3. Automatic Control Mode 

Automatic Control Mode (ACM) aims to perform entire characterization procedures 
without any human intervention. ACM combines the previously presented modes to 
achieve a mixture of predefined trajectories and decision making capabilities. Several 
parts of the characterization procedures can be converted to simple trajectories using 
MCM. However, more complicated actions, such as picking up an object without a 
priori knowledge of the exact position cannot be performed with the methods of MCM. 
To overcome this issue, the ACM uses the feedback of ViS. The exact position of the 
characterized object is analyzed from the image data and can be converted into a 
trajectory for the actuators. Similarly, the output data of all the sensors of DAQS can be 
used as feedback when necessary. 



4. SELECTION OF IMPLEMENTATION 
TECHNOLOGIES 

Selection of implementation technologies for CoSMic involves several fundamental 
decisions such as selection of supported operating systems, possible usage of different 
software frameworks and selection of implementation technology for proposed real-
time extension. Moreover, the possible limitations of the used hardware must be 
studied. 
 This chapter targets the aforementioned problems related to the selection of 
implementation technologies. Structure of the chapter is divided into three. Section 4.1 
presents  selection of the application development framework. Section 4.2 introduces an 
application programming interface used for the control of SmarAct piezoelectric 
actuators. Section 4.3 describes selection of the data acquisition library, followed by 
selection of the collision detection library presented in Section 4.4. The last part, 
Section 4.5, reports the key findings affecting the architecture and design. 

4.1. Qt – an Application Development Framework for C++ 

Application development framework (ADF) can be defined as a collection of common 
software routines that provide a foundation for application development. Functionality 
provided by an ADF may cover several aspects such as cross-platform portability, 
network communication, concurrency and user interface technology. The developers 
benefit from usage of ADF through time saving and reduction of potential errors as the 
most used routines are implemented on the ADF level. Another clear benefit is 
unification of the produced source code; application development frameworks tend to 
guide the design process by promoting the usage of certain patterns and mechanisms. 
However, the aforementioned arguments also involve potential pitfalls. The selection of 
the ADF should be based on the requirements of the development team and the 
developed system. Rather than confining to the limitations of ADF, the development 
team should select an ADF which promotes their own thinking and the planned 
architecture. The following presents the application development framework selected to 
support the development of CoSMic.  
 Qt [kju:t] is a well established C++ application development framework suitable 
for development of high-performance cross-platform applications. Qt includes an 
extensive class library with over 400 classes and tools for application development. The 
framework has been used in commercial applications since 1995 and is currently 
estimated to be used by some 350 000 developers around the world. The wide range of 
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operating systems supported by Qt includes Microsoft Windows, Linux, Unix and OS 
X. Even though originally developed exclusively for C++ developers, the usage of Qt 
can be extended to other programming languages. Java is officially supported through 
binding known as Qt Jambi and a variety of third party solutions covers programming 
languages such as Python, C# and Ruby. [21][22][23][24]  
 Qt application development framework was selected for the purposes of CoSMic 
due to its strong cross-platform support. Qt brings several other benefits, which are 
briefly described in the subsequent sections.  

4.1.1. Signals and Slots 

 The greatest strength that Qt brings to C++ is the used meta-object system, 
which enhances Qt objects with additional data at compile-time. The meta-object 
system enables Qt to provide extended run-time type information and other dynamic 
features, such as run-time object introspection. The most important single feature of the 
meta-object system is a flexible mechanism to interconnect objects known as “signals 
and slots”. Objects can define signals that they emit when certain conditions are met. 
Signals appear as member functions prototypes, as they have only declaration. Objects 
can also have slots which are able to react upon a received signal. Slots look like normal 
member functions, but have gone through specific pre-processing. The pre-processing is 
further investigated in within this chapter. [24][26] 
 The usage of the signal-slot mechanism has several benefits. A single signal can 
be connected to any number of slots, allowing several objects to react on the same 
trigger. Respectively, a single slot can be connected to several signals, a useful feature if 
several different inputs should be processed in a similar manner. Signals are allowed to 
cross thread boundaries allowing a convenient way for asynchronous communication in 
concurrent environments. The signal-slot mechanism has a few restrictions, which must 
be fulfilled. The implemented class must [26]: 

  directly or indirectly inherit QObject, which is the base class of all Qt objects 
  use Q_OBJECT macro definition, which enables the signal-slot mechanism  
 register emitted data types using Qt meta object system, unless primitive data 

types are used. 
The mentioned requirements are illustrated in a form of an example in Appendix A. The 
example is not usable as is, but aims to highlight the usage of the signal/slot mechanism. 
The presented signal/slot mechanism has notable similarities with the Mediator design 
pattern presented in Section 2.2. 

4.1.2. Threading in Qt 

Qt supports multi-threaded applications through various classes which represent threads 
and the common mechanisms for protecting critical sections of the program, namely, 
mutex and semaphore. In addition concurrent programming with Qt benefits from 
reentrancy and thread-safety of most of the Qt classes [26].   
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 The class for creating individual threads QThread is, like most of the Qt classes, 
inherited from QObject. QThread provides platform-independent threads by employing 
native threading mechanism of each platform. In Linux and Unix environments 
QThread is built to use POSIX threads, whereas in Microsoft Windows threads 
provided by the Win32 API (Win32 thread) are used [26]. Each instance of QThread 
has its own event loop, which is responsible for waiting and dispatching incoming 
events and messages. The previously presented signal-slot mechanism uses the event 
loop for communicating across thread boundaries. 

4.1.3. Qt Integration with Real-time Operating Systems 

The fact that Qt uses native threading for each platform allows execution of QThreads 
on real-time operating systems. The number of studied real-time operating systems 
compatible with QThreads was reduced to two potential options candidates on brief 
testing and the fact that both of the tested operating systems supported data acquisition. 
Two different Linux real-time kernel extensions, Rtai and Xenomai were tested with a 
small  program executing a QThread in a real-time task.  In both of the cases,  QThread 
was  proven  to  run  as  a  real-time  thread.  Thus  usage  of  Qt  framework  does  not  limit  
selection of real-time kernel extensions. Short test program used to run QThread under 
Xenomai is presented in Appendix A. 

4.2. Application Programming Interface for SmarAct 
Micropositioners 

Micromanipulation System (MiS) is based on piezoelectric micropositioners 
manufactured by SmarAct GmbH. The positioners can be teleoperated by using an 
additional control module coupling the positioners with the controlling computer. The 
control module and the computer communicate via USB. The control module is shipped 
with necessary drivers and an application programming interface (API) which allows 
the developers to write programs for controlling the positioners. The API, known as 
SCU3DControl, consists of a dynamic-link library (DLL) and a header file written in C. 

4.2.1. Communication Modes 

The SCU3DControl introduces asynchronous and synchronous communication modes 
for communication between the control module and the computer. Identical 
functionality is provided in both of the communication modes. The difference between 
the two modes is the mechanism how the calls block the calling program.  
 In synchronous mode, the calling thread is blocked until the called function has 
been finished. Result of the requested operation is passed as the return value of the 
performed function. In contrast, the function calls made in asynchronous mode return 
immediately and blocking does not occur. Responsibility for retrieving the resulting 
values  is  the  left  for  the  developer.  SCU3DControl  API  differentiates  functions  of  



Selection of Implementation Technologies 27 

asynchronous and synchronous communication modes by appending the function name 
with ‘_A’ or ‘_S’ in respective order. 
 Within this work, all communication between CoSMic and the SmarAct control 
module is performed in asynchronous mode. The goal is to prevent unnecessary 
blocking of the threads controlling the actuators. Furthermore, the asynchronous mode 
allows an event based mechanism for reacting upon finished movements or status 
changes. 

Overview of Asynchronous Communication Mode 

The asynchronous communication mode, presented in Figure 4.1, separates the sending 
of the commands and the answer retrieval to functionality provided by the API. When a 
function of the API is called, the DLL transmits corresponding command to the control 
module, which invokes the required functionality on the hardware level. The return 
value of the initially called function contains only information describing whether the 
hardware received the command or not. Further error handling is made in the answer 
retrieval process.  

 
Figure 4.1 Communication between SCU3DControl API and SmarAct micropositioners 

The data packet, containing the response of the hardware, is forwarded through the 
control unit to the DLL, which stores the answer data in a FIFO buffer, dedicated to the 
particular device. The API provides functions for inspecting and retrieving data packets 
from  the  device  specific  data  buffer.  In  a  typical  case  SA_GetNextPacket_A 
function can be used to fetch the next data packet of the buffer. Both directions of the 
communication are multi-threaded, thus providing parallel communication between the 
developed application and each of the attached devices. 

Event Driven Communication 

An additional benefit from the asynchronous communication mode can be gained 
through the usage of event driven answer retrieval implemented in the SCU3DControl 
API. The application developer may create event objects which are registered to one or 
several of the data buffers. Whenever a new packet is stored into the buffer, the event is 
activated. Thus the application may wait for an incoming event without need for 
constantly polling the incoming traffic.  
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 Benefits of the event driven communication come more obvious in development 
of a multithreaded application. One of the threads can listen to the incoming message, 
while other threads are performing other operations, such as sending commands to 
move the positioners. When answer messages are received from the hardware, the 
listening thread awakes and required operations can be performed. Optionally the 
listening thread may forward the answer message to other threads.  The event driven 
communication mode also provides possibility of receiving an answer message 
whenever movement of a positioner is accomplished. 
 The event based answer retrieval is based on usage of Windows API event 
objects. In order to use the event driven answer retrieval, the developer must create and 
register an event object, wait for activation of the created event object and inspect the 
content of the received answer message. The usage of the required functions is further 
presented in the following section. 

4.2.2. Control Methods 

Section 3.3 described the possibility of closed-loop control for positioners equipped 
with a sensor. The SCU3DControl API provides the two different functions for closed-
loop control. The first method for closed-loop control is movement relative to current 
position. For example, in the situation illustrated in Figure 4.2, a relative movement of 
200µm from initial position p1 would  move  the  positioner  to  position  p1+200. The 
second method for closed-loop control performs absolute movement against the zero 
position of the positioner. For example, absolute movement to position p1 from any 
given starting point has always the same outcome. The method is useful for reaching 
exactly same position multiple times. However, system shutdown causes position reset 
for all positioners. When the hardware is reinitialized, the zero position is moved to the 
last position prior to shutdown. SCU3DControl API provides a function capable of 
moving  the  zero  position  to  a  more  suitable  location,  such  as  one  of  the  ends  of  the  
trajectory.  

 
Figure 4.2 Schematic view of SmarAct linear micropositioner 

Before calling functions performing closed-loop control, the type of the attached 
positioner should be verified. The SCU3DControl API provides functions for acquiring 
the type of the positioner. A simple example program describing the positioner type 
acquisition is presented in Appendix C..  
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4.3. Application Programming Interfaces for Data 
Acquisition 

CoSMic may require data acquisition in several subsystems.  Section 3.3.3 suggested 
that the real-time extension of CoSMic should be based on Linux with a real-time kernel 
extension. On the other hand, the previous section presented the SmarAct API, which 
runs only on Microsoft Windows operating systems. Finding a common solution 
fulfilling the requirements of both of the subsystems may be impossible. Hence usage of 
two separate software may be the most feasible solution.   

4.3.1. DAQmx 

National Instruments (NI) provides high-level cross-platform driver software known as 
NI-DAQmx, for development of data acquisition applications based on NI DAQ 
hardware. The driver software is mainly designed for to be incorporated with LabVIEW 
or LabWindows. However, the NI-DAQmx also includes an API written in C which 
enables development of DAQ applications with standard C and C++. Currently, NI-
DAQmx is available free of charge. [27] 
 Data acquisition with NI-DAQmx Base C API is based on callback functions. 
Callback functions are implemented by the developer, but used by the NI-DAQmx; 
Callback function is assigned to the NI-DAQmx by providing a function pointer to the 
callback function. NI-DAQmx calls the functions through the pointer when acquired 
data  is  ready.  This  approach  allows  the  developer  to  implement  data  exchange  
separately for each application.  

4.3.2. Data Acquisition in Real-time Linux 

Linux control and measurement device interface or shortly Comedi, is an open-source 
project developing device drivers and tools for data acquisition. Currently Comedi 
supports more than two hundred different DAQ boards including several different 
manufacturers.  Comedi consists of three separate parts. The first part including the core 
functionality is a package of device drivers which are loaded into the kernel space. The 
second part, comedilib, is a separately distributed package enabling user space access to 
the loaded drivers. In addition, a variety of different utilities is included in comedilib.  
Kernel mode kcomedilib is the third part of Comedi providing same interface as 
comedilib, but in kernel space. Kcomedilib is suitable for situations, where Comedi is 
used from real-time tasks of the supported real-time kernel extensions RTAI and 
RTLinux. [comedi.org] 
 However, Comedi cannot be used together with Xenomai – a Linux real-time 
kernel  extension  derived  from  RTAI.  The  main  reason  why  Xenomai  and  Comedi  
cannot be incorporated is the device driver model used in Xenomai. The functionality of 
Comedi is provided in Xenomai through Analogy which is a fork of the Comedi 
project.[10] 
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4.3.3. Selection 

All three abovementioned data acquisition APIs may be used in development of 
CoSMic. However, few restrictions should be followed. DAQmx should be used only, if 
support of Microsoft Windows operating systems provides clear benefits. In all other 
cases, especially when RT capability is required, Comedi or Analogy should be 
selected. 

4.4. Selection of Collision Detection Library 

Selection of suitable CD library was based on brief testing of three different open-
source collision detection libraries. The tested libraries included RAPID, SWIFT++ and 
CollDet. All of the mentioned CD libraries are designed for CD of rigid bodies, 
satisfying the current requirements of CoSMic. The quantitative requirements for CD in 
CoSMic remain unknown as the entire concept of CD is new to the development team. 
However, the performance of the aforementioned libraries is expected to satisfy the 
requirements  of  CoSMic.  In  the  current  state,  the  most  important  factors  affecting  the  
selection of suitable CD library include: 

 Usability 
 Programming language of the library should be C or C++ 
 Cross-platform support 
 Possibility to visualize the moving objects and collisions 

 The first tested library, RAPID, is developed in C and does not have any 
dependencies to other libraries. Pure C implementation indicates cross-platform support, 
which was further verified on Microsoft Window XP and Linux operating systems. API 
of RAPID is very simple, the developer is provided with only four functions. Three of 
these functions are used in building of objects and the remaining function is responsible 
for performing collision queries.  Despite the simplicity of the API,  RAPID appears to 
be relatively complicated to use; the modeled objects must be constructed from 
triangles, which can be very difficult task in case of complex objects. 
 To overcome the problem of building models from single triangles another 
library, SWIFT++ was tested. SWIFT++ is completely written in C++ and includes 
cross-platform support similar to RAPID. SWIFT++ implements an object importer 
allowing usage of objects modeled with different tools. The greatest issue found in the 
testing  of  SWIFT++ was  lack  of  support  for  current  compilers.  In  both,  Windows XP 
and Linux, the provided source code did not compile without several modifications. 
Even after successful compilation, the library did not function as reported. 
 The third library – CollDet appeared to be the most promising solution for the 
requirements of CoSMiC. The following section provides an overview of CollDet. 
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4.4.1. CollDet   

CollDet is a CD library developed by Computer Graphics group of Clausthal University 
of Technology. The primary application domain of CollDet is 3D real-time applications. 
The  cross-platform  support  of  CollDet  is  similar  to  the  two  previously  presented  CD  
libraries. One of the key differences of CollDet when compared against SWIFT++ or 
RAPID, is that CollDet does not manage the models itself. An additional library called 
OpenSG is used to move and store the objects. 
 OpenSG is an open-source cross-platform scene graph1 library designed to 
provide an API for development of real-time 3D graphics programs, such as VR 
applications [41]. CollDet uses OpenSG to store the objects, their alignments and 
positions.  
 Functionality of CollDet is based on a simplistic API providing only functions 
necessary for the developer. In a general case the developer is required to use only three 
different functions of the API. Firstly, object of class describing collision pipeline is 
constructed to establish a new CD pipeline. In the second phase, each participating 
object is registered as an input of the pipeline by calling. The final step is to provide the 
pipeline with information regarding collision response, which CollDet handles through 
virtual callback class. Thus different collision responses can be defined for each object 
pair. 

4.4.2. Testing of Selected Collision Detection Library 

The usability and basic functionality of CollDet was tested by developing a simple 
program simulating collision detection between a moving 3D assembly and a static 
target object. The used object models are presented in Figure 4.3 Graphical 
representation of the objects used to test functionality of CollDet library, where the 3D 
assembly is constructed from three heptahedrons, each representing single linear 
actuator. The static target object is modeled as a sphere.  

                                                
1 Scene graph is a hierarchical data structure storing representation of a graphical scene. 
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Figure 4.3 Graphical representation of the objects used to test functionality of CollDet library 

The scene graph storing the information required to produce the presented graphical 
scene is described in Figure 4.4. The graph scene is built mainly from two different 
kinds of nodes, namely transformation node and geometry node. The latter nodes are 
responsible for describing the geometry of a single object, whereas the first contains 
information regarding position and rotation of the object. In addition, a root is required 
to maintain the tree structure. CollDet must be provided with the geometry nodes of 
each object of interest, transformation information is retrieved automatically by 
traversing the scene graph tree. 
 

 
Figure 4.4 Structure of a scene graph representing a 3D assembly and spherical target object 
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Creation  of  simple  objects  and  scenes  using  OpenSG was  found to  be  relatively  easy,  
especially when in-built primitive geometries, such as heptahedrons, cylinders and 
spheres provide sufficient accuracy. If more complex objects are required, third-party 
modeling tools, such as Autodesk 3ds Max [42] or Blender [42] can be used to create 
the objects.  

 
Figure 4.5 Collision detection with CollDet 

Implementation of CollDet on top of the OpenSG scene graph was found to be 
effortless. Collision pipeline was created and the geometry nodes were registered with 
the respective function. A simple callback class calculating the amount of occurred 
collisions was implemented to test how accurately CollDet performs in this particular 
case. Different parts of the 3D assembly object were collided to the spherical target 
object in order to find out whether CollDet detects all collisions or not. Figure 4.5 
illustrates two different cases where collision was found. In the first case, the end-
effector touches the surface of the sphere, but does not penetrate it. In the second case, 
the end-effector completely penetrates the surface of the sphere. 

4.5. Key Findings 

The requirements relating to scalability and performance of each subsystem are very 
different. In addition, one of the required APIs is available only in Microsoft Windows 
operating systems. Many of the requirements indicate that selection of a distributed 
architecture would be justified. Moreover, the requirements for real-time capable 
subsystems as well as the proposed machine vision functionalities call for high 
computational capabilities. The functionality required from the entire control software is 
recapitulated in Figure 4.6. The key components in the scope of this work are indicated 
with red colour.  

End-effector touching the 
surface of the object

End-effector penetrating the 
surface of the object
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Figure 4.6 Proposed functionality for the Control System of Microrobotic Platform 

The limitations of the hardware were studied mainly from the perspective of support for 
the selected operating systems. Other possible hardware related constraints were left to 
be further studied in the architectural design. Existing hardware were found not to 
severely limit the development as most of the presented components are capable of 
communicating with standard bus technologies implemented in most of the modern 
operating systems. In most cases, the required API is available directly in the OS and 
further libraries are not required. Both of the control boards related to the ViS are 
capable of standard serial communication using the RS-232. Moreover, the used camera 
employs communication based on the IEEE1394 standard, which is also well 
established in most of the operating systems. [18][19] 
 The proposed structure of DAQS does not pose any operating system related 
issues; a large variety of different DAQ devices are supported by all of the operating 
systems as presented in the previous section.  
 The MiS is the only part of the system that limits the selection of operating 
system. The communication over USB between computer and the SmarAct interface 
module requires proprietary libraries available only for Microsoft Windows. However, 
the requirements of MiS can be limited to the computer node responsible for controlling 
MiS, other parts of the system may run on different OS, providing that the 
communication between the nodes is platform independent. 
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4.6.  Selected Technologies and Design Principles 

The presented user requirements and available hardware interfaces led to selection of a 
distributed architecture. CoSMic will propose usage of Linux on all possible computer 
nodes. The subsystems with real-time constraints shall run on a dedicated computer 
powered by Linux and a real-time kernel extension. Selection of used real-time kernel 
extension is left for the developer of the particular subsystem.  
 CoSMic will be developed in C++ incorporating the Qt application development 
framework. The proposed primary selection for data acquisition is Comedi or Analogy, 
depending on the selected kernel extension. However, if a computer node running 
Microsoft Windows requires DAQ capability, the NI-DAQmx from National 
Instruments should be selected. 
 CollDet library is selected as the current approach for CD. Selection of the 
library is supported by the performance evaluation presented in [46]. Further, CollDet is 
easy to use and allows visualization through OpenSG. Other aspects promoting CollDet 
is multi-thread support and compatibility with Qt [47]. Implementation of CD for 
CoSMic is not in the scope of this thesis. However, the architecture should be designed 
in a manner which allows an easy integration of CD implementation in further stages of 
the development. 



5. ARCHITECTURE 

Defining the concept of software architecture is a relatively difficult task; there are 
literally tens of different definitions by different authors. Within this work, the 
following definition is used: 
 Software architecture describes systems organization and functionality on high level of 
abstraction. The most important aspect of software architecture is to collect the 
development team’s key decisions regarding the structure, behaviour and relationships 
of the contributing components.  [29][30] 
 This chapter describes the software architecture of Control Software for 
Microrobotic Platform (CoSMic). Section 5.1 presents three architectural patterns 
which were considered as the most prominent options during the architectural design 
process. Section 5.2 describes the architecture of Control Software for Microrobotic 
Platform on general level. Section 5.3 introduces CoSMic-Frame – a simple framework 
designed to be used in application development for MP. The two remaining sections 
concentrate on describing two subsystems of CoSMic. Section 5.4 presents the 
architecture of a subsystem responsible for controlling the MiS related hardware. 
Section 5.5 discusses the architecture of a subsystem controlling DAQS. 

5.1. Selected Architectural Patterns for Distributed 
Computing 

One of the most important architectural issues related to distributed systems is coupling 
of network technology and the actual program code. The issue becomes significant in 
scenarios where the program code should be ported to other environment or if changes 
are made to the used network technology. For example, in some cases the physical 
implementation of the used network might be changed due various reasons, such as 
insufficient performance of the network or companywide upgrading of the network 
technology. In such a case, tight coupling of the program code and the network related 
functionality may lead to complete rewriting of the program. A similar scenario applies 
for cases where application is ported to a domain where the used network technology 
differs from the development environment. Therefore decoupling of the program code 
and the network related functionality is an important topic. The following subsections 
introduce three different architectural patterns proposed to overcome the 
aforementioned issue.   
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5.1.1. Broker Pattern 

The first pattern, known as broker pattern, is proposed for systems where independent 
cooperation between two distributed components is required. Main motivation of the 
pattern comes from separating the actual application code and the network related 
details; an application residing on server or client should not require knowledge 
regarding the implementation or physical location of the counterpart. The mechanism 
presented  in  this  pattern  allows  the  client  programs  to  invoke  methods  of  remote  
services as if they were local. [2] 
 In broker pattern, each node of the network should include an instance known as 
the broker. The main purpose of the broker is to register interfaces and locations of the 
local components. Registration is required to gain visibility throughout the distributed 
system. If client wishes to invoke functionality provided by a remote component, it 
invokes the local broker in order to obtain a client-side proxy, which acts as a local 
substitute of a registered remote component. The client-side proxy collaborates with the 
client and server-side brokers to forward the client’s request to the remote component. 
Same route is used to pass the possible results back to the client. [2] 
The broker pattern is often presented together with an additional component called 
bridge, which is responsible for encapsulating the network-specific functionality. Figure 
5.1 illustrates structure of the broker pattern including the bridge instance. [2][28] 

 
Figure 5.1 Relationships of the classes participating in broker pattern 

5.1.2. Client Proxy Pattern 

The second architectural software pattern presented in Figure 5.2 is known as client 
proxy.  Client  side  application  willing  to  access  the  services  provided  by  a  remote  
component must comply with data format and network protocol used at the server side. 
To enhance the reusability of the client side application the Client Proxy pattern adds an 
additional component, a client proxy, on the client sides address space. Purpose of the 
client proxy is to provide the client application with an interface identical with the one 
provided by the remote component. The client proxy is responsible for mapping all the 
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client side invocations to the remote component. Further, the client proxy must 
reinterpret the possible return messages into a format understood by its client. [2] 

 
Figure 5.2 Overview of client – remote component communication with client proxy pattern 

Unlike the broker pattern, client proxy is unable to achieve location-independent 
communication. In client proxy pattern, the client must obtain the client proxy prior to 
initiating communication with the remote component. Therefore the client side must be 
aware of the remote component’s location. Client-side proxy pattern can be used when 
constructing a client-side broker of the broker pattern. However the pattern is also 
usable as such. [2] 

5.1.3. Invoker Pattern 

The last presented architectural pattern is called invoker pattern. Invoker pattern 
resembles client proxy, but the network related functionality is encapsulated on the 
server side. Invoker pattern encapsulates the server-side application component from the 
network related tasks. If the application component would manage the network related 
tasks itself, portability and reusability of the component would be difficult – especially 
if the used network technology changes. Figure 5.3 presents an overview of the invoker 
pattern. 
 

 
Figure 5.3 Overview of client – remote component communication using invoker pattern 

Invoker pattern can be deployed in several different ways, depending on the desired 
level  of  complexity.  In  the  simplest  solution,  a  single  invoker  is  deployed  to  serve  all  
the components residing in the server. This solution might be feasible when the number 
of served components remains low. However, if the number of components is increased 
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dramatically, a design where each component gets served by dedicated invoker might be 
preferred. 

5.2. Distributed Architecture for Microrobotic Platform 

The distribution of the CoSMic presented herein, is based on the observation made in 
the previous chapters. CoSMic is divided into four packages each of which is 
responsible for controlling a specific part of MP. Responsibilities of the packages are as 
follows. Control of MiS (MiCo) is responsible for controlling all MiS related hardware. 
MiCo  provides  the  operator  with  the  functionality  required  in  control  of  the  MiS  
actuators, recording and re-executing actuator trajectories and preventing the actuators 
from colliding with other hardware of CoSMic. Control of ViS (ViCo) implements 
functionality required in image acquisition, visualization and image analysis with MV. 
Control of DAQS (DAQCo) is responsible for acquiring, storing and visualizing data 
from the sensors attached to DAQS. Real-time extension implements possible future 
real-time constrained subsystems. For example, the real-time extension might be needed 
when implementing closed-loop control with strict performance requirements.  

The use cases of each part of CoSMic are presented in Figure 5.4, which also 
presents the intentioned distribution.  
 

  
Figure 5.4 CoSMic - required packages and related use case diagrams 

The presented uses cases aim to highlight the domain of each package. In MiCo, the 
most essential functionality is illustrated by use case Move actuator. Move actuator 
represents the functionality required to move single SmarAct actuator. It includes 
detection of potential collisions, described in Test Collisions. The functionality 
illustrated in Move actuator is also required in use cases Re-execute Trajectory and 
Synchronous Movement. The first provides means for re-executing trajectories stored in 

FiberStation FiberVision Real-time Extension
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Store trajectory and the latter allows the operator to move multiple actuators in 
synchronous manner. DAQCo contains three use cases, namely Acquire data, Visualize 
data and Store data. The first represents the functionality required in data acquisition 
from a sensor attached to DAQS. The second describes how the acquired data should be 
visualized. The third use case illustrates storing of the acquired data into a file. ViCo is 
divided into four separate use cases. Acquire images is  a  use  case  comparable  to  
DAQCo Acquire data, it describes how image acquisition can be started, what 
parameters must be taken into account and what high-level operations ViCo performs 
during image acquisition. Store images illustrates storing of the acquired images as 
video file or as a sequence of image files. Control peripherals represents the 
functionality required to control the motorized objective and the illumination system. 
Visualize acquired images describes how the acquired images should be visualized. 
ViCo subsystem called Machine Vision represents the proposed MV system. The most 
significant MV related use case is Analyse images which analyses each acquired image 
prior to visualization. Analyse images includes another use case, Run MV algorithms, 
which describes how selected MV algorithms are executed. Possible images analysis 
related object tracking is described by Track objects. Real-time extension and related 
use cases are herein provided for merely illustrative purposes. More detailed analysis of 
RT requirements related to CoSMic must be conducted prior to further designing the RT 
capable subsystems. 

Control of ViS (ViCo) is assigned with a dedicated computer due to the possibly 
high computational requirements of the proposed MV system. The actual requirements 
remain unknown until MV software has been implemented. However, it is safe to 
assume that at least one desktop computer is required to suffice for the needs of the 
ViCo. The computer where the implementation of ViCo resides is referred in this thesis 
as FiberVision. The MV is presented in Figure 5.4 as a subsystem of ViCo to emphasize 
the requirements it may have towards the core functionality of ViCo. The MV may 
require several computation intensive operations, such as copying and converting 
images to different formats. Architecture of ViCo should take into account the possible 
effects by implementing thread-safe core functionality and data buffers. This thesis does 
not  address  the  architecture  or  the  design  of  ViCo  into  more  details,  as  ViCo  is  
developed in a thesis work parallel to this work. The functional requirements presented 
in Section and the architectural requirements based on CoSMic-Frame are followed in 
the development of ViCo. In its current state, most of the functionality of the ViCo has 
been implemented. More detailed description of the ViCo is available after the related 
thesis work has been finalized [31]. 

The second computer, known as FiberStation, is proposed to host Control of 
MiS  (MiCo)  and  Control  of  DAQS  (DAQCo).  The  grounds  for  having  MiCo  and  
DAQCo in the same domain lie in the required communication between the packages. 
Some  of  the  sensors  connected  to  DAQCo  may  damage,  if  their  operation  range  is  
exceeded. Fast communication between these two parts ensures that the devices of 
MiCo may quickly react upon certain outputs of DAQCo. The second reason is the 
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possible implementation of force-feedback with haptic device using sensors attached 
into DAQCo. Physical relocation of DAQCo would greatly increase the network traffic, 
as some input devices may require update frequencies of several hundred Hertz. 

5.2.1. Network Communication 

As mentioned previously, the communication between the different computers of 
network is initially planned to be implemented using TCP/IP sockets. However the 
architecture should allow the development team to change the used network protocol 
without affecting the functionality of the application code. In order to fulfill this 
requirement, an invoker-like pattern with a multithreaded approach is proposed. 
 Motivation behind the multi-threaded approach is to enable execution of several 
server-side applications on one single computer. Furthermore, the server hosting the 
applications should provide an efficient mechanism for communication between 
multiple clients and the server-side applications. In single threaded server, instructions 
sent from multiple remote locations are executed in a serialized manner. Each 
connection must wait until the instructions of the previous connection have been 
processed and forwarded to respective application. The pattern presented in the 
following aims to enhance performance of the server by serving each incoming 
connection in a different thread. 
 The pattern, presented in Figure 5.5, encapsulates the network related 
functionality into three instances. ClientSideConnection implements the 
required client-side functionality, such as client-side TCP/IP socket. 
ServerListener is responsible for listening and accepting incoming client-side 
connections. The third instance, ConnectionHandler is responsible for handling 
the run-time communication between client-side and server-side.  

 
Figure 5.5 Structure of the communication related functionality 

 Division of network related functionality between ServerListener and 
ConnectionHandler was made in order to achieve concurrency between the client-
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side connections. Each connection accepted by ServerListener is  handled  in  
separate thread dedicated to ClientSideConnection.   
 The fourth instance participating in the pattern is Application Invoker 
which provides the functionality similar to the invoker instance presented in Section 
5.1.3. Serialization is avoided by creating ApplicationInvoker per server-side 
application. Thus incoming connections are queued only when multiple Connection 
Handler instances are required to call same instance of ApplicationInvoker. 
 The intended initial communication between participating instances is shown in 
the sequence diagram presented in Figure 5.6. The sequence assumes that an instance of 
Server Listener has been created and started to listen incoming connections. Before 
client-side application may communicate with server-side application, a communication 
line between server-side and client-side must to be established. The initialization of a 
new connection is triggered by client-side application which calls 
ClientSideConnection initiating the connection to given address of 
ServerListener. Upon incoming connection request, the Server Listener listening 
to incoming connections wakes up and creates new instance of 
ConnectionHandler representing the server-side of the communication of a single 
client. Possible tasks related to initialization of the connection, such as hand-shaking are 
performed by the ServerListener. ConnectionHandler replies to the 
ClientSideConnection and new connection is established. Finally 
ClientSideConnection notifies client-side upon successfully established 
connection. 
 

  
Figure 5.6 Sequence diagram presenting initialization of communication between client-side application and server. 

The run-time communication between client-side and server-side applications is 
presented in Figure 5.7. The sequence is initiated by the client-side application, which 
calls the ClientSideConnection. The function call arguments must include 
identifier of the invoked server-side application, identifier of the invoked function and 
the required parameters.  
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Figure 5.7 Run-time communication between client-side application and server-side application 

ClientSideConnection parses the arguments into a message which is forwarded 
to the respective server-side ConnectionHandler. ConnectionHandler 
forwards the message to respective ApplicationInvoker which converts the 
received message into name of the invoked function and argument list. In the final 
phase, ApplicationInvoker invokes the desired function of the server-side 
application. 

5.2.2. Communication on Network Node Level 

The subsystems residing on the same physical location require communication to 
exchange data related to measurement results and possible error states. The data 
exchanged between different parts of CoSMic is typically either event based messaging 
or continuous flow of data from an external source, such as DAQ hardware or camera. 
The difference between the two methods of data exchange is the quantity of the 
transferred data. Therefore different approaches are proposed to satisfy the requirements 
of both of the presented cases. Within this section the event based messaging is not 
further discussed, but the Qt signal-slot mechanism provides excellent possibilities for 
forwarding messages between different parts of CoSMic. The possibilities of the signals 
and slots are presented more in details in Chapter 6. 
 Figure  5.8  presents  a  Qt  framework  based  pattern  for  data  exchange  of  
continuous measurement data using a data buffer. The pattern is mainly designed for 
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cases, where large amounts of data are produced and only the latest data is in the 
interest of the consumer instance. The pattern involves three main participants 
ProducingApplication, ConsumingApplication and DataBuffer, which 
couples the two aforementioned. The pattern aims to hide the producer and consumer 
instances from each other by using another instance called Connector to connect the 
required methods. In addition, the pattern can be used for resolving the classical 
producer-consumer problem by implementing a container class to store several 
measurement values at the DataBuffer. Moreover, implementation of mutual 
exclusion (mutex) operations is required. The functionality of the pattern is defined by 
the structure of the DataBuffer. 

  
Figure 5.8 Data exchange between application threads using a data buffer 

In order to maintain desired encapsulation, the initialization of the instances 
participating in the pattern must be performed by a third party. Figure 5.9 presents a 
simple initialization sequence, where an instance of Connector performs the 
initialization. The sequence starts by creating an object of ProducingApplication 
and ConsumingApplication. The ProducingApplication is  the  owner  of  
Data Buffer, thus responsible for its creation. When all required instances have 
been created, the Data Buffer is connected to the ConsumingApplication 
through the Connector. Connector performs a query to 
ProducingApplication and receives a pointer to the DataBuffer. After 
successful acquisition of the pointer, the Connector forwards the pointer to 
ConsumingApplication and connects the producer-side notify signal to 
consumer-side receiveNotification slot.  
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Figure 5.9 Initialization sequence of continuous data exchange using buffer 

In some cases, the buffering of acquired data may require additional operations, which 
are not in the scope of the producer-side. For example, the consumer-side may require 
different data format than the producer is able to provide. Tight coupling of the required 
data conversions with the producer may lead to a situation where implementation of 
new functionality would require complete rewriting of the producer-side program. In 
order to prevent such situations, it might be useful to implement the data conversions 
into the used buffer. However, the pattern presented in Figure 5.8 should not be used in 
such a case; if the data conversion is sufficiently complex, the notify signal would be 
emitted prior to accomplishment of the data conversion. Figure 5.10 presents Active 
buffer, a modification of the previously presented DataBuffer, where the 
responsibility of notifying the consumer-side applications is assigned to DataBuffer 
instead of ProducingApplication. Functionality of both variations is almost 
identical, but Active buffer guarantees finalizing of the required data conversions prior 
to notification. 
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Figure 5.10 Data exchange with Active buffer 

5.3. CoSMic-Frame 

CoSMic-Frame is a simple framework designed to be used in application development 
for Microrobotic Platform (MP). The framework describes the general requirements and 
design principles including threading and data exchange related issues. Further, the 
framework aims to enable execution of any CoSMic-Frame based application on a  
server and as a stand-alone application. 

5.3.1. Structure  

All applications based on CoSMic-Frame inherit an abstract base class 
CosmicApplicationBase. Figure 5.11 presents the 
CosmicApplicationBase, which is in fact inherited from QThread. The 
reasoning behind the used inheritance is identical with the case presented in network 
communication. Structure of the CosmicApplicationBase is simple and aims to 
provide the developer with relatively free hands – it does not interfere with the internal 
structure  of  the  application.  Each  application  developed  according  the  rules  of  the  
framework may include only one GUI component. However, the GUI component may 
be a composite of several GUI components. When running in a stand-alone mode, the 
possible GUI is automatically loaded. The GUI component can also be used when 
running the application on a server, by passing the application specific GUI components 
to CosmicServerGui, which acts as the main GUI. 
   

 
Figure 5.11 Abstract base class for applications complying with CoSMic-Frame 
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The implementation of the abstract CosmicApplicationBase class is presented in 
Figure 5.11.   

5.3.2. Network Communication  

Network communication in CoSMic-Frame is based on the pattern proposed in Section 
5.2.1. Schematic overview applying the pattern to the communication scheme between 
the FiberVision and FiberStation is shown in Figure 5.12. The client-side, FiberStation 
includes always minimum of two separate threads, called Application logic thread and 
Main thread. Application logic thread is responsible for executing instances common for 
the entire client-side computer node. For example, the required client-side socket object 
resides in the Application logic thread. The amount of threads on the client-side is 
increased by one per each hosted CoSMic application. Thus deployment of MiCo and 
DAQCo would increase the thread count to four.  The Main thread, also known as the 
GUI thread, is reserved exclusively for instances of graphical user interfaces.  
 The server-side contains minimum of three threads: Socket Server thread, Main 
thread and Application thread running a single application. When a client-side socket is 
connected, the number of Client Connection threads is increased by one per each new 
connection. The restrictions of the Main thread are similar on the server-side as 
described for the client-side. 

 
Figure 5.12 High-level architecture of FiberVision and FiberStation 

CosMiC-Frame provides ready implementation of the required server-client pair. The 
implementation uses TCP/IP sockets, but the used communication protocol can be 
changed with relatively small effort. 
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5.4. Architecture of MiCo 

Architecture of MiCo is multi-threaded employing threading and synchronization 
mechanisms  provided  by  the  Qt  framework.  The  core  functionality  of  the  MiCo  is  
distributed between several classes, some of which run in separate threads. The 
architecture of MiCo aims to maintain the threading provided by the SCU3DControl 
API for each individual SmarAct device. Serialization is avoided whenever possible and 
the API of MiCo provides communication with each device through different thread. 
The architecture of MiCo presented in Figure 5.13 is largely inspired by the Qt signal-
slot mechanism which is used in event based communication between objects residing 
in separate threads. Figure 5.13 simplifies the architecture by ignoring the user interface 
classes of MiCo, which are discussed in Section 6.1. The following describes core 
functionality of the system, which is distributed between DeviceManager, Device 
and DeviceListener classes. Classes DeviceCommander and 
CollisionManager are further discussed in Section 6.1.2. 

DeviceManager can  be  described  as  the  business  logic  of  the  MiCo.  It  
initializes the hardware, owns the objects used in communication between 
SCU3DControl  API  and  provides  some  of  the  MiCo  API  functions.  However  the  
DeviceManager does not contribute to the run-time communication with 
SCU3DControl API, but reassigns the responsibility to Device objects.  
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Figure 5.13 Architecture of MiCo 

Device represents an individual SmarAct device and runs in its own thread. The 
counterpart required to receive incoming messages from the API is 
DeviceListener which also has a dedicated thread. Instances of these two classes 
are responsible for all run-time communication with the SmarAct hardware. Data 
exchange between Device and respective DeviceListener objects is provided 
through DeviceDataContainer. DeviceDataContainer contains 
information of each SmarAct actuator connected into the particular SmarAct device. 
Actuators with an in-built sensor are represented by PositionerCL class  and  
actuators  without  sensor  have  own  dedicated  class  called  PositionerOL. 
Implemententation of new actuator types is supported through abstract base class 
PositionerBase.   
 Purpose  of  the  data  exchange  class  DeviceDataContainer is complete 
decoupling of Device and DeviceListener. Decoupling is desirable due to the OS 
requirements of SCU3DControl API. The answer retrieval procedure discussed in 
Section 4.2 included usage of Windows API event handles. In fact, the answer retrieval 
is the only procedure related to SCU3DControl API which requires usage of Windows 
specific functions. Decoupling ensures that platform specific functionality is 
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encapsulated to one single class. This may be beneficial if the API is later on released to 
other platforms. 

5.5.  Architecture of DAQCo 

The main responsibilities of DAQCo include data acquisition, buffering, visualization 
and storing the acquired data into a file. Each of these tasks is assigned with a dedicated 
thread as illustrated in Figure 5.14. The core of DAQCo is data acquisition, which is 
performed in Daq thread. The acquired data is stored in a data buffer residing in Buffer 
thread. After  buffering,  the  data  can  be  written  into  a  file  in  Recorder  thread.  
Visualization of the acquired data is performed in GUI thread. 

The high-level architecture of DAQCo is similar with MiCo. The most 
significant difference between these two subsystems is the amount of data that needs to 
be exchanged. Communication in MiCo is event based and requires only small amounts 
of data to be transferred between different instances. On the other hand, DAQCo may 
acquire several thousands of samples per second. Thus efficient and reliable data 
buffering is important. Structure of the DAQCo data buffer is extended from the buffer 
presented in Figure 5.10.  
 

 
Figure 5.14 High-level architecture of DAQCo 

The DAQCo data buffer includes two different methods of data exchange designed for 
different purposes. Small volumes of data can be exchanged using a Qt signal and a 
function retrieving the latest data from the buffer as presented in Figure 5.10. However, 
the mechanism is not suitable for large quantities of data. In DAQCo, a mechanism 
employing QSharedPointer and  the  event  queue  of  QThread is used for 
exchanging large quantities of data between the data buffer and the instance responsible 
for storing the data into a file. The mechanism is further discussed in Section 6.2. 
 The DAQCo uses NI-DAQmx API presented in Section 4.3. The data exchange 
of the API and DAQCo employs callback functions, which the developer must provide 
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to the API in form of function pointers. Figure 5.15 presents the architecture of DAQCo 
on class level. The communication between the NI-DAQmx API and DAQCo is 
directed through UDaqCore, a class which is responsible for all data acquisition related 
activities. UDaqCore also owns the data buffer UDaqBuffer which is responsible for 
providing the acquired data to other parts of CoSMic. The functionality required in 
storing the acquired data into a file is provided through UDaqFileWriter. 
 

 
Figure 5.15 Architecture of DAQCo 

The presented architecture of DAQCo disregards all GUI related classes. An overview 
of the GUI is provided in Section 6.2. 

5.6. Summary 

This chapter described the distributed architecture of CoSMic including three 
subsystems MiCo, ViCo and DAQCo. Section 5.1 revised a selection of design patterns, 
which were considered as suitable starting point for development of the architecture. 
Section 5.2 presented the overall architecture together with use cases illustrating the 
required functionality of each subsystem. Two of the subsystems, MiCo and DAQCo, 
are assigned to a single computer named as FiberStation. MiCo implements control of 
the micropositioners attached to MiS, whereas DAQCo is responsible for storing and 
visualizing the measurement data. Collaboration between the two subsystems is 
required to protect the hardware from damages. The third subsystem ViCo runs on 
dedicated computer called FiberVision. ViCo provides detailed visualization of the MP 
by interfacing cameras attached to the system. General guidelines and rules regarding 
development  of  CoSMic  were  laid  out  in  form of  a  simple  framework  in  Section  5.3.  
Finally two subsystems, MiCo and DAQCo, were discussed more in details in Section 
5.4 and Section 5.5 . 



6. DESIGN AND IMPLEMENTATION 

This chapter presents an overview of the design and implementation for two subsystems 
of CoSMic. Section 6.1 concentrates on the design of MiCo, followed by description of 
DAQCo in Section 6.2. Section 6.3 discusses integration of the two subsystems. Finally 
Section 6.4 describes the state of current implementation. 

6.1. MiCo 

The Control of Micromanipulation System (MiCo) is  designed to control the SmarAct 
micropositioners attached to MiS. The main purpose of MiCo is to implement an API 
and a user interface, which provides high-level functionality for the needs of CoSMic. 
Another important aspect in the design of MiCo is tracking the position of each actuator 
attached into MiS. Tracking of the positions is essential, since the actuators do not have 
a global coordinate system making development of some of features very tedious. For 
example, collision prevention is impossible without the knowledge of each actuator’s 
current position. 

6.1.1. Overview 

A typical characterization process from the view of MiCo starts by grasping the object 
with microgrippers attached to two 3D assemblies. Before the object can be grasped, the 
3D assemblies must be moved to correct positions. After grasping the object, the 3D 
assemblies move the object to the measurement area. Synchronous movement of the 3D 
assemblies  is  to  maintain  correct  alignment  of  the  object.  In  the  next  stage  of  the  
characterization process, the desired properties are measured. A single measurement 
procedure may include several repetitions. Thus the 3D assemblies are required to move 
the object several times from one place to another. In the final phase, the 3D assemblies 
move the object to a predefined location to wait for disposing. 
 The characterization procedure described above is converted into a high-level 
use cases in Figure 6.1. The most important single functionality required from MiCo is 
clearly communication with the SmarAct devices through SCU3DControl API. 
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Figure 6.1 Core functionality of MiCo 

All of the control modes presented in Section 3.4 require the functionality described by 
use case Control Actuator, which represents all run-time communication from MiCo to 
the SCU3DControl API. Implementation of SCM is represented by two additional use 
cases Store Trajectory and Re-execute Trajectory. The two remaining control modes, 
ACM and ECM require implementation of CD indicated by the use case Test Collisions. 
 Figure 6.2 recapitulates the core classes of MiCo providing asynchronous 
communication between MiCo and SCU3DControl API. Class Device represents a 
single SmarAct device controlling up to three individual actuators. All function calls to 
the API are sent from Device. Thus the class provides the functionality described in 
the use cases Set parameter and Move. The DeviceListener class is the counterpart 
of Device; it waits for incoming data from the API and forwards received data to 
DeviceDataContainer. Each Device has its own DeviceDataContainer 
which is responsible for storing all device specific data, including positions and statuses 
of each individual positioner. DeviceDataContainer can be thought as the class 
that provides the functionality required to accomplish the use case Get parameter. 
DeviceDataContainer has also an important role in the implementation of 
position-awareness required by the CD.  
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Figure 6.2 MiCo core classes 

Use cases Synchronous Movement, Re-execute Trajectory require the functionality 
described in Move. Synchronous Movement is  similar  to  use  case  Move, but moves 
several actuators in synchronous manner. Thus the functionality described in Move is 
required for several actuators simultaneously. Synchronous Movement is implemented 
in DeviceManager. Use case Store Trajectory records  movements  of  the  SmarAct  
actuators  into  a  file.  Whenever  an  actuator  is  moved,  its  new  position  is  stored  to  
DeviceDataContainer . Store Trajectory uses Get Parameter, which retrieves 
actuator’s parameters from DeviceDataContainer. Re-execute Trajectory re-
executes the trajectories stored by Store Trajectory. Re-execution is performed as 
sequence of Move use cases.  

The number of active threads in MiCo depends on the number of devices 
attached to the SmarAct control module. Figure 6.3 illustrates threading of MiCo 
through an example where one SmarAct device is present.  
 

 
Figure 6.3 Threading and cross-thread communication in MiCo with one SmarAct device attached 
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The number of threads is always increased by two when an additional SmarAct device 
is attached into the SmarAct control module as each new SmartAct device requires a 
Device and a DeviceListener. 

6.1.2. MiCo API 

Application programming interface of MiCo consists of DeviceManager, 
DeviceCommander and CollisionManager, presented in Figure 5.13. Functions 
provided by the DeviceManager are mainly intended for initializing and shutting 
down MiCo. In addition a function providing access to Device objects is provided for 
configuration purposes. DeviceCommander provides  the  run-time  access  to  
Device and DeviceDataContainer. The functions provided by 
DeviceCommander have identical functionality with the functions of Device, but 
DeviceCommander  only emits a Qt signal to respective Device, thus decoupling 
the API from the internal implementation of Device. Implementation of 
moveAbsoluteCall, which is used to invoke moveAbsolute function at 
Device, is shown as an example in  Program 6.1.  
 

 
Program 6.1 Example function of DeviceCommander class emitting the received values as Qt signal 

DeviceCommander objects do not include any information regarding the Device 
they interact with. The DeviceManager is used as a mediator to connect 
DeviceCommander and Device objects. The sequence required to establish 
communication between an application using MiCo API and Device is illustrated in 
Figure 6.4. 
 
 

void DeviceCommander::moveAbsoluteCall(unsigned int channelIndex, int 
 position, unsigned int holdTime) { 
    emit moveAbsolute(channelIndex, position, holdTime); 
} 
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Figure 6.4 Sequence of connecting DeviceCommander and given Device 

DeviceManager provides two types of communication between the 
DeviceCommander and Device objects. If DeviceCommander is used only to 
receive status and position messages from Device, it can be declared as an input 
device. Respectively DeviceCommander used  only  to  move  the  actuators  can  be  
declared as an output device. The combination of the two communication types is also 
possible. Implementation of the connectDeviceCommander function is presented 
in Program 6.2 to enlighten the situation. 
 

 
Program 6.2 Function connectDeviceCommander connecting provided DeviceCommander object to given  
Device object 

Third class involved in MiCo API, CollisionManager is responsible for collision 
detection (CD) and collision prevention. The implementation of CD of MiS hardware is 

void DeviceManager::connectDeviceCommander(unsigned int deviceIndex,  
 DeviceCommander *commander,  
 QVector<UManipPositionerType> &positionerData) { 
    Device* device = mDevices.at(deviceIndex).device; 
    if (DeviceCommander::InputCommander ||    
  DeviceCommander::InputOutputCommander) { 
        connect(commander, SIGNAL(moveStep(uint,int,uint,uint)), device, 
  SLOT(moveSteps(uint,int,uint,uint))); 
        connect(commander, SIGNAL(moveRelative(uint,int, uint)), device, 
  SLOT(moveRelative(uint,int,uint))); 
        connect(commander, SIGNAL(moveAbsolute(uint,int, uint)), device, 
  SLOT(moveAbsolute(uint,int,uint))); 
    } 
 
    if (DeviceCommander::OutputCommander ||    
  DeviceCommander::InputOutputCommander) { 
        connect(device, SIGNAL(completed(uint,uint)), commander,  
  SIGNAL(movementFinished(uint, uint))); 
        connect(device, SIGNAL(positionChanged(uint,uint,int)),  
  commander, SIGNAL(positionChanged(uint,uint,int))); 
    } 
} 
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based on the CollDet and OpenSG scene graph libraries presented in Section 2.4. Figure 
6.5 presents an overall structure of MiCo CD. 

 
Figure 6.5 MiCo collision detection  

CollisionManager contains all the graphical objects, which describe all 
geometrical features of CoSMic. In other words, CollisionManager creates a VR 
representing CoSMic. All objects, including each actuator are included in a scene graph 
constructed according to the principles described in Section2.4. The other participant of 
the CD is CollisionCallbackBase, which handles occurred collisions. 
CollisionCallbackBase is a virtual class, thus allowing customizing of the 
callback events. In addition, the developer may write different collision response 
implementation for each object. Purpose of MiCo CD is to prevent collisions by 
simulating movements of the actuators prior to moving them in the real-world. 
Sequence describing the CD procedure is presented in Figure 6.6.  
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Figure 6.6 MiCo collision detection procedure 

When Device receives instructions to move an actuator to a new location, the legality 
of the movement is evaluated by forwarding the instructions to CollisionManager. 
CollisionManager tests possible collisions by moving VR object respective to the 
actuator into the given location. After moving the actuator to correct position, 
CollisionManager calls the CD pipeline which calculates the possible collisions 
and calls the CollisionManager through a callback function. If a collision was 
detected, the CollisionManager moves  actuator’s  VR  object  back  to  its  original  
position. Otherwise the Device is instructed to continue to movement in the real-
world.  

6.1.3. Communication 

Communication between MiCo and SCU3DControl API is routed through different 
classes during initialization and run-time. The subsequent sections describe the 
difference between the two communication phases. 
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Initialization 

Initialization process of MiCo involves initialization of the hardware, creation of 
Device and DeviceListener objects for each found device and data exchange 
regarding each individual actuator attached to the MiS.  Communication between MiCo 
and the SCU3DControl API differs from the run-time communication; the hardware 
initialization  commands  and  queries  regarding  the  amount  of  attached  devices  are  
performed by DeviceManager.  
 The initialization of MiCo described in Figure 6.7 starts by calling 
initializeDevices from DeviceManager which performs a query acquiring 
all available devices attached to the SmarAct control module. The command provided 
by the API explicitly states that the query must be made prior to actual initialization of 
the devices. In the next step the hardware is initialized using respective function of the 
API. After successful initialization, the DeviceManager creates Device and 
DeviceListener objects for each SmarAct device found in the first step of the 
initialization process. The created objects automatically move to new threads and the 
communication between MiCo and the API is reassigned from the DeviceManager 
to Device objects. However the DeviceManager remains in initialization mode and 
sleeps until each Device has been successful initialized. The created Device objects 
start their own initialization process by sending a query regarding type of attached 
positioner to each channel. The DeviceListener objects react upon incoming data 
packets and process the content. If the data packet carries information regarding the type 
of the positioner it is passed to the DeviceDataContainer. Otherwise, the packet 
is discarded.  
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Figure 6.7 MiCo initialization procedure 

Depending on the content of the packet received by the DeviceDataContainer 
object, an object representing positioner with or without sensor is created. After each 
positioner attached to each channel has been studied, the DeviceDataContainer 
objects inform the respective Device objects, which then report to the 
DeviceManager. After each Device has reportedly finished the initialization 
DeviceManager forces the system to run-time mode. 

Moving Single Positioner 

Movement of a single positioner involves several steps. Type of the commanded 
positioner must be checked and collision detection must analyze possible obstacles on 
the path of the positioner prior to sending the command to hardware. Figure 6.8 presents 
a sequence of function calls required to move a positioner from one position to another.  
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Figure 6.8 Call sequence for moving a positioner from MiCo API to SCU3DControl API 

The presented sequence does not discuss the answer retrieval after the movement has 
been finished. Whenever a movement is successfully finished, MiCo queries the 
position of the positioner and updates the data to DeviceDataContainer, which 
passes the information to all objects connected to positionUpdate signal. Figure 
6.9 presents the sequence performed after SCU3DControl API reports completed 
movement. 
 

 
Figure 6.9 Activities after DeviceListener object has received message indicating completion of movement 

The sequence presented above describes only those targets of the positionChanged 
signal  which  are  within  the  implementation  of  MiCo.  However  the  Qt  signals  can  be  
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forwarded to other parts of the system, by simply connecting the signal at 
DeviceCommander to a slot or signal of another instance. 

6.1.4. User Interfaces 

MiCo includes an in-built GUI which provides the most common functionality required 
in the characterization process. Design of the GUI is component-based and scalable. In 
addition, the GUI can be easily integrated to any other Qt based GUI. The architecture 
of the GUI presented in Figure 6.10 includes three types of GUI components. On the 
lowest level resides PositionerBaseGUI, a base class for a single positioner. The 
class  itself  is  able  to  describe  a  positioner  which  does  not  include  a  sensor.  The  
positioners with a sensor are described by ClosedLoopGUI class which is specialized 
from PositionerBaseGUI.  In order to enable easy creation of new types of 
positioner GUI classes, virtual functions are used in implementation of the 
PositionerBaseGUI. DeviceGUI describes the GUI on device-level, each 
Device is described by individual DeviceGUI which is connected to signals and slots 
of the respective Device.  

 
Figure 6.10 Architecture of MiCo GUI 

The  ownership  of  the  GUI  components  is  assigned  to  Device. However due to the 
requirements of Qt framework, the GUI components must be created in the main thread. 
This requirement is ensured by passing the main thread through all participating classes 
in their constructors as a QObject. For example, declaration DeviceManager 
constructor is DeviceManager::DeviceManager(QObject* parent =0). 
 MiCo allows easy implementation of custom user interfaces through 
DeviceCommander class. Similarly, the mechanism can be employed in integration 
of ViCo and MiCo. 

6.2. DAQCo 

The Control of Data Acquisition System (DAQCo) is designed to gather data from 
several sensors attached into DAQS. The used sensors and respective physical quantities 
may vary depending on the used configuration. Also several different sensor types may 
be  used  to  measure  same  phenomenon.  Therefore  DAQCo  must  provide  the  operator  
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with the possibility of configuring each sensor individually. Some sensors require 
relatively complex conversions between the given output and the physical quantity of 
interest. The operator should be able to create custom polynomial scales which can be 
used to convert acquired electrical signals into the measured physical quantity. The 
main purpose of the DAQCo is to acquire, store and visualize data. The use cases 
indicating the required functionality are presented in Figure 6.11.   
 

 
Figure 6.11 Core functionality of DAQCo 

6.2.1. Callback Functions and Data Exchange 

The DAQ functionality  of  DAQCo is  based  on  two classes,  namely  UDaqCore and 
UDaqBuffer, presented in Figure 5.15. UDaqCore implements the functionality 
related to data acquitision, whereas UDaqBuffer is responsible for buffering the 
acquired data. The UDaqCore data acquisition is based on callback functions provided 
by NI-DAQmx API. The run-time execution of the data buffer UDaqBuffer and the 
core class UDaqCore is presented in Figure 6.12. 
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Figure 6.12 Run-time execution of UDaqBuffer and UDaqCore 

After the initialization, UDaqCore and UDaqBuffer sleep waiting for external 
signaling. UDaqCore awakes upon callback function called from NI-DAQmx API. The 
callback function converts the received data and forwards it to the data buffer, which 
awakes when incoming data is detected. UDaqBuffer stores  the  latest  values  of  the  
received data and informs other instances by emitting dataReady and 
dataChunkReady signals.  The conversion performed at UDaqCore aims to 
provide the data in more convenient form to the UDaqBuffer; NI-DAQmx API 
callbacks provide the data in static C array, which is inconvenient to use with Qt 
signals. UDaqCore creates a QVector container and copies the received data chunk 
into the container object. The container is wrapped into a QSharedPointer which 
deletes the data after all references to it have been deleted. [26] 
 The dataChunkReady signal transfers a reference to the created 
QSharedPointer,  thus  allowing  receivers  of  the  signal  to  access  the  entire  data  
chunk. When all instances have stopped using the data chunk, it is automatically 
deleted. Figure 6.13 illustrates the usage of QSharedPointer together with the 
dataChunkReady signal. 
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Figure 6.13 Usage of QSharedPointer in communication between UDaqCore, UDaqBuffer and 

UDaqFileWriter 

If the thread receiving the dataChunkReady signal is busy, the signal stores the 
QSharedPointer in  the  event  loop  of  the  thread.  Event  loop  acts  as  FIFO  buffer,  
thus guaranteeing that the receiving thread gets the data chunks in same order as they 
were sent [26]. The presented design for forwarding large data chunks from the data 
buffer was implemented due to mere curiosity of the developer. The design could as 
well  be  replaced  with  traditional  ring  buffer  and  set  of  synchronization  objects  to  
guarantee proper access rights for all participating instances. 
 The other method accessing the acquired data through the data buffer is 
dataReady signal. The signal does not pass any parameters to receiver and is purely 
informative. The instances connected to the dataReady signal must call the 
getLatestData function the access the stored data. The reading and writing 
functions of the data buffer are protected with mutual exclusion to prevent simultaneous 
reading and writing. 

6.2.2. Graphical User Interface 

GUI  of  DAQCo  consists  of  four  separate  GUI  components.  Two  of  the  components,  
UDaqMainWidget and UDaqFileWidget are standard Qt GUI components, thus 
they inherit Qt’s user interface base class QWidget. UDaqMainWidget is the base of 
the DAQCo GUI, it contains only menus and does not include any functionality visible 
to operator. UDaqFileWidget implements a GUI for storing the acquired data into a 
file.   The  third  component  UDaqConfigureDialog is a configuration dialog and 
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inherits QDialog. UDaqConfigureDialog  allows  the  user  to  configure  each  
channel  of  the  DAQ  unit,  to  assign  different  conversions  between  units  and  to  alter  
active channel configuration. The fourth component UDaqPlotter is  a  data  plotter  
which visualizes the data received from the data buffer. UDaqPlotter is based on 
Qwt – a library specifically designed for scientific plotters [48]. The architecture of the 
GUI is presented in Figure 6.14.  

 
Figure 6.14 Architecture of DAQCo GUI 

The GUI is a composite of several objects where UDaqMainWidget has the 
ownership of all participating instances. The structure enables easy integration of the 
GUI with other Qt based GUI.  

6.3. Integration of MiCo and DAQCo With An Input Device 

This section presents an example application integrating MiCo and DAQCo with a 
haptic device. The libraries for the haptic device have been developed in-house and the 
design is in line with CoSMic-Frame [29]. The high-level architecture of the application 
demonstrating the integration of DAQCo and MiCo is presented in Figure 6.15.  
  

 
Figure 6.15 High-level architecture of the developed application 

The application developed for this demonstration includes three classes. 
TestApplication is the core of the application and responsible for connecting all 
the required instances to each other. Two additional classes 
TestAppDAQCoConverter and TestAppMiCoConverter are used to enable 
communication between the HapticCore, UDaqBuffer and DeviceCommander. 
TestAppMiCoConverter is responsible for assigning the output values of the 

HapticCore API

Input buffer Output buffer

DAQCo MiCo

Force sensor data Velocities
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HapticOutputBuffer to each positioner of the 3D assembly. Respectively, 
TestAppDAQCoConverter assigns the sensor readout values to different axis of the 
haptic device. The architecture is presented more in details in Figure 6.16. 

 
Figure 6.16 Architecture of the developed application 

As presented in Figure 6.16 the TestApplication is not required in the run-time 
communication. The two additional instances TestAppDAQCoConverter and 
TestAppMiCoConverter are proposed to run in same thread with the sender or 
receiver of the data to prevent creation of unnecessary threads. 

6.4. Current Implementation 

The current implementation of CoSMic consists of stand-alone applications of MiCo 
and DAQCo. Both of the applications have successfully been used in characterization of 
paper fibres [16]. Figure 6.17 presents the GUI of MiCo, which customized to control 
two 3D assemblies, 2D assembly, rotary actuator and two end effectors. The GUI is 
constructed from several GUI components as proposed in Section 6.1.4. 
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Figure 6.17 User interface of MiCo 

An example  of  a  MiCo GUI component,  presenting  control  of  single  actuator  with  an  
in-built sensor is presented in Figure 6.18. The GUI component provides functionality 
required to move the actuator. In addition, the operator may exclude the actuator from 
collision detection and decide whether the actuator moves synchronously with another 
actuator. The functionality of the MiCo GUI component is described more in details in 
Appendix E. 

 
Figure 6.18 MiCo GUI component for closed-loop controlled SmarAct micropositioners 

In its current state, MiCo is capable of producing the functionality required in MCM 
and SCM. MiCo provides automatic detection of different actuator types. The 
functionality provided to the operator is selected according to the detected actuator type. 
In addition the GUI can be configured through a simple configuration file, which 
defines structure of the GUI. 

In addition to in-built  GUI, MiCo provides an API allowing the developer’s to 
integrate the functionality of MiCo into other application. The developed API is thread-
safe and complies with the CoSMic-Frame described in 5.3. MiCo API has been 
demonstrated by integrating MiCo API with an in-house developed API for haptic 
device.  
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 The current implementation of DAQCo provides the operator with a GUI 
capable of handling multiple DAQ units and multiple sensors simultaneously. The GUI 
implements the functionality, which is required to visualize and store data received from 
different sensors through DAQ unit. An overview of DAQCo GUI is presented in 
Figure 6.19, more detailed description of the GUI is available in Appendix F. 
 

 
Figure 6.19 DAQCo user interface 

Like MiCo, DAQCo also provides an API including all the functions that are provided 
through the GUI. 



7. CONCLUSIONS AND FUTURE WORK 

This chapter includes the conclusions of this thesis and future work for development of 
Control Software for Microrobotic Platform. 

7.1. Conclusions 

This  thesis  presented  CoSMic,  a  control  software  designed  for  the  needs  of  
Microrobotic Platform (MP) used in the characterization of paper fibres. Current 
implementation of CoSMic, including two separate applications, provides GUI for two 
subsystems  of  the  MP.  The  first  application,  Control  of  Micromanipulation  System  
(MiCo), allows the operator to manipulate the characterized paper fibres. The latter 
application known as Control of Data Acquisition System (DAQCo), is responsible for 
acquiring data from different sensors attached to MP. In addition, DAQCo is capable of 
storing and visualizing the acquired data. 
 The presented work concentrates on several issues of application development 
for MP. The most important aspects cover cross-platform support, scalability and 
reusability of the produced program code. Cross-platform support is reached in several 
parts of the control software through careful selection of the used third party program 
libraries. Furthermore, Qt – a cross-platform application development framework is 
used to enhance portability of the developed program code. Scalability is supported 
through the distributed architecture of CoSMic. A design pattern that decouples the 
network technology from the actual program code is implemented to guarantee 
reusability of the developed core classes. The design and architecture of CoSMic 
provides a solid basis for application development on MP using well-established design 
principles. 

However, several proposals for improvements were found during the course of 
this thesis. Based on the feedback of the operators, need of an additional feature for 
MiCo was identified. A configurable hardware initialization sequence for MiCo is 
proposed. Purpose of the sequence is to move all MiS related hardware to predefined 
starting position, thus enhancing the repeatability of the characterization procedure. In 
addition, the initialization sequence should include the possibility to calibrate of each 
actuator in given order.   
 SCU3DControl API used in MiCo to control MiS hardware was found to lack 
the possibility of moving several actuators in a synchronized manner. Therefore, the 
current  version  of  CoSMic  omits  synchronization  and  executes  the  movement  related  
API function calls in series. This approach does not guarantee synchronous behavior. If 
the API does not return sufficiently fast from previous function call, the behavior of the 
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actuators is unpredictable. In order to reach genuinely synchronized behavior, changes 
in the implementation of SCU3DControl API are required.  Another issue related to 
SCU3DControl API is its extendibility. Extensive usage of C++ #define directive 
within the API may result in tedious changes of the developed program code, when a 
new version of the API is released. The problem could be avoided through 
implementation of an additional layer of abstraction between the SCU3DControl API 
and the program code. 
 Selection of Qt framework as the base of CoSMic has proven to be effective 
solution from the developer’s point of view. The Qt signal-slot mechanism and the 
cross-platform multithread support have greatly reduced the time required in the 
implementation of CoSMic. In addition, cross-thread communication is less prone to 
errors  as  Qt  signal-slot  mechanism  provides  a  thread-safe  method  for  cross-thread  
communication. Furthermore, Qt’s object-oriented approach for GUI development 
enhances reusability of developed GUI components. Especially in the implementation 
of MiCo, the component based GUI has been an effective and easily configurable 
solution. Operators using the MiCo are required to make only minor modifications to 
MiCo configuration file when the hardware configuration is altered. 

Section 5.3 presented CoSMic-Frame simple framework designed to be used in 
application development for Microrobotic Platform. One of the most significant 
deficiencies of the framework is lack of guidelines for exception handling. In Qt-based 
applications exception handling is a topic of particularly high importance, as Qt does 
not fully support C++ standard exceptions. Hence creation of guidelines for exception 
handling within CoSMic-Frame should be concerned as a high priority task. 

7.2. Future Work 

Continuation of this thesis aims to fulfill the requirements of a fully automated paper 
fibre characterization process. However, in order to reach the functionality required in 
ACM, each subsystems of CoSMic requires additional features. 
 In MiCo, the development of collision prevention for MiS hardware has been 
started and the fundamental concept together with the required CD library has been 
selected. Implementation of the collision prevention will continue the multithreaded 
approach of CoSMic. The development of collision prevention should be directed 
towards path-planning, which is an essential feature for fully automated fibre 
characterization. A thorough investigation of suitable path-planning libraries should be 
conducted in order to reach optimal solution. However, implementation of path-
planning does not have high priority; the collision prevention alone has a large impact 
on the usability of CoSMic. After successful implementation of collision prevention, 
integration of DAQCo and MiCo should take place. Implementation of collision 
prevention prior to integration is proposed to avoid unnecessary modification of the 
GUI; collision prevention is likely to result in large changes of the MiCo GUI, as the 
visualization of the VR may be desired. An additional MiCo related task is the 
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implementation of the aforementioned hardware initialization sequence. This task is has 
high priority as the impact to usability is obvious. 
 Visualization and image based measurements are important issues for usability 
as well as for automatic fibre characterization. The ongoing implementation of ViCo 
will provide a solid base for development of the required machine vision (MV) 
algorithms. The developed MV algorithms should be able to recognize single fibre, to 
measure its length and to provide MiCo with position data and to enable automatic 
grasping of the characterized fibre. Integration of the FiberVision and FiberStation 
network nodes is required in order to enable communication between ViCo and MiCo. 
The communication will be based on the CoSMic-Frame communication presented in 
5.3.2. Communication between the ViCo and MiCo is thought to have high priority, as 
it may reveal the possible deficiencies of the proposed network communication. 
Development  of  MV  algorithms  may  run  parallel  with  all  other  activities,  as  it  is  
independent from CoSMic. Thus algorithm development may be assigned to another 
party in order to reduce workload of the development team. 

The future vision of MP includes extension of the existing hardware with 
different kinds of actuators. Some of these actuators may require real-time control in 
order to reach reliable behaviour. This aspect promotes implementation of the real-time 
capable extension presented in 5.2.  

This section presented the most significant features required to automate the 
paper  fibre  characterization  with  MP.  The  development  team  is  in  the  belief  that  the  
goal of fully automated paper characterization can be reached within a year.  
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APPENDIX A QT SIGNAL/SLOT MECHANISM 

 
Program  A.1 presents usage of Qt signal/slot mechanism in form of an example. Class 
MySender inheriting QObject represents  an  object  capable  of  emitting  signal  
mySignal. The signal is emitted upon calling member function shoot, which is 
declared as a slot. It is important to understand that slots are member functions; 
behavior of a slot differs from ordinary member function only when connected to a 
signal using QObject::connect. MyReceiver class represents a class capable of 
connecting to a signal by the slot mySlot.  
 Fundamentally, the most important part of the example presented in , resides in 
the main function. After creating an object from both of the presented classes, 
mySignal and mySlot are connected. The QObject:connect is provided with 
pointers  to  both  of  the  objects  and  with  names  of  the  respective  signal  and  slot.  The  
mechanism indicates that the participating objects do not require information about 
each other. After connecting the two objects together with the signal-slot mechanism, 
the program does a normal function call to MySender::shoot, which commands the 
MySender object  to  emit  the  signal  mySignal. Based on the meta-object data, the 
MyReceiver::myReceiver slot is called in response to the emitted signal.  
 



Qt Signal/Slot Mechanism  

 
Program  A.1 Usage of Qt signal/slot mechanism 

  

class MySender: public QObject { 
 // required macro 
 Q_OBJECT 
 public: 
  MySender(); 
 public slots: 
  void shoot(); 
 signals: 
  // no implementation! 
  void mySignal(); 
}; 
 

class MyReceiver: public QObject { 
 // required macro 
 Q_OBJECT 
 public: 
  MyReceiver(); 
 public slots: 
  // must have implementation! 
  void mySlot(); 
}; 
 

void MySender::shoot() { 
 emit mySignal(); 
} 
 
int main() { 
 MySender sender; 
 MyReceiver receiver; 
 connect(&sender, SIGNAL(mySignal()),  
  &receiver, SLOT(myReceiver))); 
 sender.shoot(); 
 return EXIT_SUCCESS; 
} 



Qt Signal/Slot Mechanism  

Compatibility of QThread and Xenomai was tested with a small program presented in 
Program  A.2. 
 

 

Program  A.2 Test program running QThread under Xenomai 

 

class XenomaiTestThread: public QThread { 
 RT_TASK rt_this_task; 
protected: 
 void run(); 
}; 
 
void XenomaiTestThread::run() { 
 mlockall(MCL_CURRENT | MCL_FUTURE); 
 rt_task_shadow(&rt_this_task, "Task 1", 10, 0); 
 rt_print_init(4096, "Task 1"); 
} 
 
int main() { 
 XenomaiTestThread testTread; 
 testThread.start(); 
 testThread.wait(); 
 testThread.quit(); 
 return 0; 
} 



 

APPENDIX B SCU3DCONTROL API 

 
Program   B.1  presents  a  simple  example  program  describing  acquisition  of  the  
positioner type with the SA_GetSensorType_A function. Prior to sensor type query, 
the initialization function SA_InitDevices must be called. In addition, the 
asynchronous communication mode requires creation of an event object which is 
activated in case of data reception.  
The event object is registered to the specific device using 
SA_SetReceiveNotification, a function which is able to inform an application 
when a data packet has been received from the hardware. After the described initial 
steps are taken, the SA_GetSensorType_A can be called. The hardware performs 
the actual query, stores the acquired data into the data buffer of the device and uses the 
event handle to inform the application program. The application retrieves the packet 
from the queue using the SA_ReceiveNextPacket_A function. 
 

 
Program  B.1 Asynchronous retrieval of positioner sensor type 

#include ”SCU3DControl.h” 
#include <windows.h> 
 
int main() { 
  
 unsigned int channelIndex = 0; 
 unsigned int deviceIndex = 0; 
 SA_PACKET packet; 
 HANDLE handle; 
 handle = CreateEvent(NULL, false, false, NULL); 
 
 SA_InitDevices(SA_ASYNCHRONOUS_COMMUNICATION); 
 SA_MovePositionAbsolute_A(0, 0, 100, 0); 
 WaitForSingleObject(handle, INFINITE); 
 SA_ReceiveNextPacket_A(deviceIndex, channelIndex, &packet);      
 return EXIT_SUCCESS; 
} 



APPENDIX C HIGH-LEVEL USE CASES 

The  following  describes  the  high-level  use  cases  of  MiCo  and  DAQCo.  Table   C.1  
presents MiCo related use cases Move Actuator, Record Trajectory and Run Stored 
Trajectory. The functionality related to these use cases is presented in Section 6.1. The 
GUI component related to herein presented use cases of MiCo is described in Appendix 
E. 
 

Table  C.1 Description of MiCo high-level use cases 

Use case name MiCo1: Move Closed-Loop Actuator 
Performer Operator 
Preconditions MiS hardware is turned on 

MiCo is initialized 
Description Operator enters desired coordinates into input field  MiCoCL.8.. Operator presses 

push button MiCoCL.6, MiCoCL.7 or MiCoCL.8 depending on which type of 
movement is desired. MiCo moves the actuator to selected position 

Exceptions 1. MiCo cannot communicate with SmarAct interface module. Operator is 
informed with an error message. MiCo is closed and reserved memory is 
released. 

2. An error occurs at the actuator during the movement. Operator informed 
with an error message, which describing the error. 

Result Actuator moved to given position 
Use case name MiCo2: Record Trajectory 
Preconditions See use case MiCo1 
Performer Operator 
Description Operator activated trajectory recording mode from MiCo GUI and moves the 

actuators as described in use case MiCo2. MiCo records each movement into a file 
and wait for next movement. Operator finalizes the recording process by 
deactivating trajectory recording mode from the GUI. 

Exceptions See use case MiCo1 
 
Error in generating or opening file for the created trajectory. Operator informed 
with error message. Trajectory recording mode deactivated. 

Result A new trajectory recorded into a file 
Name MiCo3: Run Stored Trajectory 
Performer Operator 
Preconditions See use case MiCo1 

Trajectory with legal format is available 
Description Operator loads predefined trajectory into MiCo through  MiCo GUI. MiCo tests 

legality of the trajectory and re-executes it.  
Exceptions See use case MiCo1 

 
Trajectory format is illegal or cannot be opened. Operator informed with error 
message.  

Result Actuators are moved to target positions 
Use case name MiCo4: Teleoperation 
Performer Operator 
Preconditions See use case MiCo1 

Teleoperator  / telemanipulator is initialized 



High-level Use Cases  

Description Operator assigns a target actuator for the telemanipulator. In addition, parameters 
describing the relation between the movements of the telemanipulator and the 
actuator are given. Operator moves the telemanipulator (e.g. joystick) and the 
assigned actuator moves respectively. 

Exceptions See use case MiCo1 
 
Telemanipulator fails to communicate with MiCo. Operator informed with error 
message. Actuators assigned to the telemanipulator are stopped. 

Result The actuator is moved to position, which is relative to position of the 
telemanipulator. 

Use case name MiCo5: Test Collisions 
Performer MiCo / Administrator 
Preconditions Collision detection data loaded into MiCo by administrator 

Operator has performed the steps described in use case MiCo1 
Description MiCo forwards the parameters received through the GUI to collision detection 

system, which performs the given movements in virtual reality.  
Exceptions None 
Result If no collisions where found, MiCo moves the actuator to given position as 

described in use case MiCo1. Otherwise operator receives an error message due to 
illegal movement. 

 
Table  C.2 presents the high-level use cases related of DAQCo, which have been used 
as a basis for the design of DAQCo. The design of DAQCo is presented in Section 6.2 
and the GUI components related to DAQCo use cases are described in Appendix F. 
 

Table  C.2 Description of DAQCo high-level use cases 

Use case name DAQCo1: Visualize Data and DAQCo3: Acquire Data 
Performer DAQCo 
Preconditions DAQS hardware initialized with required sensors 

DAQCo initialized 
Description DAQCo starts acquiring data from DAQ unit immediately after initialization. A/D 

converted signals are stored in a data buffer.  
The signals stored in the data buffer are automatically visualized in DAQPlot.1. 

Exceptions DAQCo fails to retrieve data from DAQ unit. Operator is informed with error 
message. DAQCo is closed and reserved memory is released. 

Result A/D converted signals are continuously stored into data buffer 
Use case name DAQCo2: Store data 
Preconditions See use case DAQCo1 
Performer Operator 
Description Operator activates data storing by entering desired file name (DAQFile.1.) and 

directory (DAQFile.4.). The file name can be appended with a timestamp by 
selecting “Append with time” option from DAQFile.2. Operator starts data storing 
by pressing DAQFile.5.  Data storing is stopped by pressing DAQFile.6. 

Exceptions DAQCo fails to write to given file. Operator is informed with error message. 
 
See use case DAQCo1 

Result Incoming signals are stored in the given file 



  

APPENDIX D ABSTRACT BASE CLASS FOR 
COSMIC APPLICATIONS 

Implementation of abstract base class for CoSMic application is presented in Program  
D.1. The declaration shows that only few functions are implemented on the base class 
level. Thus only minimal restrictions for the developer are made. The developer may 
change the implementation of the event loop by writing replacement for the virtual 
function customEventLoop. 
 

 
Program  D.1 Implementation of abstract CosmicApplicationBase class  

 

class CosmicApplicationBase: public QThread { 
Q_OBJECT 
public: 
 CosmicApplicationBase(QObject *guiParent=0); 
 virtual void initialize()=0; 
 virtual QWidget *getGui() { return mGui; } 
 
protected: 
 virtual void run() { 
  if (!customEvenLoop() ) { 
   exec(); 
  } 
 } 
  
private: 
 virtual bool customEvenLoop() { return false; } 
 QWidget *mGui; 
 CosmicApplicationInvoker *mInvoker; 
}; 



APPENDIX E MICO USER INTERFACE 

This appendix describes functionality of MiCo GUI components known as 
PositionerBaseGUI and ClosedLoopGUI. The first describes a base class 
capable of providing the functionality required to control an actuator, which does not 
contain an integrated position sensor. PositionerBaseGUI inheriting Qt user 
interface base class QWidget, is presented in Figure  E.1 

 
Figure  E.1 MiCo GUI component PositionerBaseGUI 

PositionerBaseGUI contains  several  input  and  output  fields,  which  are  
implemented as Qt GUI components. Description of each the fields are given in Table 
E.1.  

Table E.1 Input and output fields of PositionerBaseGUI 

Identifier Category Description 
MiCoOL.1. Output 

QTextLabel 
Status indicator for MiCo actuators. Three possible states: 
OK…………………………….…....  
BUSY……………………….….….. 
ERROR……………………………. 

MiCoOL.2. Output   
QTextLabel 

Name label for actuator. Can be changed through configuration file 

MiCoOL.3. Input 
QPushButton 
 

Moves actuator forwards relatively to current position. Moved 
distance in determined by fields MiCoOL.5., MiCoOL.6. and 
MiCoOL.7. 

MiCoOL.4. Input 
QPushButton 

Moves actuator backwards relatively to current position. Moved 
distance in determined by fields MiCoOL.5., MiCoOL.6. and 
MiCoOL.7. 

MiCoOL.5. Input 
QSpinBox 

Number of steps performed while moving the actuator. Valid range 
0-30000 steps 
Note: See [20]  

MiCoOL.6. Input 
QSpinBox 

Actuator’s control frequency that the steps described in MiCoOL.5. 
are performed with. Valid range 1-18500 Hertz 

MiCoOL.7. Input 
QDoubleSpin
Box 

Actuator’s amplitude that the steps described in MiCoOL.5. are 
performed with. Valid range 15-100 Volts 

MiCoOL.1. MiCoOL.2.

MiCoOL.3.

MiCoOL.4.

MiCoOL.5. MiCoOL.6. MiCoOL.7.
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Fields MiCoOL.1 and MiCoOL.2 are output fields, which provide information 
regarding the actuator’s state and name. The remaining field, MiCoOL.3 – MiCoOL.7 
are input fields. Each input field can be invoked by the operator, response of the GUI 
component is described in Table E.1. More detailed information regarding each Qt GUI 
component type is available in [26]. 

PositionerBaseGUI can be specialized to extend functionality of the 
provided GUI component. ClosedLoopGUI,  presented  in  Figure   E.2,  is  used  as  an  
example of specializing PositionerBaseGUI.   ClosedLoopGUI extends the 
functionality  of  the  base  class  with  additional  features,  which  are  required  to  control  
SmarAct actuators with in-built position sensor.  
 

 
Figure  E.2MiCo GUI component ClosedLoopGUI 

The input and output fields of ClosedLoopGUI are presented in Table  E.2. Fields 
MiCoCL.1 – MiCoCL.5 are output fields that work as indicators. These fields are 
responsible for providing the operator with information such as actuator’s status, current 
position and name. Fields MiCoCL.6 – MiCoCL.13 are input fields. Purpose and 
description of each field is described in Table  E.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MiCoCL.1. MiCoCL.2. MiCoCL.3.

MiCoCL.4. MiCoCL.5.

MiCoCL.6.

MiCoCL.8.

MiCoCL.7.

MiCoCL.9.

MiCoCL.10. MiCoCL.11.

MiCoCL.12.

MiCoCL.13.
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Table  E.2 Input and output fields of ClosedLoopGUI 

Identifier Category Description 
MiCoCL.1. Output 

QTextLabel 
Status indicator for MiCo actuators. Three possible states: 
OK…………………………….…....  
BUSY……………………….….….. 
ERROR……………………………. 

MiCoCL.2. Output 
QTextLabel 

Collision detection indicator. Two possible states: 

Collision detection enabled…….…. 

Collision detection disabled………   
MiCoCL.3. Output 

QTextLabel 
Synchronous movement indicator. Two possible states: 

Synchronous movement enabled...... 

Synchronous movement disabled…. 
MiCoCL.4. Output   

QTextLabel 
Name label for actuator. Can be changed through configuration file 

MiCoCL.5. Output 
QLineEdit 

Displays actuator’s current position in micrometers 

MiCoCL.6. Input 
QPushButton 
 

Moves actuator forwards relatively to current position. Moved 
distance in determined by field MiCoCL.8. The button’s text can be 
replaced through configuration file. In addition, a shortcut key 
indicated within brackets can be changed through the configuration 
file.  

MiCoCL.7. Input 
QPushButton 

Moves actuator backwards relatively to current position 

MiCoCL.8. Input 
QDoubleSpin
Box 

Describes the moved distance in micrometers. The type of 
movement is determined by pressing MiCoCL.7., MiCoCL.8., or 
MiCoCL.9. 

MiCoCL.9. Input 
QPushButton 

Moves actuator to absolute position described in field MiCoCL.8.  

MiCoCL.10. Input 
QCheckBox 

Determines whether movements are performed a one single 
movement or a series of smaller steps. The size of maximum step is 
given through field MiCoCL.11.  
Note: This feature is currently disabled 

MiCoCL.11. Input 
QSpinBox 

Describes maximum step size for sequential movement, which can 
be enabled with field MiCoCL.10 
Note: This feature is currently disabled 

MiCoCL.12. Input 
QPushButton 

Enables and disables synchronous movement. The state of this 
option is indicated through field MiCoCL.3. 

MiCoCL.13. Input 
QPushButton 

Enables and disables usage of collision detection for the particular 
actuator. The state of this option is indicated through field 
MiCoCL.4. 



APPENDIX F           DAQCO USER INTERFACE 

The graphical user interface of DAQCo consists of three GUI components implemented 
in UDaqMainWidget, UDaqPlotter and UDaqFileWidget. 
UDaqMainWidget is a composite object hosting the two other objects. 
UDaqMainWidget itself provides only minimum functionality through three menus 
called File, Acquisition and View, which are shown in Figure  F.1. The first menu is 
provides the functionality required to stop DAQCo, the second opens configuration 
dialog, and the third shows or hides the UDaqFileWidget. 
 

 
Figure  F.1 DAQCo user interface 

UDaqPlotter is responsible for providing the functionality required in visualization 
of the acquired data. UDaqPlotter provides few features that allow customizing of 
the visualized data. Table  F.1 presents the functionality provided through 
UDaqPlotter and  describes  types  of  the  used  Qt  GUI  components.  More  detailed  
information regarding the Qt GUI components is available in [26]. 
 
 
 

UDAQPlotter

DAQPlot.1.

UDAQFileWidget

DAQPlot.2.

DAQPlot.4.

DAQFile.1.

DAQFile.2.

DAQFile.3.

DAQFile.4.

DAQFile.6.DAQFile.5.

DAQPlot.3.
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Table  F.1 Functionality of UDaqPlotter 

DAQPlot.1. Output   
QwtWidget 

Input signals Visualization of acquired signals 

DAQPlot.2. Input 
QwtLabel 

N/A List of acquired signals. Operator may show/hide 
signals shown in DAQPlot.1 

DAQPlot.3. Input 
QDoubleSpinBox: 
y-min 
y-max 
y-interval. 
QPushButton: 
rescale 

Scales Scaling options for DAQPlot.1 y-axis. 
y-min: y-axis minimum value 
y-max: y-axis maximum value 
y-interval: interval between y-axis major ticks 
Rescale: applies the modification made to 
DAQPlot.3. fields 

DAQPlot.4. Input 
QPushButton 

Clear plotter Clears the history data of DAQPlot.1. 

 
UDaqFileWidget is responsible for providing a GUI component, which allows 
storing of the acquired data into a file. The functionality is provided through several text 
input fields, which determine filename, directory and possible usage of timestamp. 
UDaqFileWidget features are presented more in details in Table  F.2. 
 

Table  F.2 Functionality of UDaqFileWidget 

DAQFile.1. Input 
QLineEdit 

Base name Base for naming the recorded data.  

DAQFile.2. Input 
QRadioButton 

Save options Time stamp option for file name entered to field 
DAQFile.1. Options are: 
Append with time, which appends the file name with a 
time stamp containing date, hour, minutes and second. 
Don’t append, which maintains to original file name 

DAQFile.3. Output 
QLineEdit 

Full file 
name 

Shows whole file name, including format of the 
possible time stamp 

DAQFile.4. Input 
QLineEdit 

Directory Directory where the recorded data will be stored with 
file name indicated by field DAQFile.3. 

DAQFile.5. Input 
QPushButton 

Start 
Recording 

Starts recording incoming signals to file indicated by 
field DAQFile.3. located in directory of DAQFile.4. 
 
Note1: Button is disabled when pressed. 
Note2: Pressing enables button DAQFile.6. 
Note3: If a file indicated by the fields DAQFile.3. and 
DAQFile.4. already exists, the overwriting is 
confirmed with a dialog. 

DAQFile.6. Input 
QPushButton 

Stop 
Recording 

Stops recording incoming signals and closes the file, 
where the data has been stored 
 
Note1: Button is disabled when pressed. 
Note2: Successful closing of measurement file enables 
button DAQFile.5. 
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DAQCo user interface includes an additional dialog called UDaqConfigureDialog, 
which allows the operator to alter the channel configuration of the DAQ units attached 
to DAQS. Illustration of UDaqConfigureDialog is presented in Figure  F.2. 
 

 
Figure  F.2 Configuration dialog UDaqConfigureDialog  

UDaqConfigureDialog dialog allows operators to configure each channel of a 
DAQ unit separately. Operator may assign each channel with different output range and 
visualization colour. Channel can be removed from visualization and data storing by 
deactiving them. In addition, each channel may have its own custom conversion scale, 
which converts the input signal into user defined unit. The custom conversion scales are 
given  as  polynomials.  The  detailed  functionality  of  UDaqConfigureDialog is 
presented in Table  F.3.  
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Table  F.3 Functionality of UDaqConfigureDialog 

DAQSl.1. Input 
QDoubleSpinBox 

Sampling 
frequenc
y 

Data acquisition sampling frequency in Hertz. Valid 
range 10-15000 Hertz. 

DAQSl.2. Input 
QDoubleSpinBox 

Plotter 
refresh 
rate 

Refresh rate for UDaqPlotter in Hertz. Valid range 
1-300 Hertz. 

DAQSl.3. Output 
QTableWidget 

Channel 
settings 

Presents lists of available channels together with user 
defined parameters. 
Column 1: Physical address  
Column 2: Assigned name 
Column 3: Output minimum value in Volts 
Column 4: Output maximum value in Volts 
Column 5: Channel active in data acquisition 
Column 6: Name of assigned custom conversion scale 
Column 7: Assigned visualization colour 
 
Note: Prior to editing fields DAQSl.4-DAQSl.15, the 
channel must be selected by pressing the respective 
row of DAQSl.3. 

DAQSl.4. Output 
QLineEdit 

Selected 
channel 

Indicates selected channel’s physical address 

DAQSl.5. Input 
QLineEdit 

Assigned 
name 

Assigns a name for selected channel 

DAQSl.6. Output 
QLineEdit 

Assigned 
colour 

Indicates selected channel’s visualization colour 

DAQSl.7. Input 
QComboBox 

N/a Assigns a new visualization colour for selected channel 

DAQSl.8. Input 
QDoubleSpinBox 

Output 
min 

Assigns a new minimum output value for selected 
channel.  Valid range -10-10 Volts 

DAQSl.9. Input 
QDoubleSpinBox 

Output 
max 

Assigns a new maximum output value for selected 
channel.  Valid range -10-10 Volts 

DAQSl.10. Output 
QLineEdit 

Custom 
scale 

Active channel’s custom conversion scale 

DAQSl.11 Input 
QComboBox 

N/A Assigns a new custom conversion scale for selected 
channel 

DAQSl.12 Input 
QPushButton 

View Displays the structure of selected custom conversion 
scale 

DAQSl.13 Input 
QPushButton 

Edit… Opens Custom Scale Editor dialog 

DAQS1.14 Input 
QCheckBox 

Task 
active 

Activates or deactivates selected channel 

DAQSl.15 Input 
QPushButton 

Apply Applies the modifications made to selected channel 

DAQSl.16 Input 
QPushButton 

OK Applies the modifications made to selected channel and 
closes the dialog 

DAQSl.17 Input 
QPushButton 

Cancel Cancels the modifications made to selected channel 
and closes the dialog 

 


