

MATHIAS VON ESSEN
CONTROL SOFTWARE FOR MICROROBOTIC PLATFORM
Master of Science Thesis

Examiners: Prof. Seppo Kuikka and
Prof. Pasi Kallio
Examiners and topic approved in the
Faculty of Automation, Mechanical
and Materials Engineering Council
meeting on 9th of December 2009

 II

ABSTRACT
Tampere University of Technology
Degree Program in Automation
Essen, Mathias von: Control Software for Microrobotic Platform
Master of Science thesis, 75 pages, 14 appendix pages
May 2010
Major: Automation and Information Networks
Examiners: professor Seppo Kuikka, professor Pasi Kallio
Keywords: Micromanipulation, Microrobotics, Control software

This thesis is part of SMARTFIBRE project. The objective of the project is
development of new functionalization concepts for smart fibre products. SMARTFIBRE
is a collaborative effort divided into several subprojects. In the subproject assigned to
Tampere University of Technology, a microrobotic platform (MP) capable of
characterizing interactions of individual paper fibres is developed to determine the
mechanical key factors effecting quality of paper.
 Hardware of MP consists of three separate subsystems. The core of MP is
Micromanipulation system including several microrobotic actuators. Vision system
which consists of a camera and related optics is used to obtain visual information of an
ongoing characterization procedure. The third subsystem, Data acquisition system,
contains the sensors required to measure desired parameters of the studied interaction.
The operator has to be able to control each subsystem of MP.

This thesis introduces CoSMic, a control software designed for the needs of MP.
The final goal of CoSMic is autonomous characterization of paper fibres with
throughput of several tens of paper fibres per hour. CoSMic is based on distributed
architecture hosting different parts of the software on separate network nodes. The
approach was selected to enhance scalability of the software. In its current state,
CoSMic provides the operator with functionality required to control each of the
subsystems of MP.

 III

TIIVISTELMÄ
Tampereen Teknillinen Yliopisto
Automaatiotekniikan koulutusohjelma
Essen, Mathias von: Mikrorobottijärjestelmän ohjausohjelmisto
Diplomityö, 75 sivua, 14 liitesivua
Toukokuu 2010
Pääaine: Automaatio- ja informaatioverkot
Tarkastajat: professori Seppo Kuikka, professori Pasi Kallio
Avainsanat: mikromanipulaatio, mikrorobotijärjestelmä, ohjausohjelmisto

Tämä diplomityö on tehty osana SMARTFIBRE-projektia, jonka tarkoituksena on
kehittää uusia toiminnallisia paperikuituja älykkäiden paperituotteiden valmistamiseen.
Projektin osapuolina ovat Tampereen teknillisen yliopiston systeemitekniikan laitos,
Åbo Akademin kuitu- ja selluloosateknologian laboratorio, Latvian valtiollinen
puukemian tutkimuslaitos, UPM-Kymmene Oyj, Stora Enso Oyj sekä Metsä-Botnia Oy.
Tampereen teknillisen yliopiston vastuualue projektissa on paperikuitujen välisten
vuorovaikutusten tutkiminen yksittäisten paperikuitujen tasolla paperin mekaanisiin
ominaisuuksiin vaikuttavien tekijöiden määrittämiseksi. Paperikuitujen mekaanisten
ominaisuuksien karakterisointi suoritetaan projektissa kehitetyn
mikrorobottijärjestelmän avulla.

Tampereen teknillisellä yliopistolla kehitetty mikrorobottijärjestelmä
mahdollistaa yksittäisten paperikuitujen manipuloinnin, havainnoinnin sekä
paperikuidun mekaanisten ominaisuuksien karakterisoinnin. Järjestelmä jakautuu
kolmeen alijärjestelmään, joista kullakin on oma vastuualueensa. Paperikuitujen
manipulointi tapahtuu mikromanipulaatiojärjestelmässä, joka mahdollistaa
paperikuitujen manipuloinnin järjestelmään kuuluvien toimilaitteiden avulla.
Paperikuitujen havainnointi tapahtuu järjestelmään liitetyn kamerasta, moottoroidusta
objektiivista sekä valaisujärjestelmästä koostuvan konenäköjärjestelmän avulla.
Havainnoinnin lisäksi konenäköjärjestelmällä voidaan suorittaa kuvaan perustuvia
mittauksia. Mikrorobottijärjestelmään kuuluu myös anturijärjestelmä, joka kerää
mittausinformaatiota karakterisoitavista paperikuiduista.

Tässä diplomityössä suunnitellaan ja toteutetaan mikrorobottijärjestelmän
ohjaamiseen soveltuva ohjelmisto. Ohjausohjelmiston pääasiallinen tarkoitus on
järjestelmään kuuluvien toimilaitteiden ohjaaminen sekä tiedonkeruu järjestelmän
mittalaitteilta. Lopullisena tavoitteena on paperikuitujen karakterisointiprosessin
automatisointi. Täysin automatisoidun mikrorobottijärjestelmän kapasiteetin on
tarkoitus yltää useiden kymmenien paperikuitujen karakterisointiin tunnissa.

Tämä diplomityö esittelee hajautettuun arkkitehtuuriin perustuvan
alustariippumattomuuteen pyrkivän mikrorobottijärjestelmän ohjausohjelmiston.
Ohjausohjelmiston nimeksi on annettu CoSMic, joka on lyhenne sanoista Control
Software for Microrobotic Platform. Vaikka lopullisena tavoitteena onkin kehittää
täysin automatisoitu ohjausjärjestelmä, kehitetään tässä vaiheessa teleoperoinnin

 IV

mahdollistava ohjelmisto, joka tarjoaa graafisen käyttöliittymän jokaiseen
mikrorobottijärjestelmän alijärjestelmään.

Työn selvitysosuudessa käsitellään hajautettuihin järjestelmiin liittyviä yleisiä
hyöty- ja haittanäkökulmia. Hajautuksella voidaan saavuttaa huomattavia etuja
järjestelmän suorituskyvyssä, skaalattavuudessa ja virheensietokyvyssä. Toisaalta
järjestelmän moninaisuus ja hajanaisuus kasvaa. Hajautuksen mukanaan tuomia
ongelmia voidaan vähentää ohjelmiston rakenteen huolellisella suunnittelulla.. Tähän
osuudessa paneudutaan esittelemällä suunnittelumallin käsite. Suunnittelumallilla
tarkoitetaan ohjelmistotekniikassa olio-ohjelmointiin liittyvää tapaa, jolla usein
esiintyvä ongelma voidaan ratkaista. Suunnittelumalleja esiintyy usealla tasolla ja ne
kuvaavat olioiden tai luokkien välisiä vaikutussuhteita ja kommunikaatiota.

Mikrorobottijärjestelmän turvallisuuteen liittyen paneudutaan törmäysten
tunnistamiseen kolmiulotteisessa avaruudessa. Törmäysten tunnistamisen tarkoituksena
on estää mikrorobottijärjestelmän eri osien törmääminen toisiinsa. Tyypillisesti
törmäysten tunnistaminen suoritetaan mallintamalla todellisen laitteiston geometria
virtuaalitodellisuudessa, jossa törmäykset havaitaan mallinnettujen geometrioiden
leikatessa toisensa. Leikkauspisteiden etsiminen vaatii huomattavan määrän
laskentatehoa ja useita erilaisia algoritmeja tarvittavan laskentatehon vähentämiseksi on
saatavilla. Työssä esitellään törmäyksen tunnisteen liittyviä algoritmeja sekä luodaan
katsaus olemassa oleviin avoimen lähdekoodin toteutuksiin.

Edellä mainittujen perustavanlaatuisten konseptien tutkimisen jälkeen esitellään
mikrorobottijärjestelmän laitteisto, lähinnä sen ohjauksen kannalta sekä määritellään
vaatimukset. Laitteiston ohjauksen yhteydessä tutustutaan saatavilla oleviin
ohjelmakirjastoihin ja tutkitaan niiden soveltuvuutta mikrorobottijärjestelmään.
Jokaisen alijärjestelmän ohjaamiseen valitaan oma ohjelmakirjasto, jonka tarkoitus on
tukea koko järjestelmän pitkäaikaista kehittämistä. Lisäksi ohjelmiston kehitykseen
valitaan erillinen ohjelmistokehitysympäristö, jonka tarkoituksena on tukea kehitettävän
ohjausohjelmiston alustariippumattomuutta.

Työn soveltava osa keskittyy suurelta osin ohjausohjelmiston arkkitehtuuriin ja
suunnitteluun. Ohjelmiston arkkitehtuuria suunniteltaessa tutkitaan hajautettuihin
järjestelmiin soveltuvia arkkitehtuuritason suunnittelumalleja. Valittuja
suunnittelumalleja käytetään perustana työssä kehitetylle ohjelmistokehykselle, jonka
tarkoituksena on yhdenmukaistaa mikrorobottijärjestelmään liitettävien ohjelmistojen
kehitysprosessi. Ohjelmiston eri osien välinen kommunikaatio pyritään irrottamaan
erilliseksi osaksi, jotta ohjelmisto ei olisi riippuvainen käytetystä verkkotekniikasta.
Ohjelmiston suunnitteluun liittyvässä osassa keskitytään tarkastelemaan
mikromanipulaatiota ja mittausinformaation tiedonkeruuta ohjaavia ohjelmiston osia.
Molemmat osat toteutetaan monisäikeisinä arkkitehtuurin yhteydessä kuvattuja
suunnittelumalleja noudattaen. Lisäksi esitellään ohjausohjelmiston tämänhetkinen
toteutus ja graafinen käyttöliittymä. Osuuden lopuksi käsitellään ohjausohjelmiston
toteutuksessa havaittuja ongelmia ja kerrotaan ohjelmiston kehittämiseen liittyvistä
tulevaisuudensuunnitelmista.

 V

Työn tuloksena on suunniteltu hajautettu ohjausohjelmisto paperikuitujen
mekaaniseen karakterisointiin tarkoitetulle mikrorobottijärjestelmälle. Ohjelmistosta on
toteutettu kaksi alijärjestelmää, joiden avulla voidaan ohjata mikromanipulaatioon ja
mittausinformaation tiedonkeruuseen liittyvää laitteistoa.

 VI

FOREWORD

This thesis has been made in the Department of Automation Science and Engineering at
Tampere University of Technology (TUT). The work has been funded by the Finnish
Funding Agency for Technology and Innovation (TEKES).

I would like to express my gratitude to Prof. Pasi Kallio who has supported and
encouraged me throughout the thesis. His experience and knowledge has indeed helped
me to accomplish this work. I am grateful to Prof. Seppo Kuikka whose hints and
comments I have found invaluable. I would also like to thank all my colleagues in
Micro- and Nanosystems Research Group – one could not wish for a better working
atmosphere.

I would like to thank my parents for supporting me throughout my studies. I would also
like to thank Evelína for all the inspirational trips we have had. Finally, I would like to
express my deepest gratitude to my fiancée Magdaléna Va ková.

Tampere, June 2010

Mathias von Essen

 VII

CONTENTS
Abstract ... II
Tiivistelmä .. III
Foreword .. VI
Symbols and Abbreviations... IX
1. Introduction... 1

1.1. Scope .. 2
1.2. Outline .. 2

2. Overview of Distributed Control Software for Microrobotic Platform 3
2.1. Introduction to Distributed Systems ... 3
2.2. Software Design Patterns ... 4
2.3. Real-Time Systems .. 6

2.3.1. Scheduling ... 7
2.3.2. Linux in Real-time Systems ... 7

2.4. Collision Detection .. 8
2.4.1. Collision Detection Pipeline ... 8
2.4.2. Collision Detection Implementations .. 12

3. Microrobotic Platform ... 14
3.1. Overview of the Microrobotic Platform ... 14
3.2. Requirements for Control Software ... 16

3.2.1. Requirements of Micromanipulation System 16
3.2.2. Requirements of Vision System ... 17
3.2.3. Requirements of Data Acquisition System.................................... 17
3.2.4. Requirements of Real-Time Controller ... 17

3.3. Related Hardware .. 17
3.3.1. Micromanipulation System .. 18
3.3.2. Vision System .. 19
3.3.3. Data Acquisition System .. 21

3.4. Control Modes ... 22
3.4.1. Manual and Semi-automatic Control Modes 22
3.4.2. Enhanced Manual Control Mode .. 22
3.4.3. Automatic Control Mode .. 23

4. Selection of Implementation Technologies .. 24
4.1. Qt – an Application Development Framework for C++ 24

4.1.1. Signals and Slots .. 25
4.1.2. Threading in Qt .. 25
4.1.3. Qt Integration with Real-time Operating Systems 26

4.2. Application Programming Interface for SmarAct Micropositioners 26
4.2.1. Communication Modes .. 26
4.2.2. Control Methods .. 28

4.3. Application Programming Interfaces for Data Acquisition 29
4.3.1. DAQmx ... 29

 VIII

4.3.2. Data Acquisition in Real-time Linux .. 29
4.3.3. Selection .. 30

4.4. Selection of Collision Detection Library .. 30
4.4.1. CollDet .. 31
4.4.2. Testing of Selected Collision Detection Library 31

4.5. Key Findings ... 33
4.6. Selected Technologies and Design Principles .. 35

5. Architecture .. 36
5.1. Selected Architectural Patterns for Distributed Computing 36

5.1.1. Broker Pattern .. 37
5.1.2. Client Proxy Pattern ... 37
5.1.3. Invoker Pattern ... 38

5.2. Distributed Architecture for Microrobotic Platform 39
5.2.1. Network Communication ... 41
5.2.2. Communication on Network Node Level 43

5.3. CoSMic-Frame .. 46
5.3.1. Structure .. 46
5.3.2. Network Communication ... 47

5.4. Architecture of MiCo... 48
5.5. Architecture of DAQCo ... 50
5.6. Summary ... 51

6. Design and Implementation ... 52
6.1. MiCo ... 52

6.1.1. Overview ... 52
6.1.2. MiCo API .. 55
6.1.3. Communication .. 58
6.1.4. User Interfaces ... 62

6.2. DAQCo ... 62
6.2.1. Callback Functions and Data Exchange .. 63
6.2.2. Graphical User Interface .. 65

6.3. Integration of MiCo and DAQCo With An Input Device 66
6.4. Current Implementation ... 67

7. Conclusions and Future Work ... 70
7.1. Conclusions ... 70
7.2. Future Work .. 71

8. References .. 73

 IX

SYMBOLS AND ABBREVIATIONS

Symbols

ei Sorting Axis End Index
n Number of Bounding Volumes in Collision Detection
N Degrees of Freedom in Actuator Assemblies
si Sorting axis start index

Abbreviations

AABB Axis Aligned Bounding Box
ACM Automatic Control Mode
A/D Analog-to-digital conversion
ADF Application Development Framework
API Application Programming Interface
CD Collision Detection
CGC Computer Graphics Group of Clausthal University of

Technology
CPU Central Processing Unit
DAQ Data Acquisition
DAQCo Control of DAQ System
DAQS DAQ System
DLL Dynamic-link Library
ECM Enhance Manual Control Mode
FIFO First In First Out
GUI Graphical User Interface
LED Light Emitting Diode
IEEE Institute of Electrical and Electronics Engineers
IEEE1394 Serial bus interface standard defined by the IEEE
IIDC 1394 Trade Association and Industrial Control Working

Group
MCM Manual Control Mode
MiCo Control of Micromanipulation System
MiS Micromanipulation System
MP Microrobotic Platform
OBB Oriented Bounding Box
RS-232 Recommended Standard 232

 X

RTAI Real-time Application Interface for Linux
RTOS Real-time Operating System
SAP Sweep and Prune
SCM Semi-automatic Control Mode
TEKES Finnish Funding Agency for Technology and Innovation
USB Universal Serial Bus
ViCo Control of Vision System
ViS Vision System
VR Virtual Reality

1. INTRODUCTION

The development of the actuators used in microrobotics has undergone rapid evolution
during the past decade. In its current state, the technology has reached a certain level of
maturity and more commercial solutions are penetrating to market. The evolution
however, is still on the hardware level and more resources are required in the
development of control software. Software development for microrobotic hardware
differs in many ways from that for conventional robotics. The products available are
often immature – at least in the sense of software development. Moreover, the mere size
and the possibly unknown characteristics of the actuator may hinder development of the
software. The movements produced by the microrobotic actuators are often measured in
micro- or nanometres and the movement may not be visible for naked eye. A lack of
standardization and well established practises incurs a situation where the provided
application programming interfaces (API) do not have common features, making
creation of general-purpose control software virtually impossible, thus forcing the
application developers to content with the manufacturer’s API.
This thesis is part of SMARTFIBRE project funded by The Finnish Funding Agency for
Technology and Innovation (TEKES). It is accomplished in Micro and Nanosystems
Research Group at Department of Automation Science and Engineering, part of the
Faculty of Automation, Mechanical and Materials Engineering of Tampere University
of Technology.
The objective of the project is development of new functionalisation concepts for smart
fibre products. The project is a collaborative effort of two research partners,
responsibilities between the partners is divided as follows. Laboratory of Fibre and
Cellulose Technology at Åbo Akademi is responsible for development of the new
functionalization concepts. Main activities include design and multifunctionalisation of
fibres and papers in order to enhance existing and to innovate new functionalities for
fibre based materials.

Micro and Nanosystems research group is responsible for investigating
individual fibre-fibre and fibre-chemical interactions using a novel Microrobotic
Platform (MP) developed as part of the project. The final goal of the MP is fully
automated characterization of paper fibres. In order to collect sufficient quantities of
data, several hundreds of fibres should be characterized on a daily basis. Thus, the MP
should be able to autonomously characterize several tens of fibres per hour.

Development of the microrobotic platform includes two separate phases. The
first part, presented in [16], concentrates on selection and implementation of the
hardware of the MP. In addition, control software capable of performing the
autonomous characterization needs to be developed. This thesis work concentrates on
the development of the control software, scope of the thesis work is described in detail
in Section 1.1.

Introduction 2

1.1. Scope

The objective of the work is to develop scalable, robust and partly real-time capable
distributed control software for the purposes of paper fibre characterization. The scope
of this thesis is limited to cover architectural design of Control Software for
Microrobotic platform (CoSMic) and implementation of its two core parts, namely
Control of Micromanipulation System (MiCo) and Control of Data Acquisition System
(DAQCo).

1.2. Outline

The structure of the thesis is organized as follows. Chapter 2provides background
relating to the concepts later implemented in this work. Chapter 3presents Microrobotic
Platform (MP), the user requirements for the developed control software and related
hardware. Chapter 4concentrates on selection of implementation technologies. Chapter
5elucidates the proposed architecture. Chapter 6describes design and implementation of
MiCo and DAQCo. The final part, Chapter 7 concludes the thesis and presents
proposals for future work.

2. OVERVIEW OF DISTRIBUTED CONTROL
SOFTWARE FOR MICROROBOTIC PLATFORM

This chapter includes theoretical aspects involved in the development of control
software for the microrobotic platform (MP). Section 2.1 introduces the concept of
distributed systems followed by introduction of software patterns in Section 2.2. Section
2.3 encompasses the general aspects of a real-time system. Finally, Section 2.4 presents
the concept of collision detection.

2.1. Introduction to Distributed Systems

Traditionally computer software was thought as a stand-alone system residing on a
single computer. A typical stand-alone system has been responsible for reacting to
inputs through a user interface, performing the desired processes and managing the
persistent data. The constantly increasing complexity of the developed software has led
to the point where the required level of computation is often too much to be handled by
a single computer. Therefore, more and more systems are developed in a distributed
manner. Distributed systems split the structure of the software into logical entities
which are allocated to number of independent computers. The computers are able to
cooperate over a communication network in order to achieve the desired objective.
 The benefits of distributed systems over centralized solutions are widely
recognized, some of the most important aspects include:

 Performance
 Economics
 Failure tolerance
 Scalability

Distributed systems have better performance when compared with mainframe solutions
due to increased concurrency; different nodes of the distributed system are able to
execute different tasks simultaneously. The parallel execution of several applications
increases the system’s performance in comparison with centralized solutions. In
addition, a well-designed distributed system is easily scalable by adding components
into the system. Also economical factors support usage of distributed systems because
they offer a better price/performance ratio than mainframe systems. For example, nodes
with specialized properties, such as expensive high speed data acquisition can provide

Overview of Distributed Control Software for Microrobotic Platform 4

services for the other parts of the system. Conversely in a centralized solution, each
system requiring the high speed data acquisition system would require its own
hardware. Failure tolerance of a distributed system can be reached by introducing
sufficient redundancy to the system; the most essential parts of the system can be
replicated to several nodes. Sufficient redundancy delimits failures to subsystems, thus
the entire system can survive crashes of the network or a single computer node. [1][2]

Distributed systems have also some disadvantages, most of which are tightly
coupled with the benefits of networked computing:

 Complexity
 Heterogeneity

Distribution increases system complexity due to the increased level of concurrency and
asynchronous communication. Failure of a single component might affect the entire
network if appropriate mechanisms for preventing such a situation do not exist.
Introduction of each new component increases the risk of affecting the entire network in
case of a failure. [1]
 Distributed systems are often used over large geographical areas and the
development time might be calculated in years. Large geographical coverage increases
the likelihood for incorporation of different implementation technologies in different
parts of the system. The long development time often increases the heterogeneity of the
system, as some parts of the old system might be incompatible with planned new
features. [1][2]

2.2. Software Design Patterns

Software design patterns have been a largely discussed topic for more than a decade
after reaching wide acceptance in 1994 followed by the publication of [3].
 In object-oriented programming, the functionality of the developed program is
provided through collaborative effort of several objects contributing into the system.
Software developers often face problems which are identical or similar to issues solved
in previous applications. Identification of recurring problems is even desirable, as
object-oriented programming provides the means of reusing existing program code.
Reusability provides obvious benefits through time saving, as the same program code
can be used in multiple places. In addition, systems employing reusable components are
likely to be less prone to errors due to the wider usage of the component; a large group
of developer using the same library over long period of time is more likely to find the
possible programming errors than a single developer. However reusability might be
limited to tackle one single problem and cannot be used outside the original domain.
[4][5]
 For example in development of a distributed system, a developer of network
related applications might have an off-the-shelf implementation of a client and a server
class for socket communication over TCP/IP, which he employs in all network related
applications. He couples the server class with the application code by mapping the

Overview of Distributed Control Software for Microrobotic Platform 5

application’s functions to the server. If the developer is asked to develop an application
based on other network protocol, he might have to rewrite most of the server-side
program code.
 Reusability can be increased by generalizing the found solution into a set of
rules which describes a solution on more general level. In object-oriented programming
such collections of rules and guidelines solving abstract problems are known as design
patterns. Design patterns are documentations which include both, the problem and the
solution within a given context. Description of design pattern is given in a consistent
textual format. The ground for preferring textual format over graphical notation is
reusability; graphical representation is often able to catch only the end product, hiding
the original reasoning from the viewer. A typical format of design pattern consists of
eight sections describing the pattern from different aspects. A typical layout of design
pattern is presented in Table 2.1. [3][6]

Table 2.1 Structure of a design pattern

Section name Description
Name Name of the pattern
Context Motivation

Domain of usage

Example:
application has been distributed between three nodes which are
connected together with a bus.

Problem
Describes the original problem.

Example:
how to change the bus standard without changing the application
code

Forces Characterizes the pattern in detail.
Describes what effective solution must take into account.

Example:
Scalability: system may consists of hundreds of nodes.
Reusability: the bus may change during the life-cycle

Solution Provides solution which solves the previously presented problem.

Overview of Distributed Control Software for Microrobotic Platform 6

Consequences Describes the benefits and the pitfalls of the proposed solution

Example:
 - Abstraction may increase latency
+ Increases the scalability of the system

Resulting Context Describes the results

Example:
result is a highly scalable system where the bus standard can be
changed without affecting the application code

Related Patterns Describes this patterns relation to other. The pattern may turn out
to be more useful when combined with another pattern.

Known usage List of known users of the pattern

Example:
Complex platform for research purposes uses TCP/IP
communication protocol between several nodes. The system is
expected to be enhanced with real-time capable bus. Therefore a
mechanism abstracting the network layer from the application
code is required.

Design patterns can be categorized by the domain they target and by the used level of
abstraction. Patterns providing principle of solution for entire software architecture are
called architectural patterns. Similarly, patterns related to the mechanistic design of the
software are known as mechanistic design patterns.

2.3. Real-Time Systems

Real-time systems may include very different characteristics depending on their
domain. Real-time systems are found in a variety of applications ranging from simple
embedded systems to airplane manoeuvring systems and internet banking. The term
real-time is often falsely though as a measure of high speed. In several real-time
applications high speed is essential, but it does not define the system as a real-time
system. By definition a real-time system performs given operations in timely manner –
the system guarantees to fulfil the given performance constraints. Real-time systems can
be categorized to soft real-time and hard real-time systems. Hard real-time systems are
the stricter category of real-time systems. In these systems, a missed deadline is equal to
a system failure. Soft real-time systems give more flexibility to the time constraints. In
soft real-time systems, deadlines can occasionally be completely missed and missing the
deadline by small time deviation is also allowed. [7]

Overview of Distributed Control Software for Microrobotic Platform 7

 Generally, all real-time systems interact with hardware in monitoring or
controlling purposes. The interface between the application code and the hardware must
have real-time implementation to maintain the system level real-time capabilities. For
example, a standard Universal Serial Bus (USB) driver for Microsoft Windows can not
comply with real-time constraints. Usage of such a driver in a real-time system will be
problematic, since the behaviour is time wise undefined. However, different parts of a
real-time system can have different level of constraints. In fact, most real-time systems
include parts with soft and hard real-time requirements [7].

2.3.1. Scheduling

The scheduler is an instance which determines how to commit resources between
several different tasks. Execution order of outstanding processes is based on pre-defined
criteria, such as priority. Conventional operating systems serialize the processes based
on their priority, thus the processes with highest importance are processed first. The
described scheduling method is for real-time system – a high priority does not
automatically convert to meeting the deadline. [8][9]
 A typical real-time operating system (RTOS) also uses priorities for scheduling,
but with additional timeline constraints. The highest priority task pending for processing
always gets a time slot from central processing unit (CPU) within a fixed amount of
time. Thus, the latency of the system depends only on tasks running at higher priorities.
[8][9]

2.3.2. Linux in Real-time Systems

Linux is a Unix-like high-performance open-source operating system used globally by
millions of users. In a typical case, Linux is shipped as a Linux distribution which
consists of an operating system kernel and supportive software. Linux is considered to
be one of the most stable operating systems available for servers and standard desktop
computers.
 Suitability of Linux for real-time systems is a widely discussed topic for which
multiple solutions are available. The pure Linux kernel, often referred as vanilla, is not
suitable for real-time systems as such. However, the open-source source code allows the
developers to modify the kernel to suit better for the purposes of real-time systems.
Currently there are several open-source real-time Linux implementations available. The
following presents two well established open-source real-time kernel extensions for
Linux.

RTAI

Real-Time Application Interface for Linux or shortly RTAI is a real-time kernel
extension initially developed at Dipartimento di Ingegneria Aerospaziale / Politecnico di
Milano. In its current state, RTAI is developed as a community effort. RTAI supports
data acquisition (DAQ) through a real-time capable DAQ library called Linux Control

Overview of Distributed Control Software for Microrobotic Platform 8

and Measurement Device Interface (Comedi). RTAI consists of two main parts: a Linux
kernel patch introducing a hardware abstraction layer and a package of convenience
services reducing the workload in development process of real-time applications. [11]

XENOMAI

Xenomai is another effort to bring RTOS capabilities to Linux. The main difference
between Xenomai and RTAI is that the projects have slightly different focus. Xenomai
considers extendibility, maintainability and portability as important goals. The
portability is implemented as number of RTOS APIs referred as skins. Each skin
supports one real-time API, currently available skins include POSIX, VxWorks, RTAI
and several others. [10]

2.4. Collision Detection

Identification of colliding objects in a three-dimensional (3D) space is a fundamental
problem in various areas of software development. In a typical application, such as a
simulator or a computer game, collision detection (CD) might be required to model
physical interactions of objects in the real-world. An additional step known as collision
handling is required to determine appropriate steps in a case of a collision. For example,
CD between a falling object and a surface is required in recognizing the event of the
object hitting the surface. The collision handling might then calculate possible
deformation and new trajectory for the object.
 CD between hardware of the real-world requires modeling which maps the real-
world situation into a virtual reality (VR). The modeling converts each real-world object
into a VR object built from several polygons.
 Mere detection of collisions does not suffice in cases where collisions may harm
the system. Software interacting with hardware, such as robots, is a typical application
where collision avoidance is essential. Moreover, autonomous systems should be able to
reroute themselves in the case of a potential collision. Collision safe routing is often
referred as path-planning. Collision avoidance and path-planning require collision
detection in order to determine which actions would lead to a possible collision. The
task is not easy, as the 3D space may contain hundreds or thousands of objects with
complex geometries. Collision detection is computationally intensive task by definition.
This section provides an overview of CD by introducing the CD process and its
different phases.

2.4.1. Collision Detection Pipeline

The basic idea behind most of CD implementations is finding intersecting pairs of
polygons between two objects. A collision occurs when a polygon of one object
intersects a polygon of another object. However, comparison of all possible polygon
pairs would lead to tremendous amount of computation. Therefore advanced algorithms

Overview of Distributed Control Software for Microrobotic Platform 9

are required to avoid as many polygon/polygon tests as possible. CD process can be
thought as a pipeline where the objects are an input which is handled by a collision
pipeline containing the different phases of CD process. The outcome of the process is a
physical response, such as a detected collision or distance of two objects. The structure
of CD pipeline is illustrated in Figure 2.1.

Figure 2.1 Collision detection pipeline

 In order to relieve the computational load related to CD, the process is often
divided into two stages, called broad phase and narrow phase. Broad phase can be
thought as a filter which aims to avoid unnecessary intersection testing for objects that
are far away from each other. Bounding volumes with simple geometry, such as box or
sphere can be placed around each body to simplify the geometries analyzed in the broad
phase; collisions may occur only if bounding volumes of two objects overlap. The
objects which were found to have overlapping bounding volumes are passed to the
narrow phase for further inspection. The narrow phase refines the previous collision
detection to the level of individual polygons.

Broad Phase

The purpose of the broad phase algorithms is to quickly filter out as many objects as
possible. Axis-aligned bounding boxes (AABB) and oriented bounding boxes (OBB)
are typical approaches for implementation of the bounding volumes. Difference
between the AABB and OBB is orientation of the bounding volume; AABB are aligned
with the axis of the coordinate system, whereas OBB alignment is arbitrary. Figure 2.2
illustrates the difference between the orientation of AABB and OBB.

Figure 2.2 Axis-aligned bounding box (left) and Oriented bounding box (right)

The simplest method for testing collisions between two bounding boxes is known as the
brute-force algorithm. The idea behind the algorithm is as follows. Compare each edge

Collision detection pipeline

Broad phase Narrow phase ResponseGeometric data

AABB OBB

Overview of Distributed Control Software for Microrobotic Platform 10

of one bounding volume against all edges of the other bounding volume, and vice versa.
The downside of this very simple algorithm is a lack of performance. The amount of
comparisons required between two bounding volumes is n(n-1), where n represents the
number of present bounding volumes. The performance of the broad phase algorithm
can be optimized by several different strategies including spatial partitioning and the
aforementioned bounding volumes.
 Broad phase algorithm Sweep and Prune (SAP) presented in [39] uses AABB to
determine whether two objects are sufficiently close to potentially collide. SAP
determines overlapping bounding volumes by reducing the original three-dimensional
problem into three one-dimensional problems; two AABB overlap only if all their
projections overlap. For each sorting axis containing the projections, SAP stores
intervals occupied by individual projections. The intervals are denoted as [si, ei], where
si is the starting point for the interval of a single projection and ei is the respective end
point. Figure 2.3 presents a single sorting axis with three different objects.

Figure 2.3 SAP sorting axis with three projections

The found intervals are stored in a list which is sorted in ascending order. Each node of
the list includes a tag describing whether the node represents si or ei of a particular
object. The actual CD takes place by traversing the created list from the beginning to the
end. Whenever the algorithm finds a si tag the object i is added to the active object list.
In case of an ei tag, the respective object is removed from the active object list. Thus
each object is compared only against the objects currently stored in the active object list.
Finally SAP finds the objects which collide in all projections and forms a list of
candidates. This list can be forwarded to narrow phase algorithms for further inspection.
SAP has proven to be an efficient broad phase algorithm and it is widely implemented
in different CD libraries. However, the usage of AABB may lead to large amount of
redundant space within the bounding volume. The problem becomes obvious if the
bounded object has strong diagonal orientation as indicated in Figure 2.2. [40]

Overview of Distributed Control Software for Microrobotic Platform 11

Narrow Phase

Narrow phase collision detection is responsible for detecting collisions between the
pairs of objects which were found in the broad phase. The narrow phase should result in
a list of individual polygons and exact coordinates of the points where collisions
occurred. Several methods such as hierarchical methods and incremental distance
computation have been proposed for the narrow phase collision detection.
 Hierarchical methods decompose each object into a tree, where each node
represents certain subset of the original object. The root node of the tree contains the
whole object. An example describing possible decomposition of a simple object is
provided in Figure 2.4. The decomposition should satisfy two opposing criteria guiding
the selection of the bounding volume. The bounding volume should contain minimal
amount of redundant space. However the intersection test should be as efficient as
possible. That is the geometry of the bounding volume should be as simple as possible.
[44][45]

Figure 2.4 Hierarchical method – bounding volume tree

Hierarchical methods aim to further minimize the amount of polygons required to
accurately determine the point of collision. In case where broad phase detects a collision
between two objects, the hierarchical model is able to prune the irrelevant polygons by
traversing the tree model of both of the colliding objects. Head-on collision of two cars
based on the hierarchy presented in Figure 2.4 is taken as an example, the colliding cars
are named as Car1 and Car2. Traversing of the trees starts by comparing the root nodes
of Car1 and Car2. If the root nodes do not intersect, the objects cannot collide. If
intersection between the root nodes is detected, the algorithm moves to next level by
comparing the child nodes L1 and R1 of Car1 against the root node of Car2. If either of
the child nodes of Car1 intersects with the root node of Car2, the bounding volume of

Root node

R1L1

R2

R3 R4

Overview of Distributed Control Software for Microrobotic Platform 12

Car1 is replaced with the child node. In case of head-on collision, the node L1 of Car1
would replace the original bounding volume and traversing would stop. The traversing
continues until the maximum depth of recursion is reached. [44][45]
 Incremental distance computation is a probabilistic method assuming that
objects move only small distance between successive calls of the collision detection
algorithm. In such a case, methods of linear programming can be used, which yield
linear performance time by definition. However, linear programming is only applicable
for convex polygons. Thus in 3D space, the polyhedral models must satisfy the rules of
convexity, that is all faces of each polyhedral must join together and form bounded 3D
shapes. One of the most known algorithms within this category is Lin-Canny algorithm
presented in [32].

2.4.2. Collision Detection Implementations

The following presents few examples of open-source collision detection libraries
available. A more thorough list is available at [33].

OPCODE

Optimized Collision Detection or OPCODE is a small CD library developed for C++
developed by Pierre Terdiman. OPCODE uses AABB together with bounding volume
tree hierarchy. The objective of OPCODE is to reduce the memory footprint in
comparison with other similar collision detection libraries such as SOLID [34] and
RAPID [35]. The broad phase collision detection of OPCODE provides implementation
of SAP, in addition radix-based box pruning algorithm is available. [13]

SWIFT++

SWIFT++ is a C++ CD package developed by the Geometric Algorithms for Modeling,
Motion, and Animation Group at University of North Carolina at Chapel Hill. The same
group has produced numerous open-source collision libraries such as I-COLLIDE [36] ,
RAPID and SWIFT++ [15]. SWIFT++ is targeted for detection of intersection,
computation of distances and determining contacts between pairs of objects. The objects
are modelled by polyhedral geometries and allow several objects to share the same
geometry. SWIFT++ employs SAP to detect overlapping of moving objects in the broad
phase. The narrow phase collision detection is based on the Lin-Canny algorithm.
[14][15]

CollDet

CollDet [46] is a C++ CD library developed by Computer Graphics group of Clausthal
University of Technology (CGC). The primary application domain of CollDet is 3D
real-time applications. The algorithms used in CollDet are developed at CGC. The

Overview of Distributed Control Software for Microrobotic Platform 13

performance of these algorithms is in some cases significantly faster than the most
typical approaches [40].

3. MICROROBOTIC PLATFORM

The microrobotic platform (MP) targeted for the characterization of different kinds of
fibres has been developed as a part of the project SmartFibre. The final goal of the
platform is to characterize several hundreds or thousands of fibres on a daily basis. MP
consists of three separate subsystems: Micromanipulation system (MiS), Vision System
(ViS) and Data Acquisition System (DAQS).
 This chapter concentrates on presenting the microrobotic platform from several
points of view. Section 3.1 presents an overview of the system, followed by the
description of the user requirements in Section 3.2. The hardware related to the MP is
described in Section 3.3. Different methods for performing paper fibre characterization
on MP are proposed in Section 3.4.

3.1. Overview of the Microrobotic Platform

MP is built from three separate subsystems each responsible for a specific range of
tasks, as illustrated in Figure 3.1. Micromanipulation System (MiS) containing a large
number of actuators is used to manipulate the characterized object. Commonly
performed MiS related tasks include grasping and moving of the characterized object. A
single actuator is responsible for performing simple one-dimensional operations such as
linear or rotational movement. The manipulation operations often require cooperation of
several actuators in order to provide functionality in multiple dimensions. In such cases,
the actuators may be physically coupled together to create a unit capable of providing
movement in multiple dimensions. Such units are herein after referred as assemblies.
Assemblies containing N actuators are denoted as ND assemblies, where N represents
degrees of freedom of the particular assembly. The actual manipulation of the target
object is performed with end-effectors attached to assemblies. Cooperation of multiple
assemblies is required when multiple end-effectors are involved in the same
manipulation operation.

Microrobotic Platform 15

Figure 3.1 Overview of the system

Vision System (ViS) provides the user with image data regarding the characterized
object and position of each end-effector. The hardware of ViS may include several
cameras and related peripherals, such as objectives and illumination systems. The third
part, Data Acquisition System (DAQS), is responsible for measuring different properties
of the characterized object. Hardware of DAQS contains sensors for measuring different
properties of the characterized object.
 Characterization of an object with MP may include multiple phases depending
on the characterized object and the measured properties. Prior to the actual
characterization procedure, the characterized object must be located and identified using
the ViS. After the object has been located, a sequence of micromanipulation operations
using the MiS may be required. In a typical case, the MiS is used to grasp, move or
align the object to desired position for further analysis. In the next phase, interesting
properties of the object can be measured using the sensors of DAQS. Additionally, ViS
can be used to measure properties, such as length of the object, from the acquired image
data. Figure 3.2 presents a simplified characterization procedure. Responsible
subsystem for each phase is indicated with respective abbreviation.

Figure 3.2 Simplified characterization procedure

The phases involving MiS may include cooperation of several actuators in order to
accomplish the desired operation. For example, moving of a beam-like object may
require separate actuators for both ends of the object.

Microrobotic Platform 16

3.2. Requirements for Control Software

The requirements for Control Software for Microrobotic Platform (CoSMic) were
mainly derived from the description of usage presented in [16]. The requirements were
further refined based on the user experience of series of test programs controlling
different parts of the described MP. On general level, CoSMic is responsible for
controlling and monitoring of all the hardware attached into MP. A high-level
requirement common to all subsystems of CoSMic is modularity. Different parts of MP
should be controllable through separate stand-alone applications and as a single
application seamlessly integrating different parts of the system. In the single application
case, the set of included subsystems should be customizable. The following presents
more detailed requirements separately for each subsystem of MP. The requirements
related to communication between different subsystems are presented in Section 4.5.

3.2.1. Requirements of Micromanipulation System

Most of the requirements of MP concentrate on Micromanipulation System (MiS)
containing possibly a large number of actuators. The number of actuators connected to
MiS is dependent on the performed characterization procedure. Thus the requirement of
scalability is obvious.
 The characterization procedures performed using MiS can be very complex and
may include tens of different unit functions, such as moving and grasping of the
characterized object. In addition, parts of the characterization procedure are often
repeated multiple times. In order to reduce laborious and time consuming manual
control, CoSMic should be able to record and repeat the performed procedures. Some
of the procedures performed with MiS require simultaneous movement of several
actuators. For example, when a fibre is stretched between two actuators, both of the
ends should move in a synchronized manner to maintain the alignment and a correct
stretch level of the fibre. CoSMic should provide a mechanism for synchronized
movement of different actuators.
 Another important aspect of the control of MiS is security. Depending of the
hardware configuration of MiS, the actuators have a potential risk of colliding with each
other or other parts of the system. Collisions might cause errors to the performed task or
permanently damage the hardware. Therefore, CoSMic should be able to prevent such
situations. The issue of security arises also in a case of a system failure due to
malfunction of software or hardware. In both of the cases CoSMic should guarantee that
the system remains in a safe state. The current requirements regarding the level of
automation are minimal. However, additional automation related requirements may
arise in the future, thus CoSMic should provide sufficient extendability in order to
increase the level of automation. Real-time aspects of MiS are not discussed within this
section due to the limitations of the device driver controlling the hardware of the MiS
presented in Section 3.3.1. The device driver and the provided API are further discussed
in Section 4.2.

Microrobotic Platform 17

3.2.2. Requirements of Vision System

Vision System (ViS) consists of cameras imaging the MP and related MiS from
different angles. The main purpose of Vision System (ViS) is to provide the operator
with visual feedback regarding the position and alignment of the manipulated object and
the actuator. ViS may also contain peripherals, such as objectives and illumination
systems, required to enhance the visual information acquired by the cameras.
 CoSMic is responsible for controlling and monitoring all the ViS related
hardware. The most essential features CoSMic should implement include visualization
and recording of the acquired image data. In addition, CoSMic shall provide
mechanisms for controlling all the peripherals attached into ViS. The implementation
fulfilling the aforementioned requirements must be scalable; the number of cameras and
peripherals attached to the system may vary depending on the requirements of a
particular characterization process. The implementation should also support the most
common communication busses for cameras.
 Design of ViS should take into account the possibility of using the acquired
image data to perform measurements, such as measuring the area or the length of the
characterized object. In more general terms, ViS should provide an interface for future
implementation of a machine vision system.

3.2.3. Requirements of Data Acquisition System

Data acquisition system (DAQS) contains several different sensors used for measuring
different properties of the characterized object. The number of sensors attached into the
system is entirely dependent on the characterization procedure. Moreover, the measured
physical quantity might be different for each sensor.
 The most important single feature CoSMic must comply with is visualization
and recording of the acquired data. The data shall be provided in units corresponding to
the measured physical quantity. The varying number of attached sensors implies that
scalability should be included into the implementation.

3.2.4. Requirements of Real-Time Controller

MP is likely to be extended with additional features in the future. The features are
reached through scaling up the system with additional hardware, such as different kinds
of actuators. Some of the additional features may increase performance demands for the
controlling software. For example, a PI or PID controller may require real-time
implementation in order to accurately control a motor or an actuator. CoSMic should
provide mechanism for easy integration of real-time controllers.

3.3. Related Hardware

The hardware of MP includes a set of actuators, cameras and multiple sensors. The
hardware was carefully selected to meet the functionality required in fibre

Microrobotic Platform 18

characterization. The following gives a brief overview of the used hardware, more
detailed description of the hardware and the selection process can be found in [16].

3.3.1. Micromanipulation System

MiS consists of several actuators performing the micromanipulation operations required
to characterize the object of interest. MiS uses linear and rotational microactuators
manufactured by SmarAct GmbH [17]. Teleoperation of the actuators requires a
manufacturer specific control module, which couples the actuators and a computer via
universal serial bus (USB). The control module is responsible for converting the
commands transferred over the USB into analogue voltage signals used to actuate the
connected actuators. Internally the control module consists of two different modules,
namely an interface module and a driver module. Structure and communication between
different parts of SmarAct modular control system is presented in Figure 3.3. [20]

Figure 3.3 Structure of SmarAct modular control system

The interface module manages the actual communication between the computer and the
control module. Each control system requires its own interface module, but several
driver modules can use the same interface module. The driver module is responsible for
creating the necessary signals for driving the attached actuators. A single driver module
can control up to three actuators. The driver modules are capable of performing closed-
loop control, providing that the controlled actuator is equipped with a position sensor
and a sensor module for reading the position data is present. [17]
In its current state, MiS consists of eight linear micropositioners, two microgrippers and
one rotational micropositioner. The linear micropositioners are used to create larger
functional assemblies with several degrees of freedom. Two 3D assemblies with three
degrees of freedom are used to move the characterized object. The 3D-assemblies
include a microgripper which is used for grasping of the objects. The two remaining
linear micropositioners form a 2D assembly which is used as a base for additional
hardware. An overview of the system together with more detailed illustration of 3D
assembly is provided in Figure 3.4.

Computer

Interface module

Driver module 1

Positioner 1 Positioner 2 Positioner 3

CH1 CH2 CH3

USB

Internal bus

Modular Control System

Driver module 2

Positioner 4 Positioner 5 Positioner 6

CH1 CH2 CH3

Microrobotic Platform 19

Figure 3.4 Overview of the Microrobotic Platform (left) and 3D assembly with a microgrippers as an end-effector
(right)

3.3.2. Vision System

The current setup of ViS consists of a camera, an objective, and an illumination system.
The communication between the controlling software and the hardware of the ViS
requires several different communication lines. A schematic overview of the required
communication is shown in Figure 3.5.
 The used camera, SONY XCD-U100, is equipped with IEEE1394b serial bus
interface compliant with the 1394 Trade Association and Industrial Control Working
Group (IIDC) standard [18]. The camera provides an image size of 1600*1200 pixels
with a maximum frame rate of 15 frames per second. In addition an IEEE1394b
compliant card is attached into the controlling computer to enable communication
between the computer and the camera.

Microrobotic Platform 20

Figure 3.5 Structure of Vision System

 The objective, Navitar 12x Zoom, selected to satisfy the needs of ViS includes
two peripheral stepper motors allowing the adjustments of focus and zoom levels. The
stepper motors are controlled via a control board including a serial communication
interface using Recommended Standard 232 (RS-232) communication. Similar
communication can be used to communicate with the illumination system, Navitar
BrightLight coaxial illuminator based on ligh emitting diode (LED) technology . The
different parts of ViS related peripherals are shown in Figure 3.5. [19]

Figure 3.6 Navitar Motorized 12x Zoom objective

Microrobotic Platform 21

3.3.3. Data Acquisition System

DAQS consists of sensors, DAQ units and other DAQ related peripherals, such as
amplifiers and filters. DAQS is used to measure the required properties of the analyzed
object. In a typical case, the output received from a sensor is an analogue voltage signal
varying in the range of ±10 Volts. In order to forward such signals to the computer
system, an analog-to-digital (A/D) conversion is required.

Figure 3.7 Scematic overview of the DAQS

MP resolves the issue of A/D conversions with a data acquisition (DAQ) board,
National Instruments PCI-6229, providing an interface for up to 32 differential analogue
voltage input channels. An overview of the data acquisition related hardware is shown
in Figure 3.7.
 Currently, there are two sensors attached into the system. Sensors, namely FT-
S270-OEM and FT-S540-OEM, are capacitive force sensors manufactured by
Femtotools. The sensors measure forces in the range of hundreds µN producing output
voltage of 0-5V [16]. Figure 3.8 presents configuration of MP including a force sensor.

Figure 3.8 Force sensor attached to Microrobotic Platform

Force sensor

Microrobotic Platform 22

3.4. Control Modes

Beginning of Chapter 3 stated that the desired throughput of MP is from several tens to
hundreds of fibres per day. In order to reach such a high throughput, a certain level of
automation in the control of MiS is required. The following describes three different
control modes for MiS proposed to be implemented in CoSMic.

3.4.1. Manual and Semi-automatic Control Modes

Manual control mode (MCM) is the simplest of the three proposed control modes. The
operator controls MiS through a graphical user interface (GUI) or uses an additional
input device, such as a joystick or a haptic device. In MCM, CoSMic is responsible for
performing collision detection and transferring legal commands to the hardware. MCM
allows the operator to be in charge of all operations carried out in the system and is
ideal for testing new operations and solving possible error states of the system. In
addition, MCM can be used by the developers during implementation of new parts of
the system. The downsides of MCM are repeatability and performance. Repetition of an
existing characterization procedure in this mode is difficult, if not impossible. In order
to repeat even a single sequence, the operator should remember the exact location of
each actuator throughout the entire sequence. However, MCM provides the operator
with possibility of recording movements of each actuator. Working principle of MCM is
presented in Figure 3.9.

Figure 3.9 Manual Control Mode

Semi-automatic Control Mode (SCM) allows the operator to re-execute the movements
recorded in MCM. SCM improves the repeatability of the performed characterization
procedures. In addition, the movement sequences are performed faster. However, the
system still lacks capability of decision making, which limits its performance. In a case
of an abnormal situation, the system is not able to perform without user interference.

3.4.2. Enhanced Manual Control Mode

Enhanced Manual Control Mode (ECM), presented in Figure 3.10, introduces decision
making in control of MiS. The goal of ECM is to provide significantly faster manual
control, through optimization of the movement paths. In cases where the movement of
an actuator does not cause collision, ECM is identical with SCM. The difference
between the two control modes can be seen, when the movement of an actuator would
cause collision. In such cases, ECM calculates optimum route to the destination and
automatically redirects the actuator to newly calculated path.

Microrobotic Platform 23

Figure 3.10 Enhance Manual Control Mode

3.4.3. Automatic Control Mode

Automatic Control Mode (ACM) aims to perform entire characterization procedures
without any human intervention. ACM combines the previously presented modes to
achieve a mixture of predefined trajectories and decision making capabilities. Several
parts of the characterization procedures can be converted to simple trajectories using
MCM. However, more complicated actions, such as picking up an object without a
priori knowledge of the exact position cannot be performed with the methods of MCM.
To overcome this issue, the ACM uses the feedback of ViS. The exact position of the
characterized object is analyzed from the image data and can be converted into a
trajectory for the actuators. Similarly, the output data of all the sensors of DAQS can be
used as feedback when necessary.

4. SELECTION OF IMPLEMENTATION
TECHNOLOGIES

Selection of implementation technologies for CoSMic involves several fundamental
decisions such as selection of supported operating systems, possible usage of different
software frameworks and selection of implementation technology for proposed real-
time extension. Moreover, the possible limitations of the used hardware must be
studied.
 This chapter targets the aforementioned problems related to the selection of
implementation technologies. Structure of the chapter is divided into three. Section 4.1
presents selection of the application development framework. Section 4.2 introduces an
application programming interface used for the control of SmarAct piezoelectric
actuators. Section 4.3 describes selection of the data acquisition library, followed by
selection of the collision detection library presented in Section 4.4. The last part,
Section 4.5, reports the key findings affecting the architecture and design.

4.1. Qt – an Application Development Framework for C++

Application development framework (ADF) can be defined as a collection of common
software routines that provide a foundation for application development. Functionality
provided by an ADF may cover several aspects such as cross-platform portability,
network communication, concurrency and user interface technology. The developers
benefit from usage of ADF through time saving and reduction of potential errors as the
most used routines are implemented on the ADF level. Another clear benefit is
unification of the produced source code; application development frameworks tend to
guide the design process by promoting the usage of certain patterns and mechanisms.
However, the aforementioned arguments also involve potential pitfalls. The selection of
the ADF should be based on the requirements of the development team and the
developed system. Rather than confining to the limitations of ADF, the development
team should select an ADF which promotes their own thinking and the planned
architecture. The following presents the application development framework selected to
support the development of CoSMic.
 Qt [kju:t] is a well established C++ application development framework suitable
for development of high-performance cross-platform applications. Qt includes an
extensive class library with over 400 classes and tools for application development. The
framework has been used in commercial applications since 1995 and is currently
estimated to be used by some 350 000 developers around the world. The wide range of

Selection of Implementation Technologies 25

operating systems supported by Qt includes Microsoft Windows, Linux, Unix and OS
X. Even though originally developed exclusively for C++ developers, the usage of Qt
can be extended to other programming languages. Java is officially supported through
binding known as Qt Jambi and a variety of third party solutions covers programming
languages such as Python, C# and Ruby. [21][22][23][24]
 Qt application development framework was selected for the purposes of CoSMic
due to its strong cross-platform support. Qt brings several other benefits, which are
briefly described in the subsequent sections.

4.1.1. Signals and Slots

 The greatest strength that Qt brings to C++ is the used meta-object system,
which enhances Qt objects with additional data at compile-time. The meta-object
system enables Qt to provide extended run-time type information and other dynamic
features, such as run-time object introspection. The most important single feature of the
meta-object system is a flexible mechanism to interconnect objects known as “signals
and slots”. Objects can define signals that they emit when certain conditions are met.
Signals appear as member functions prototypes, as they have only declaration. Objects
can also have slots which are able to react upon a received signal. Slots look like normal
member functions, but have gone through specific pre-processing. The pre-processing is
further investigated in within this chapter. [24][26]
 The usage of the signal-slot mechanism has several benefits. A single signal can
be connected to any number of slots, allowing several objects to react on the same
trigger. Respectively, a single slot can be connected to several signals, a useful feature if
several different inputs should be processed in a similar manner. Signals are allowed to
cross thread boundaries allowing a convenient way for asynchronous communication in
concurrent environments. The signal-slot mechanism has a few restrictions, which must
be fulfilled. The implemented class must [26]:

 directly or indirectly inherit QObject, which is the base class of all Qt objects
 use Q_OBJECT macro definition, which enables the signal-slot mechanism
 register emitted data types using Qt meta object system, unless primitive data

types are used.
The mentioned requirements are illustrated in a form of an example in Appendix A. The
example is not usable as is, but aims to highlight the usage of the signal/slot mechanism.
The presented signal/slot mechanism has notable similarities with the Mediator design
pattern presented in Section 2.2.

4.1.2. Threading in Qt

Qt supports multi-threaded applications through various classes which represent threads
and the common mechanisms for protecting critical sections of the program, namely,
mutex and semaphore. In addition concurrent programming with Qt benefits from
reentrancy and thread-safety of most of the Qt classes [26].

Selection of Implementation Technologies 26

 The class for creating individual threads QThread is, like most of the Qt classes,
inherited from QObject. QThread provides platform-independent threads by employing
native threading mechanism of each platform. In Linux and Unix environments
QThread is built to use POSIX threads, whereas in Microsoft Windows threads
provided by the Win32 API (Win32 thread) are used [26]. Each instance of QThread
has its own event loop, which is responsible for waiting and dispatching incoming
events and messages. The previously presented signal-slot mechanism uses the event
loop for communicating across thread boundaries.

4.1.3. Qt Integration with Real-time Operating Systems

The fact that Qt uses native threading for each platform allows execution of QThreads
on real-time operating systems. The number of studied real-time operating systems
compatible with QThreads was reduced to two potential options candidates on brief
testing and the fact that both of the tested operating systems supported data acquisition.
Two different Linux real-time kernel extensions, Rtai and Xenomai were tested with a
small program executing a QThread in a real-time task. In both of the cases, QThread
was proven to run as a real-time thread. Thus usage of Qt framework does not limit
selection of real-time kernel extensions. Short test program used to run QThread under
Xenomai is presented in Appendix A.

4.2. Application Programming Interface for SmarAct
Micropositioners

Micromanipulation System (MiS) is based on piezoelectric micropositioners
manufactured by SmarAct GmbH. The positioners can be teleoperated by using an
additional control module coupling the positioners with the controlling computer. The
control module and the computer communicate via USB. The control module is shipped
with necessary drivers and an application programming interface (API) which allows
the developers to write programs for controlling the positioners. The API, known as
SCU3DControl, consists of a dynamic-link library (DLL) and a header file written in C.

4.2.1. Communication Modes

The SCU3DControl introduces asynchronous and synchronous communication modes
for communication between the control module and the computer. Identical
functionality is provided in both of the communication modes. The difference between
the two modes is the mechanism how the calls block the calling program.
 In synchronous mode, the calling thread is blocked until the called function has
been finished. Result of the requested operation is passed as the return value of the
performed function. In contrast, the function calls made in asynchronous mode return
immediately and blocking does not occur. Responsibility for retrieving the resulting
values is the left for the developer. SCU3DControl API differentiates functions of

Selection of Implementation Technologies 27

asynchronous and synchronous communication modes by appending the function name
with ‘_A’ or ‘_S’ in respective order.
 Within this work, all communication between CoSMic and the SmarAct control
module is performed in asynchronous mode. The goal is to prevent unnecessary
blocking of the threads controlling the actuators. Furthermore, the asynchronous mode
allows an event based mechanism for reacting upon finished movements or status
changes.

Overview of Asynchronous Communication Mode

The asynchronous communication mode, presented in Figure 4.1, separates the sending
of the commands and the answer retrieval to functionality provided by the API. When a
function of the API is called, the DLL transmits corresponding command to the control
module, which invokes the required functionality on the hardware level. The return
value of the initially called function contains only information describing whether the
hardware received the command or not. Further error handling is made in the answer
retrieval process.

Figure 4.1 Communication between SCU3DControl API and SmarAct micropositioners

The data packet, containing the response of the hardware, is forwarded through the
control unit to the DLL, which stores the answer data in a FIFO buffer, dedicated to the
particular device. The API provides functions for inspecting and retrieving data packets
from the device specific data buffer. In a typical case SA_GetNextPacket_A
function can be used to fetch the next data packet of the buffer. Both directions of the
communication are multi-threaded, thus providing parallel communication between the
developed application and each of the attached devices.

Event Driven Communication

An additional benefit from the asynchronous communication mode can be gained
through the usage of event driven answer retrieval implemented in the SCU3DControl
API. The application developer may create event objects which are registered to one or
several of the data buffers. Whenever a new packet is stored into the buffer, the event is
activated. Thus the application may wait for an incoming event without need for
constantly polling the incoming traffic.

Device 1
Channel 0

Channel 1

Channel 2

Device 2
Channel 0

Channel 1

Channel 2

Device n
Channel 0

Buffer n
Channel 2

send commands

receive answer ...
...

...

...

...

...

D
yn

am
ic

-li
nk

 li
br

ar
y

(S
C

U
3D

C
on

tro
l.d

ll)

Buffer 2

Buffer 1

D
ev

el
op

ed
 A

pp
lic

at
io

n

SA_GetNextPacket_A

M
ic

ro
po

si
tio

ne
rs

send commands

receive answer

send commands

receive answer

Selection of Implementation Technologies 28

 Benefits of the event driven communication come more obvious in development
of a multithreaded application. One of the threads can listen to the incoming message,
while other threads are performing other operations, such as sending commands to
move the positioners. When answer messages are received from the hardware, the
listening thread awakes and required operations can be performed. Optionally the
listening thread may forward the answer message to other threads. The event driven
communication mode also provides possibility of receiving an answer message
whenever movement of a positioner is accomplished.
 The event based answer retrieval is based on usage of Windows API event
objects. In order to use the event driven answer retrieval, the developer must create and
register an event object, wait for activation of the created event object and inspect the
content of the received answer message. The usage of the required functions is further
presented in the following section.

4.2.2. Control Methods

Section 3.3 described the possibility of closed-loop control for positioners equipped
with a sensor. The SCU3DControl API provides the two different functions for closed-
loop control. The first method for closed-loop control is movement relative to current
position. For example, in the situation illustrated in Figure 4.2, a relative movement of
200µm from initial position p1 would move the positioner to position p1+200. The
second method for closed-loop control performs absolute movement against the zero
position of the positioner. For example, absolute movement to position p1 from any
given starting point has always the same outcome. The method is useful for reaching
exactly same position multiple times. However, system shutdown causes position reset
for all positioners. When the hardware is reinitialized, the zero position is moved to the
last position prior to shutdown. SCU3DControl API provides a function capable of
moving the zero position to a more suitable location, such as one of the ends of the
trajectory.

Figure 4.2 Schematic view of SmarAct linear micropositioner

Before calling functions performing closed-loop control, the type of the attached
positioner should be verified. The SCU3DControl API provides functions for acquiring
the type of the positioner. A simple example program describing the positioner type
acquisition is presented in Appendix C..

Selection of Implementation Technologies 29

4.3. Application Programming Interfaces for Data
Acquisition

CoSMic may require data acquisition in several subsystems. Section 3.3.3 suggested
that the real-time extension of CoSMic should be based on Linux with a real-time kernel
extension. On the other hand, the previous section presented the SmarAct API, which
runs only on Microsoft Windows operating systems. Finding a common solution
fulfilling the requirements of both of the subsystems may be impossible. Hence usage of
two separate software may be the most feasible solution.

4.3.1. DAQmx

National Instruments (NI) provides high-level cross-platform driver software known as
NI-DAQmx, for development of data acquisition applications based on NI DAQ
hardware. The driver software is mainly designed for to be incorporated with LabVIEW
or LabWindows. However, the NI-DAQmx also includes an API written in C which
enables development of DAQ applications with standard C and C++. Currently, NI-
DAQmx is available free of charge. [27]
 Data acquisition with NI-DAQmx Base C API is based on callback functions.
Callback functions are implemented by the developer, but used by the NI-DAQmx;
Callback function is assigned to the NI-DAQmx by providing a function pointer to the
callback function. NI-DAQmx calls the functions through the pointer when acquired
data is ready. This approach allows the developer to implement data exchange
separately for each application.

4.3.2. Data Acquisition in Real-time Linux

Linux control and measurement device interface or shortly Comedi, is an open-source
project developing device drivers and tools for data acquisition. Currently Comedi
supports more than two hundred different DAQ boards including several different
manufacturers. Comedi consists of three separate parts. The first part including the core
functionality is a package of device drivers which are loaded into the kernel space. The
second part, comedilib, is a separately distributed package enabling user space access to
the loaded drivers. In addition, a variety of different utilities is included in comedilib.
Kernel mode kcomedilib is the third part of Comedi providing same interface as
comedilib, but in kernel space. Kcomedilib is suitable for situations, where Comedi is
used from real-time tasks of the supported real-time kernel extensions RTAI and
RTLinux. [comedi.org]
 However, Comedi cannot be used together with Xenomai – a Linux real-time
kernel extension derived from RTAI. The main reason why Xenomai and Comedi
cannot be incorporated is the device driver model used in Xenomai. The functionality of
Comedi is provided in Xenomai through Analogy which is a fork of the Comedi
project.[10]

Selection of Implementation Technologies 30

4.3.3. Selection

All three abovementioned data acquisition APIs may be used in development of
CoSMic. However, few restrictions should be followed. DAQmx should be used only, if
support of Microsoft Windows operating systems provides clear benefits. In all other
cases, especially when RT capability is required, Comedi or Analogy should be
selected.

4.4. Selection of Collision Detection Library

Selection of suitable CD library was based on brief testing of three different open-
source collision detection libraries. The tested libraries included RAPID, SWIFT++ and
CollDet. All of the mentioned CD libraries are designed for CD of rigid bodies,
satisfying the current requirements of CoSMic. The quantitative requirements for CD in
CoSMic remain unknown as the entire concept of CD is new to the development team.
However, the performance of the aforementioned libraries is expected to satisfy the
requirements of CoSMic. In the current state, the most important factors affecting the
selection of suitable CD library include:

 Usability
 Programming language of the library should be C or C++
 Cross-platform support
 Possibility to visualize the moving objects and collisions

 The first tested library, RAPID, is developed in C and does not have any
dependencies to other libraries. Pure C implementation indicates cross-platform support,
which was further verified on Microsoft Window XP and Linux operating systems. API
of RAPID is very simple, the developer is provided with only four functions. Three of
these functions are used in building of objects and the remaining function is responsible
for performing collision queries. Despite the simplicity of the API, RAPID appears to
be relatively complicated to use; the modeled objects must be constructed from
triangles, which can be very difficult task in case of complex objects.
 To overcome the problem of building models from single triangles another
library, SWIFT++ was tested. SWIFT++ is completely written in C++ and includes
cross-platform support similar to RAPID. SWIFT++ implements an object importer
allowing usage of objects modeled with different tools. The greatest issue found in the
testing of SWIFT++ was lack of support for current compilers. In both, Windows XP
and Linux, the provided source code did not compile without several modifications.
Even after successful compilation, the library did not function as reported.
 The third library – CollDet appeared to be the most promising solution for the
requirements of CoSMiC. The following section provides an overview of CollDet.

Selection of Implementation Technologies 31

4.4.1. CollDet

CollDet is a CD library developed by Computer Graphics group of Clausthal University
of Technology. The primary application domain of CollDet is 3D real-time applications.
The cross-platform support of CollDet is similar to the two previously presented CD
libraries. One of the key differences of CollDet when compared against SWIFT++ or
RAPID, is that CollDet does not manage the models itself. An additional library called
OpenSG is used to move and store the objects.
 OpenSG is an open-source cross-platform scene graph1 library designed to
provide an API for development of real-time 3D graphics programs, such as VR
applications [41]. CollDet uses OpenSG to store the objects, their alignments and
positions.
 Functionality of CollDet is based on a simplistic API providing only functions
necessary for the developer. In a general case the developer is required to use only three
different functions of the API. Firstly, object of class describing collision pipeline is
constructed to establish a new CD pipeline. In the second phase, each participating
object is registered as an input of the pipeline by calling. The final step is to provide the
pipeline with information regarding collision response, which CollDet handles through
virtual callback class. Thus different collision responses can be defined for each object
pair.

4.4.2. Testing of Selected Collision Detection Library

The usability and basic functionality of CollDet was tested by developing a simple
program simulating collision detection between a moving 3D assembly and a static
target object. The used object models are presented in Figure 4.3 Graphical
representation of the objects used to test functionality of CollDet library, where the 3D
assembly is constructed from three heptahedrons, each representing single linear
actuator. The static target object is modeled as a sphere.

1 Scene graph is a hierarchical data structure storing representation of a graphical scene.

Selection of Implementation Technologies 32

Figure 4.3 Graphical representation of the objects used to test functionality of CollDet library

The scene graph storing the information required to produce the presented graphical
scene is described in Figure 4.4. The graph scene is built mainly from two different
kinds of nodes, namely transformation node and geometry node. The latter nodes are
responsible for describing the geometry of a single object, whereas the first contains
information regarding position and rotation of the object. In addition, a root is required
to maintain the tree structure. CollDet must be provided with the geometry nodes of
each object of interest, transformation information is retrieved automatically by
traversing the scene graph tree.

Figure 4.4 Structure of a scene graph representing a 3D assembly and spherical target object

x

z

y

Linear actuators

Cone-shaped end-effector

Object for testing
collision detection

Root node

Transformation
X-direction

Geometry
X-direction

Transformation
Z-direction

Geometry
Z-direction

Transformation
Y-direction

Geometry
Y-direction

Transformation
End-effector

Geometry
Y-direction

Transformation
End-effector

Transformation
Static object

Color/Material
Static object

Geometry
X-direction

Selection of Implementation Technologies 33

Creation of simple objects and scenes using OpenSG was found to be relatively easy,
especially when in-built primitive geometries, such as heptahedrons, cylinders and
spheres provide sufficient accuracy. If more complex objects are required, third-party
modeling tools, such as Autodesk 3ds Max [42] or Blender [42] can be used to create
the objects.

Figure 4.5 Collision detection with CollDet

Implementation of CollDet on top of the OpenSG scene graph was found to be
effortless. Collision pipeline was created and the geometry nodes were registered with
the respective function. A simple callback class calculating the amount of occurred
collisions was implemented to test how accurately CollDet performs in this particular
case. Different parts of the 3D assembly object were collided to the spherical target
object in order to find out whether CollDet detects all collisions or not. Figure 4.5
illustrates two different cases where collision was found. In the first case, the end-
effector touches the surface of the sphere, but does not penetrate it. In the second case,
the end-effector completely penetrates the surface of the sphere.

4.5. Key Findings

The requirements relating to scalability and performance of each subsystem are very
different. In addition, one of the required APIs is available only in Microsoft Windows
operating systems. Many of the requirements indicate that selection of a distributed
architecture would be justified. Moreover, the requirements for real-time capable
subsystems as well as the proposed machine vision functionalities call for high
computational capabilities. The functionality required from the entire control software is
recapitulated in Figure 4.6. The key components in the scope of this work are indicated
with red colour.

End-effector touching the
surface of the object

End-effector penetrating the
surface of the object

Selection of Implementation Technologies 34

Figure 4.6 Proposed functionality for the Control System of Microrobotic Platform

The limitations of the hardware were studied mainly from the perspective of support for
the selected operating systems. Other possible hardware related constraints were left to
be further studied in the architectural design. Existing hardware were found not to
severely limit the development as most of the presented components are capable of
communicating with standard bus technologies implemented in most of the modern
operating systems. In most cases, the required API is available directly in the OS and
further libraries are not required. Both of the control boards related to the ViS are
capable of standard serial communication using the RS-232. Moreover, the used camera
employs communication based on the IEEE1394 standard, which is also well
established in most of the operating systems. [18][19]
 The proposed structure of DAQS does not pose any operating system related
issues; a large variety of different DAQ devices are supported by all of the operating
systems as presented in the previous section.
 The MiS is the only part of the system that limits the selection of operating
system. The communication over USB between computer and the SmarAct interface
module requires proprietary libraries available only for Microsoft Windows. However,
the requirements of MiS can be limited to the computer node responsible for controlling
MiS, other parts of the system may run on different OS, providing that the
communication between the nodes is platform independent.

Selection of Implementation Technologies 35

4.6. Selected Technologies and Design Principles

The presented user requirements and available hardware interfaces led to selection of a
distributed architecture. CoSMic will propose usage of Linux on all possible computer
nodes. The subsystems with real-time constraints shall run on a dedicated computer
powered by Linux and a real-time kernel extension. Selection of used real-time kernel
extension is left for the developer of the particular subsystem.
 CoSMic will be developed in C++ incorporating the Qt application development
framework. The proposed primary selection for data acquisition is Comedi or Analogy,
depending on the selected kernel extension. However, if a computer node running
Microsoft Windows requires DAQ capability, the NI-DAQmx from National
Instruments should be selected.
 CollDet library is selected as the current approach for CD. Selection of the
library is supported by the performance evaluation presented in [46]. Further, CollDet is
easy to use and allows visualization through OpenSG. Other aspects promoting CollDet
is multi-thread support and compatibility with Qt [47]. Implementation of CD for
CoSMic is not in the scope of this thesis. However, the architecture should be designed
in a manner which allows an easy integration of CD implementation in further stages of
the development.

5. ARCHITECTURE

Defining the concept of software architecture is a relatively difficult task; there are
literally tens of different definitions by different authors. Within this work, the
following definition is used:
 Software architecture describes systems organization and functionality on high level of
abstraction. The most important aspect of software architecture is to collect the
development team’s key decisions regarding the structure, behaviour and relationships
of the contributing components. [29][30]
 This chapter describes the software architecture of Control Software for
Microrobotic Platform (CoSMic). Section 5.1 presents three architectural patterns
which were considered as the most prominent options during the architectural design
process. Section 5.2 describes the architecture of Control Software for Microrobotic
Platform on general level. Section 5.3 introduces CoSMic-Frame – a simple framework
designed to be used in application development for MP. The two remaining sections
concentrate on describing two subsystems of CoSMic. Section 5.4 presents the
architecture of a subsystem responsible for controlling the MiS related hardware.
Section 5.5 discusses the architecture of a subsystem controlling DAQS.

5.1. Selected Architectural Patterns for Distributed
Computing

One of the most important architectural issues related to distributed systems is coupling
of network technology and the actual program code. The issue becomes significant in
scenarios where the program code should be ported to other environment or if changes
are made to the used network technology. For example, in some cases the physical
implementation of the used network might be changed due various reasons, such as
insufficient performance of the network or companywide upgrading of the network
technology. In such a case, tight coupling of the program code and the network related
functionality may lead to complete rewriting of the program. A similar scenario applies
for cases where application is ported to a domain where the used network technology
differs from the development environment. Therefore decoupling of the program code
and the network related functionality is an important topic. The following subsections
introduce three different architectural patterns proposed to overcome the
aforementioned issue.

Architecture 37

5.1.1. Broker Pattern

The first pattern, known as broker pattern, is proposed for systems where independent
cooperation between two distributed components is required. Main motivation of the
pattern comes from separating the actual application code and the network related
details; an application residing on server or client should not require knowledge
regarding the implementation or physical location of the counterpart. The mechanism
presented in this pattern allows the client programs to invoke methods of remote
services as if they were local. [2]
 In broker pattern, each node of the network should include an instance known as
the broker. The main purpose of the broker is to register interfaces and locations of the
local components. Registration is required to gain visibility throughout the distributed
system. If client wishes to invoke functionality provided by a remote component, it
invokes the local broker in order to obtain a client-side proxy, which acts as a local
substitute of a registered remote component. The client-side proxy collaborates with the
client and server-side brokers to forward the client’s request to the remote component.
Same route is used to pass the possible results back to the client. [2]
The broker pattern is often presented together with an additional component called
bridge, which is responsible for encapsulating the network-specific functionality. Figure
5.1 illustrates structure of the broker pattern including the bridge instance. [2][28]

Figure 5.1 Relationships of the classes participating in broker pattern

5.1.2. Client Proxy Pattern

The second architectural software pattern presented in Figure 5.2 is known as client
proxy. Client side application willing to access the services provided by a remote
component must comply with data format and network protocol used at the server side.
To enhance the reusability of the client side application the Client Proxy pattern adds an
additional component, a client proxy, on the client sides address space. Purpose of the
client proxy is to provide the client application with an interface identical with the one
provided by the remote component. The client proxy is responsible for mapping all the

Architecture 38

client side invocations to the remote component. Further, the client proxy must
reinterpret the possible return messages into a format understood by its client. [2]

Figure 5.2 Overview of client – remote component communication with client proxy pattern

Unlike the broker pattern, client proxy is unable to achieve location-independent
communication. In client proxy pattern, the client must obtain the client proxy prior to
initiating communication with the remote component. Therefore the client side must be
aware of the remote component’s location. Client-side proxy pattern can be used when
constructing a client-side broker of the broker pattern. However the pattern is also
usable as such. [2]

5.1.3. Invoker Pattern

The last presented architectural pattern is called invoker pattern. Invoker pattern
resembles client proxy, but the network related functionality is encapsulated on the
server side. Invoker pattern encapsulates the server-side application component from the
network related tasks. If the application component would manage the network related
tasks itself, portability and reusability of the component would be difficult – especially
if the used network technology changes. Figure 5.3 presents an overview of the invoker
pattern.

Figure 5.3 Overview of client – remote component communication using invoker pattern

Invoker pattern can be deployed in several different ways, depending on the desired
level of complexity. In the simplest solution, a single invoker is deployed to serve all
the components residing in the server. This solution might be feasible when the number
of served components remains low. However, if the number of components is increased

Architecture 39

dramatically, a design where each component gets served by dedicated invoker might be
preferred.

5.2. Distributed Architecture for Microrobotic Platform

The distribution of the CoSMic presented herein, is based on the observation made in
the previous chapters. CoSMic is divided into four packages each of which is
responsible for controlling a specific part of MP. Responsibilities of the packages are as
follows. Control of MiS (MiCo) is responsible for controlling all MiS related hardware.
MiCo provides the operator with the functionality required in control of the MiS
actuators, recording and re-executing actuator trajectories and preventing the actuators
from colliding with other hardware of CoSMic. Control of ViS (ViCo) implements
functionality required in image acquisition, visualization and image analysis with MV.
Control of DAQS (DAQCo) is responsible for acquiring, storing and visualizing data
from the sensors attached to DAQS. Real-time extension implements possible future
real-time constrained subsystems. For example, the real-time extension might be needed
when implementing closed-loop control with strict performance requirements.

The use cases of each part of CoSMic are presented in Figure 5.4, which also
presents the intentioned distribution.

Figure 5.4 CoSMic - required packages and related use case diagrams

The presented uses cases aim to highlight the domain of each package. In MiCo, the
most essential functionality is illustrated by use case Move actuator. Move actuator
represents the functionality required to move single SmarAct actuator. It includes
detection of potential collisions, described in Test Collisions. The functionality
illustrated in Move actuator is also required in use cases Re-execute Trajectory and
Synchronous Movement. The first provides means for re-executing trajectories stored in

FiberStation FiberVision Real-time Extension

Architecture 40

Store trajectory and the latter allows the operator to move multiple actuators in
synchronous manner. DAQCo contains three use cases, namely Acquire data, Visualize
data and Store data. The first represents the functionality required in data acquisition
from a sensor attached to DAQS. The second describes how the acquired data should be
visualized. The third use case illustrates storing of the acquired data into a file. ViCo is
divided into four separate use cases. Acquire images is a use case comparable to
DAQCo Acquire data, it describes how image acquisition can be started, what
parameters must be taken into account and what high-level operations ViCo performs
during image acquisition. Store images illustrates storing of the acquired images as
video file or as a sequence of image files. Control peripherals represents the
functionality required to control the motorized objective and the illumination system.
Visualize acquired images describes how the acquired images should be visualized.
ViCo subsystem called Machine Vision represents the proposed MV system. The most
significant MV related use case is Analyse images which analyses each acquired image
prior to visualization. Analyse images includes another use case, Run MV algorithms,
which describes how selected MV algorithms are executed. Possible images analysis
related object tracking is described by Track objects. Real-time extension and related
use cases are herein provided for merely illustrative purposes. More detailed analysis of
RT requirements related to CoSMic must be conducted prior to further designing the RT
capable subsystems.

Control of ViS (ViCo) is assigned with a dedicated computer due to the possibly
high computational requirements of the proposed MV system. The actual requirements
remain unknown until MV software has been implemented. However, it is safe to
assume that at least one desktop computer is required to suffice for the needs of the
ViCo. The computer where the implementation of ViCo resides is referred in this thesis
as FiberVision. The MV is presented in Figure 5.4 as a subsystem of ViCo to emphasize
the requirements it may have towards the core functionality of ViCo. The MV may
require several computation intensive operations, such as copying and converting
images to different formats. Architecture of ViCo should take into account the possible
effects by implementing thread-safe core functionality and data buffers. This thesis does
not address the architecture or the design of ViCo into more details, as ViCo is
developed in a thesis work parallel to this work. The functional requirements presented
in Section and the architectural requirements based on CoSMic-Frame are followed in
the development of ViCo. In its current state, most of the functionality of the ViCo has
been implemented. More detailed description of the ViCo is available after the related
thesis work has been finalized [31].

The second computer, known as FiberStation, is proposed to host Control of
MiS (MiCo) and Control of DAQS (DAQCo). The grounds for having MiCo and
DAQCo in the same domain lie in the required communication between the packages.
Some of the sensors connected to DAQCo may damage, if their operation range is
exceeded. Fast communication between these two parts ensures that the devices of
MiCo may quickly react upon certain outputs of DAQCo. The second reason is the

Architecture 41

possible implementation of force-feedback with haptic device using sensors attached
into DAQCo. Physical relocation of DAQCo would greatly increase the network traffic,
as some input devices may require update frequencies of several hundred Hertz.

5.2.1. Network Communication

As mentioned previously, the communication between the different computers of
network is initially planned to be implemented using TCP/IP sockets. However the
architecture should allow the development team to change the used network protocol
without affecting the functionality of the application code. In order to fulfill this
requirement, an invoker-like pattern with a multithreaded approach is proposed.
 Motivation behind the multi-threaded approach is to enable execution of several
server-side applications on one single computer. Furthermore, the server hosting the
applications should provide an efficient mechanism for communication between
multiple clients and the server-side applications. In single threaded server, instructions
sent from multiple remote locations are executed in a serialized manner. Each
connection must wait until the instructions of the previous connection have been
processed and forwarded to respective application. The pattern presented in the
following aims to enhance performance of the server by serving each incoming
connection in a different thread.
 The pattern, presented in Figure 5.5, encapsulates the network related
functionality into three instances. ClientSideConnection implements the
required client-side functionality, such as client-side TCP/IP socket.
ServerListener is responsible for listening and accepting incoming client-side
connections. The third instance, ConnectionHandler is responsible for handling
the run-time communication between client-side and server-side.

Figure 5.5 Structure of the communication related functionality

 Division of network related functionality between ServerListener and
ConnectionHandler was made in order to achieve concurrency between the client-

Architecture 42

side connections. Each connection accepted by ServerListener is handled in
separate thread dedicated to ClientSideConnection.
 The fourth instance participating in the pattern is Application Invoker
which provides the functionality similar to the invoker instance presented in Section
5.1.3. Serialization is avoided by creating ApplicationInvoker per server-side
application. Thus incoming connections are queued only when multiple Connection
Handler instances are required to call same instance of ApplicationInvoker.
 The intended initial communication between participating instances is shown in
the sequence diagram presented in Figure 5.6. The sequence assumes that an instance of
Server Listener has been created and started to listen incoming connections. Before
client-side application may communicate with server-side application, a communication
line between server-side and client-side must to be established. The initialization of a
new connection is triggered by client-side application which calls
ClientSideConnection initiating the connection to given address of
ServerListener. Upon incoming connection request, the Server Listener listening
to incoming connections wakes up and creates new instance of
ConnectionHandler representing the server-side of the communication of a single
client. Possible tasks related to initialization of the connection, such as hand-shaking are
performed by the ServerListener. ConnectionHandler replies to the
ClientSideConnection and new connection is established. Finally
ClientSideConnection notifies client-side upon successfully established
connection.

Figure 5.6 Sequence diagram presenting initialization of communication between client-side application and server.

The run-time communication between client-side and server-side applications is
presented in Figure 5.7. The sequence is initiated by the client-side application, which
calls the ClientSideConnection. The function call arguments must include
identifier of the invoked server-side application, identifier of the invoked function and
the required parameters.

Architecture 43

Figure 5.7 Run-time communication between client-side application and server-side application

ClientSideConnection parses the arguments into a message which is forwarded
to the respective server-side ConnectionHandler. ConnectionHandler
forwards the message to respective ApplicationInvoker which converts the
received message into name of the invoked function and argument list. In the final
phase, ApplicationInvoker invokes the desired function of the server-side
application.

5.2.2. Communication on Network Node Level

The subsystems residing on the same physical location require communication to
exchange data related to measurement results and possible error states. The data
exchanged between different parts of CoSMic is typically either event based messaging
or continuous flow of data from an external source, such as DAQ hardware or camera.
The difference between the two methods of data exchange is the quantity of the
transferred data. Therefore different approaches are proposed to satisfy the requirements
of both of the presented cases. Within this section the event based messaging is not
further discussed, but the Qt signal-slot mechanism provides excellent possibilities for
forwarding messages between different parts of CoSMic. The possibilities of the signals
and slots are presented more in details in Chapter 6.
 Figure 5.8 presents a Qt framework based pattern for data exchange of
continuous measurement data using a data buffer. The pattern is mainly designed for

Architecture 44

cases, where large amounts of data are produced and only the latest data is in the
interest of the consumer instance. The pattern involves three main participants
ProducingApplication, ConsumingApplication and DataBuffer, which
couples the two aforementioned. The pattern aims to hide the producer and consumer
instances from each other by using another instance called Connector to connect the
required methods. In addition, the pattern can be used for resolving the classical
producer-consumer problem by implementing a container class to store several
measurement values at the DataBuffer. Moreover, implementation of mutual
exclusion (mutex) operations is required. The functionality of the pattern is defined by
the structure of the DataBuffer.

Figure 5.8 Data exchange between application threads using a data buffer

In order to maintain desired encapsulation, the initialization of the instances
participating in the pattern must be performed by a third party. Figure 5.9 presents a
simple initialization sequence, where an instance of Connector performs the
initialization. The sequence starts by creating an object of ProducingApplication
and ConsumingApplication. The ProducingApplication is the owner of
Data Buffer, thus responsible for its creation. When all required instances have
been created, the Data Buffer is connected to the ConsumingApplication
through the Connector. Connector performs a query to
ProducingApplication and receives a pointer to the DataBuffer. After
successful acquisition of the pointer, the Connector forwards the pointer to
ConsumingApplication and connects the producer-side notify signal to
consumer-side receiveNotification slot.

Architecture 45

Figure 5.9 Initialization sequence of continuous data exchange using buffer

In some cases, the buffering of acquired data may require additional operations, which
are not in the scope of the producer-side. For example, the consumer-side may require
different data format than the producer is able to provide. Tight coupling of the required
data conversions with the producer may lead to a situation where implementation of
new functionality would require complete rewriting of the producer-side program. In
order to prevent such situations, it might be useful to implement the data conversions
into the used buffer. However, the pattern presented in Figure 5.8 should not be used in
such a case; if the data conversion is sufficiently complex, the notify signal would be
emitted prior to accomplishment of the data conversion. Figure 5.10 presents Active
buffer, a modification of the previously presented DataBuffer, where the
responsibility of notifying the consumer-side applications is assigned to DataBuffer
instead of ProducingApplication. Functionality of both variations is almost
identical, but Active buffer guarantees finalizing of the required data conversions prior
to notification.

Architecture 46

Figure 5.10 Data exchange with Active buffer

5.3. CoSMic-Frame

CoSMic-Frame is a simple framework designed to be used in application development
for Microrobotic Platform (MP). The framework describes the general requirements and
design principles including threading and data exchange related issues. Further, the
framework aims to enable execution of any CoSMic-Frame based application on a
server and as a stand-alone application.

5.3.1. Structure

All applications based on CoSMic-Frame inherit an abstract base class
CosmicApplicationBase. Figure 5.11 presents the
CosmicApplicationBase, which is in fact inherited from QThread. The
reasoning behind the used inheritance is identical with the case presented in network
communication. Structure of the CosmicApplicationBase is simple and aims to
provide the developer with relatively free hands – it does not interfere with the internal
structure of the application. Each application developed according the rules of the
framework may include only one GUI component. However, the GUI component may
be a composite of several GUI components. When running in a stand-alone mode, the
possible GUI is automatically loaded. The GUI component can also be used when
running the application on a server, by passing the application specific GUI components
to CosmicServerGui, which acts as the main GUI.

Figure 5.11 Abstract base class for applications complying with CoSMic-Frame

Architecture 47

The implementation of the abstract CosmicApplicationBase class is presented in
Figure 5.11.

5.3.2. Network Communication

Network communication in CoSMic-Frame is based on the pattern proposed in Section
5.2.1. Schematic overview applying the pattern to the communication scheme between
the FiberVision and FiberStation is shown in Figure 5.12. The client-side, FiberStation
includes always minimum of two separate threads, called Application logic thread and
Main thread. Application logic thread is responsible for executing instances common for
the entire client-side computer node. For example, the required client-side socket object
resides in the Application logic thread. The amount of threads on the client-side is
increased by one per each hosted CoSMic application. Thus deployment of MiCo and
DAQCo would increase the thread count to four. The Main thread, also known as the
GUI thread, is reserved exclusively for instances of graphical user interfaces.
 The server-side contains minimum of three threads: Socket Server thread, Main
thread and Application thread running a single application. When a client-side socket is
connected, the number of Client Connection threads is increased by one per each new
connection. The restrictions of the Main thread are similar on the server-side as
described for the client-side.

Figure 5.12 High-level architecture of FiberVision and FiberStation

CosMiC-Frame provides ready implementation of the required server-client pair. The
implementation uses TCP/IP sockets, but the used communication protocol can be
changed with relatively small effort.

FiberStation (client)

Application Threads

MiCo

DAQCo

Main / GUI thread

Application
logic

FiberVision (server)

Main / GUI thread

Client Connection
thread

Telemanipulation
device(s)

Application Threads

ViCo acquisition

ViCo Machine Vision
Extension

ViCo peripheral control

C
on

tro
l m

es
sa

ge
s

M
ea

su
re

m
en

t d
at

a M
easurem

ent data

Control messagesMeasurement data

Socket Server
Establish communication

Architecture 48

5.4. Architecture of MiCo

Architecture of MiCo is multi-threaded employing threading and synchronization
mechanisms provided by the Qt framework. The core functionality of the MiCo is
distributed between several classes, some of which run in separate threads. The
architecture of MiCo aims to maintain the threading provided by the SCU3DControl
API for each individual SmarAct device. Serialization is avoided whenever possible and
the API of MiCo provides communication with each device through different thread.
The architecture of MiCo presented in Figure 5.13 is largely inspired by the Qt signal-
slot mechanism which is used in event based communication between objects residing
in separate threads. Figure 5.13 simplifies the architecture by ignoring the user interface
classes of MiCo, which are discussed in Section 6.1. The following describes core
functionality of the system, which is distributed between DeviceManager, Device
and DeviceListener classes. Classes DeviceCommander and
CollisionManager are further discussed in Section 6.1.2.

DeviceManager can be described as the business logic of the MiCo. It
initializes the hardware, owns the objects used in communication between
SCU3DControl API and provides some of the MiCo API functions. However the
DeviceManager does not contribute to the run-time communication with
SCU3DControl API, but reassigns the responsibility to Device objects.

Architecture 49

Figure 5.13 Architecture of MiCo

Device represents an individual SmarAct device and runs in its own thread. The
counterpart required to receive incoming messages from the API is
DeviceListener which also has a dedicated thread. Instances of these two classes
are responsible for all run-time communication with the SmarAct hardware. Data
exchange between Device and respective DeviceListener objects is provided
through DeviceDataContainer. DeviceDataContainer contains
information of each SmarAct actuator connected into the particular SmarAct device.
Actuators with an in-built sensor are represented by PositionerCL class and
actuators without sensor have own dedicated class called PositionerOL.
Implemententation of new actuator types is supported through abstract base class
PositionerBase.
 Purpose of the data exchange class DeviceDataContainer is complete
decoupling of Device and DeviceListener. Decoupling is desirable due to the OS
requirements of SCU3DControl API. The answer retrieval procedure discussed in
Section 4.2 included usage of Windows API event handles. In fact, the answer retrieval
is the only procedure related to SCU3DControl API which requires usage of Windows
specific functions. Decoupling ensures that platform specific functionality is

Architecture 50

encapsulated to one single class. This may be beneficial if the API is later on released to
other platforms.

5.5. Architecture of DAQCo

The main responsibilities of DAQCo include data acquisition, buffering, visualization
and storing the acquired data into a file. Each of these tasks is assigned with a dedicated
thread as illustrated in Figure 5.14. The core of DAQCo is data acquisition, which is
performed in Daq thread. The acquired data is stored in a data buffer residing in Buffer
thread. After buffering, the data can be written into a file in Recorder thread.
Visualization of the acquired data is performed in GUI thread.

The high-level architecture of DAQCo is similar with MiCo. The most
significant difference between these two subsystems is the amount of data that needs to
be exchanged. Communication in MiCo is event based and requires only small amounts
of data to be transferred between different instances. On the other hand, DAQCo may
acquire several thousands of samples per second. Thus efficient and reliable data
buffering is important. Structure of the DAQCo data buffer is extended from the buffer
presented in Figure 5.10.

Figure 5.14 High-level architecture of DAQCo

The DAQCo data buffer includes two different methods of data exchange designed for
different purposes. Small volumes of data can be exchanged using a Qt signal and a
function retrieving the latest data from the buffer as presented in Figure 5.10. However,
the mechanism is not suitable for large quantities of data. In DAQCo, a mechanism
employing QSharedPointer and the event queue of QThread is used for
exchanging large quantities of data between the data buffer and the instance responsible
for storing the data into a file. The mechanism is further discussed in Section 6.2.
 The DAQCo uses NI-DAQmx API presented in Section 4.3. The data exchange
of the API and DAQCo employs callback functions, which the developer must provide

Architecture 51

to the API in form of function pointers. Figure 5.15 presents the architecture of DAQCo
on class level. The communication between the NI-DAQmx API and DAQCo is
directed through UDaqCore, a class which is responsible for all data acquisition related
activities. UDaqCore also owns the data buffer UDaqBuffer which is responsible for
providing the acquired data to other parts of CoSMic. The functionality required in
storing the acquired data into a file is provided through UDaqFileWriter.

Figure 5.15 Architecture of DAQCo

The presented architecture of DAQCo disregards all GUI related classes. An overview
of the GUI is provided in Section 6.2.

5.6. Summary

This chapter described the distributed architecture of CoSMic including three
subsystems MiCo, ViCo and DAQCo. Section 5.1 revised a selection of design patterns,
which were considered as suitable starting point for development of the architecture.
Section 5.2 presented the overall architecture together with use cases illustrating the
required functionality of each subsystem. Two of the subsystems, MiCo and DAQCo,
are assigned to a single computer named as FiberStation. MiCo implements control of
the micropositioners attached to MiS, whereas DAQCo is responsible for storing and
visualizing the measurement data. Collaboration between the two subsystems is
required to protect the hardware from damages. The third subsystem ViCo runs on
dedicated computer called FiberVision. ViCo provides detailed visualization of the MP
by interfacing cameras attached to the system. General guidelines and rules regarding
development of CoSMic were laid out in form of a simple framework in Section 5.3.
Finally two subsystems, MiCo and DAQCo, were discussed more in details in Section
5.4 and Section 5.5 .

6. DESIGN AND IMPLEMENTATION

This chapter presents an overview of the design and implementation for two subsystems
of CoSMic. Section 6.1 concentrates on the design of MiCo, followed by description of
DAQCo in Section 6.2. Section 6.3 discusses integration of the two subsystems. Finally
Section 6.4 describes the state of current implementation.

6.1. MiCo

The Control of Micromanipulation System (MiCo) is designed to control the SmarAct
micropositioners attached to MiS. The main purpose of MiCo is to implement an API
and a user interface, which provides high-level functionality for the needs of CoSMic.
Another important aspect in the design of MiCo is tracking the position of each actuator
attached into MiS. Tracking of the positions is essential, since the actuators do not have
a global coordinate system making development of some of features very tedious. For
example, collision prevention is impossible without the knowledge of each actuator’s
current position.

6.1.1. Overview

A typical characterization process from the view of MiCo starts by grasping the object
with microgrippers attached to two 3D assemblies. Before the object can be grasped, the
3D assemblies must be moved to correct positions. After grasping the object, the 3D
assemblies move the object to the measurement area. Synchronous movement of the 3D
assemblies is to maintain correct alignment of the object. In the next stage of the
characterization process, the desired properties are measured. A single measurement
procedure may include several repetitions. Thus the 3D assemblies are required to move
the object several times from one place to another. In the final phase, the 3D assemblies
move the object to a predefined location to wait for disposing.
 The characterization procedure described above is converted into a high-level
use cases in Figure 6.1. The most important single functionality required from MiCo is
clearly communication with the SmarAct devices through SCU3DControl API.

Design and Implementation 53

Figure 6.1 Core functionality of MiCo

All of the control modes presented in Section 3.4 require the functionality described by
use case Control Actuator, which represents all run-time communication from MiCo to
the SCU3DControl API. Implementation of SCM is represented by two additional use
cases Store Trajectory and Re-execute Trajectory. The two remaining control modes,
ACM and ECM require implementation of CD indicated by the use case Test Collisions.
 Figure 6.2 recapitulates the core classes of MiCo providing asynchronous
communication between MiCo and SCU3DControl API. Class Device represents a
single SmarAct device controlling up to three individual actuators. All function calls to
the API are sent from Device. Thus the class provides the functionality described in
the use cases Set parameter and Move. The DeviceListener class is the counterpart
of Device; it waits for incoming data from the API and forwards received data to
DeviceDataContainer. Each Device has its own DeviceDataContainer
which is responsible for storing all device specific data, including positions and statuses
of each individual positioner. DeviceDataContainer can be thought as the class
that provides the functionality required to accomplish the use case Get parameter.
DeviceDataContainer has also an important role in the implementation of
position-awareness required by the CD.

Design and Implementation 54

Figure 6.2 MiCo core classes

Use cases Synchronous Movement, Re-execute Trajectory require the functionality
described in Move. Synchronous Movement is similar to use case Move, but moves
several actuators in synchronous manner. Thus the functionality described in Move is
required for several actuators simultaneously. Synchronous Movement is implemented
in DeviceManager. Use case Store Trajectory records movements of the SmarAct
actuators into a file. Whenever an actuator is moved, its new position is stored to
DeviceDataContainer . Store Trajectory uses Get Parameter, which retrieves
actuator’s parameters from DeviceDataContainer. Re-execute Trajectory re-
executes the trajectories stored by Store Trajectory. Re-execution is performed as
sequence of Move use cases.

The number of active threads in MiCo depends on the number of devices
attached to the SmarAct control module. Figure 6.3 illustrates threading of MiCo
through an example where one SmarAct device is present.

Figure 6.3 Threading and cross-thread communication in MiCo with one SmarAct device attached

Application thread

DeviceManager

Internal threads

Collision detection

MiCo – SCU3D
communication

Device

SCU3D – MiCo
communication

CollisionManager

DeviceCollider

DeviceListener

DeviceDataContainer

Design and Implementation 55

The number of threads is always increased by two when an additional SmarAct device
is attached into the SmarAct control module as each new SmartAct device requires a
Device and a DeviceListener.

6.1.2. MiCo API

Application programming interface of MiCo consists of DeviceManager,
DeviceCommander and CollisionManager, presented in Figure 5.13. Functions
provided by the DeviceManager are mainly intended for initializing and shutting
down MiCo. In addition a function providing access to Device objects is provided for
configuration purposes. DeviceCommander provides the run-time access to
Device and DeviceDataContainer. The functions provided by
DeviceCommander have identical functionality with the functions of Device, but
DeviceCommander only emits a Qt signal to respective Device, thus decoupling
the API from the internal implementation of Device. Implementation of
moveAbsoluteCall, which is used to invoke moveAbsolute function at
Device, is shown as an example in Program 6.1.

Program 6.1 Example function of DeviceCommander class emitting the received values as Qt signal

DeviceCommander objects do not include any information regarding the Device
they interact with. The DeviceManager is used as a mediator to connect
DeviceCommander and Device objects. The sequence required to establish
communication between an application using MiCo API and Device is illustrated in
Figure 6.4.

void DeviceCommander::moveAbsoluteCall(unsigned int channelIndex, int
 position, unsigned int holdTime) {
 emit moveAbsolute(channelIndex, position, holdTime);
}

Design and Implementation 56

Figure 6.4 Sequence of connecting DeviceCommander and given Device

DeviceManager provides two types of communication between the
DeviceCommander and Device objects. If DeviceCommander is used only to
receive status and position messages from Device, it can be declared as an input
device. Respectively DeviceCommander used only to move the actuators can be
declared as an output device. The combination of the two communication types is also
possible. Implementation of the connectDeviceCommander function is presented
in Program 6.2 to enlighten the situation.

Program 6.2 Function connectDeviceCommander connecting provided DeviceCommander object to given
Device object

Third class involved in MiCo API, CollisionManager is responsible for collision
detection (CD) and collision prevention. The implementation of CD of MiS hardware is

void DeviceManager::connectDeviceCommander(unsigned int deviceIndex,
 DeviceCommander *commander,
 QVector<UManipPositionerType> &positionerData) {
 Device* device = mDevices.at(deviceIndex).device;
 if (DeviceCommander::InputCommander ||
 DeviceCommander::InputOutputCommander) {
 connect(commander, SIGNAL(moveStep(uint,int,uint,uint)), device,
 SLOT(moveSteps(uint,int,uint,uint)));
 connect(commander, SIGNAL(moveRelative(uint,int, uint)), device,
 SLOT(moveRelative(uint,int,uint)));
 connect(commander, SIGNAL(moveAbsolute(uint,int, uint)), device,
 SLOT(moveAbsolute(uint,int,uint)));
 }

 if (DeviceCommander::OutputCommander ||
 DeviceCommander::InputOutputCommander) {
 connect(device, SIGNAL(completed(uint,uint)), commander,
 SIGNAL(movementFinished(uint, uint)));
 connect(device, SIGNAL(positionChanged(uint,uint,int)),
 commander, SIGNAL(positionChanged(uint,uint,int)));
 }
}

Design and Implementation 57

based on the CollDet and OpenSG scene graph libraries presented in Section 2.4. Figure
6.5 presents an overall structure of MiCo CD.

Figure 6.5 MiCo collision detection

CollisionManager contains all the graphical objects, which describe all
geometrical features of CoSMic. In other words, CollisionManager creates a VR
representing CoSMic. All objects, including each actuator are included in a scene graph
constructed according to the principles described in Section2.4. The other participant of
the CD is CollisionCallbackBase, which handles occurred collisions.
CollisionCallbackBase is a virtual class, thus allowing customizing of the
callback events. In addition, the developer may write different collision response
implementation for each object. Purpose of MiCo CD is to prevent collisions by
simulating movements of the actuators prior to moving them in the real-world.
Sequence describing the CD procedure is presented in Figure 6.6.

Design and Implementation 58

Figure 6.6 MiCo collision detection procedure

When Device receives instructions to move an actuator to a new location, the legality
of the movement is evaluated by forwarding the instructions to CollisionManager.
CollisionManager tests possible collisions by moving VR object respective to the
actuator into the given location. After moving the actuator to correct position,
CollisionManager calls the CD pipeline which calculates the possible collisions
and calls the CollisionManager through a callback function. If a collision was
detected, the CollisionManager moves actuator’s VR object back to its original
position. Otherwise the Device is instructed to continue to movement in the real-
world.

6.1.3. Communication

Communication between MiCo and SCU3DControl API is routed through different
classes during initialization and run-time. The subsequent sections describe the
difference between the two communication phases.

Design and Implementation 59

Initialization

Initialization process of MiCo involves initialization of the hardware, creation of
Device and DeviceListener objects for each found device and data exchange
regarding each individual actuator attached to the MiS. Communication between MiCo
and the SCU3DControl API differs from the run-time communication; the hardware
initialization commands and queries regarding the amount of attached devices are
performed by DeviceManager.
 The initialization of MiCo described in Figure 6.7 starts by calling
initializeDevices from DeviceManager which performs a query acquiring
all available devices attached to the SmarAct control module. The command provided
by the API explicitly states that the query must be made prior to actual initialization of
the devices. In the next step the hardware is initialized using respective function of the
API. After successful initialization, the DeviceManager creates Device and
DeviceListener objects for each SmarAct device found in the first step of the
initialization process. The created objects automatically move to new threads and the
communication between MiCo and the API is reassigned from the DeviceManager
to Device objects. However the DeviceManager remains in initialization mode and
sleeps until each Device has been successful initialized. The created Device objects
start their own initialization process by sending a query regarding type of attached
positioner to each channel. The DeviceListener objects react upon incoming data
packets and process the content. If the data packet carries information regarding the type
of the positioner it is passed to the DeviceDataContainer. Otherwise, the packet
is discarded.

Design and Implementation 60

Figure 6.7 MiCo initialization procedure

Depending on the content of the packet received by the DeviceDataContainer
object, an object representing positioner with or without sensor is created. After each
positioner attached to each channel has been studied, the DeviceDataContainer
objects inform the respective Device objects, which then report to the
DeviceManager. After each Device has reportedly finished the initialization
DeviceManager forces the system to run-time mode.

Moving Single Positioner

Movement of a single positioner involves several steps. Type of the commanded
positioner must be checked and collision detection must analyze possible obstacles on
the path of the positioner prior to sending the command to hardware. Figure 6.8 presents
a sequence of function calls required to move a positioner from one position to another.

Design and Implementation 61

Figure 6.8 Call sequence for moving a positioner from MiCo API to SCU3DControl API

The presented sequence does not discuss the answer retrieval after the movement has
been finished. Whenever a movement is successfully finished, MiCo queries the
position of the positioner and updates the data to DeviceDataContainer, which
passes the information to all objects connected to positionUpdate signal. Figure
6.9 presents the sequence performed after SCU3DControl API reports completed
movement.

Figure 6.9 Activities after DeviceListener object has received message indicating completion of movement

The sequence presented above describes only those targets of the positionChanged
signal which are within the implementation of MiCo. However the Qt signals can be

Design and Implementation 62

forwarded to other parts of the system, by simply connecting the signal at
DeviceCommander to a slot or signal of another instance.

6.1.4. User Interfaces

MiCo includes an in-built GUI which provides the most common functionality required
in the characterization process. Design of the GUI is component-based and scalable. In
addition, the GUI can be easily integrated to any other Qt based GUI. The architecture
of the GUI presented in Figure 6.10 includes three types of GUI components. On the
lowest level resides PositionerBaseGUI, a base class for a single positioner. The
class itself is able to describe a positioner which does not include a sensor. The
positioners with a sensor are described by ClosedLoopGUI class which is specialized
from PositionerBaseGUI. In order to enable easy creation of new types of
positioner GUI classes, virtual functions are used in implementation of the
PositionerBaseGUI. DeviceGUI describes the GUI on device-level, each
Device is described by individual DeviceGUI which is connected to signals and slots
of the respective Device.

Figure 6.10 Architecture of MiCo GUI

The ownership of the GUI components is assigned to Device. However due to the
requirements of Qt framework, the GUI components must be created in the main thread.
This requirement is ensured by passing the main thread through all participating classes
in their constructors as a QObject. For example, declaration DeviceManager
constructor is DeviceManager::DeviceManager(QObject* parent =0).
 MiCo allows easy implementation of custom user interfaces through
DeviceCommander class. Similarly, the mechanism can be employed in integration
of ViCo and MiCo.

6.2. DAQCo

The Control of Data Acquisition System (DAQCo) is designed to gather data from
several sensors attached into DAQS. The used sensors and respective physical quantities
may vary depending on the used configuration. Also several different sensor types may
be used to measure same phenomenon. Therefore DAQCo must provide the operator

Design and Implementation 63

with the possibility of configuring each sensor individually. Some sensors require
relatively complex conversions between the given output and the physical quantity of
interest. The operator should be able to create custom polynomial scales which can be
used to convert acquired electrical signals into the measured physical quantity. The
main purpose of the DAQCo is to acquire, store and visualize data. The use cases
indicating the required functionality are presented in Figure 6.11.

Figure 6.11 Core functionality of DAQCo

6.2.1. Callback Functions and Data Exchange

The DAQ functionality of DAQCo is based on two classes, namely UDaqCore and
UDaqBuffer, presented in Figure 5.15. UDaqCore implements the functionality
related to data acquitision, whereas UDaqBuffer is responsible for buffering the
acquired data. The UDaqCore data acquisition is based on callback functions provided
by NI-DAQmx API. The run-time execution of the data buffer UDaqBuffer and the
core class UDaqCore is presented in Figure 6.12.

Design and Implementation 64

Figure 6.12 Run-time execution of UDaqBuffer and UDaqCore

After the initialization, UDaqCore and UDaqBuffer sleep waiting for external
signaling. UDaqCore awakes upon callback function called from NI-DAQmx API. The
callback function converts the received data and forwards it to the data buffer, which
awakes when incoming data is detected. UDaqBuffer stores the latest values of the
received data and informs other instances by emitting dataReady and
dataChunkReady signals. The conversion performed at UDaqCore aims to
provide the data in more convenient form to the UDaqBuffer; NI-DAQmx API
callbacks provide the data in static C array, which is inconvenient to use with Qt
signals. UDaqCore creates a QVector container and copies the received data chunk
into the container object. The container is wrapped into a QSharedPointer which
deletes the data after all references to it have been deleted. [26]
 The dataChunkReady signal transfers a reference to the created
QSharedPointer, thus allowing receivers of the signal to access the entire data
chunk. When all instances have stopped using the data chunk, it is automatically
deleted. Figure 6.13 illustrates the usage of QSharedPointer together with the
dataChunkReady signal.

Design and Implementation 65

Figure 6.13 Usage of QSharedPointer in communication between UDaqCore, UDaqBuffer and

UDaqFileWriter

If the thread receiving the dataChunkReady signal is busy, the signal stores the
QSharedPointer in the event loop of the thread. Event loop acts as FIFO buffer,
thus guaranteeing that the receiving thread gets the data chunks in same order as they
were sent [26]. The presented design for forwarding large data chunks from the data
buffer was implemented due to mere curiosity of the developer. The design could as
well be replaced with traditional ring buffer and set of synchronization objects to
guarantee proper access rights for all participating instances.
 The other method accessing the acquired data through the data buffer is
dataReady signal. The signal does not pass any parameters to receiver and is purely
informative. The instances connected to the dataReady signal must call the
getLatestData function the access the stored data. The reading and writing
functions of the data buffer are protected with mutual exclusion to prevent simultaneous
reading and writing.

6.2.2. Graphical User Interface

GUI of DAQCo consists of four separate GUI components. Two of the components,
UDaqMainWidget and UDaqFileWidget are standard Qt GUI components, thus
they inherit Qt’s user interface base class QWidget. UDaqMainWidget is the base of
the DAQCo GUI, it contains only menus and does not include any functionality visible
to operator. UDaqFileWidget implements a GUI for storing the acquired data into a
file. The third component UDaqConfigureDialog is a configuration dialog and

Design and Implementation 66

inherits QDialog. UDaqConfigureDialog allows the user to configure each
channel of the DAQ unit, to assign different conversions between units and to alter
active channel configuration. The fourth component UDaqPlotter is a data plotter
which visualizes the data received from the data buffer. UDaqPlotter is based on
Qwt – a library specifically designed for scientific plotters [48]. The architecture of the
GUI is presented in Figure 6.14.

Figure 6.14 Architecture of DAQCo GUI

The GUI is a composite of several objects where UDaqMainWidget has the
ownership of all participating instances. The structure enables easy integration of the
GUI with other Qt based GUI.

6.3. Integration of MiCo and DAQCo With An Input Device

This section presents an example application integrating MiCo and DAQCo with a
haptic device. The libraries for the haptic device have been developed in-house and the
design is in line with CoSMic-Frame [29]. The high-level architecture of the application
demonstrating the integration of DAQCo and MiCo is presented in Figure 6.15.

Figure 6.15 High-level architecture of the developed application

The application developed for this demonstration includes three classes.
TestApplication is the core of the application and responsible for connecting all
the required instances to each other. Two additional classes
TestAppDAQCoConverter and TestAppMiCoConverter are used to enable
communication between the HapticCore, UDaqBuffer and DeviceCommander.
TestAppMiCoConverter is responsible for assigning the output values of the

HapticCore API

Input buffer Output buffer

DAQCo MiCo

Force sensor data Velocities

Design and Implementation 67

HapticOutputBuffer to each positioner of the 3D assembly. Respectively,
TestAppDAQCoConverter assigns the sensor readout values to different axis of the
haptic device. The architecture is presented more in details in Figure 6.16.

Figure 6.16 Architecture of the developed application

As presented in Figure 6.16 the TestApplication is not required in the run-time
communication. The two additional instances TestAppDAQCoConverter and
TestAppMiCoConverter are proposed to run in same thread with the sender or
receiver of the data to prevent creation of unnecessary threads.

6.4. Current Implementation

The current implementation of CoSMic consists of stand-alone applications of MiCo
and DAQCo. Both of the applications have successfully been used in characterization of
paper fibres [16]. Figure 6.17 presents the GUI of MiCo, which customized to control
two 3D assemblies, 2D assembly, rotary actuator and two end effectors. The GUI is
constructed from several GUI components as proposed in Section 6.1.4.

Design and Implementation 68

Figure 6.17 User interface of MiCo

An example of a MiCo GUI component, presenting control of single actuator with an
in-built sensor is presented in Figure 6.18. The GUI component provides functionality
required to move the actuator. In addition, the operator may exclude the actuator from
collision detection and decide whether the actuator moves synchronously with another
actuator. The functionality of the MiCo GUI component is described more in details in
Appendix E.

Figure 6.18 MiCo GUI component for closed-loop controlled SmarAct micropositioners

In its current state, MiCo is capable of producing the functionality required in MCM
and SCM. MiCo provides automatic detection of different actuator types. The
functionality provided to the operator is selected according to the detected actuator type.
In addition the GUI can be configured through a simple configuration file, which
defines structure of the GUI.

In addition to in-built GUI, MiCo provides an API allowing the developer’s to
integrate the functionality of MiCo into other application. The developed API is thread-
safe and complies with the CoSMic-Frame described in 5.3. MiCo API has been
demonstrated by integrating MiCo API with an in-house developed API for haptic
device.

Design and Implementation 69

 The current implementation of DAQCo provides the operator with a GUI
capable of handling multiple DAQ units and multiple sensors simultaneously. The GUI
implements the functionality, which is required to visualize and store data received from
different sensors through DAQ unit. An overview of DAQCo GUI is presented in
Figure 6.19, more detailed description of the GUI is available in Appendix F.

Figure 6.19 DAQCo user interface

Like MiCo, DAQCo also provides an API including all the functions that are provided
through the GUI.

7. CONCLUSIONS AND FUTURE WORK

This chapter includes the conclusions of this thesis and future work for development of
Control Software for Microrobotic Platform.

7.1. Conclusions

This thesis presented CoSMic, a control software designed for the needs of
Microrobotic Platform (MP) used in the characterization of paper fibres. Current
implementation of CoSMic, including two separate applications, provides GUI for two
subsystems of the MP. The first application, Control of Micromanipulation System
(MiCo), allows the operator to manipulate the characterized paper fibres. The latter
application known as Control of Data Acquisition System (DAQCo), is responsible for
acquiring data from different sensors attached to MP. In addition, DAQCo is capable of
storing and visualizing the acquired data.
 The presented work concentrates on several issues of application development
for MP. The most important aspects cover cross-platform support, scalability and
reusability of the produced program code. Cross-platform support is reached in several
parts of the control software through careful selection of the used third party program
libraries. Furthermore, Qt – a cross-platform application development framework is
used to enhance portability of the developed program code. Scalability is supported
through the distributed architecture of CoSMic. A design pattern that decouples the
network technology from the actual program code is implemented to guarantee
reusability of the developed core classes. The design and architecture of CoSMic
provides a solid basis for application development on MP using well-established design
principles.

However, several proposals for improvements were found during the course of
this thesis. Based on the feedback of the operators, need of an additional feature for
MiCo was identified. A configurable hardware initialization sequence for MiCo is
proposed. Purpose of the sequence is to move all MiS related hardware to predefined
starting position, thus enhancing the repeatability of the characterization procedure. In
addition, the initialization sequence should include the possibility to calibrate of each
actuator in given order.
 SCU3DControl API used in MiCo to control MiS hardware was found to lack
the possibility of moving several actuators in a synchronized manner. Therefore, the
current version of CoSMic omits synchronization and executes the movement related
API function calls in series. This approach does not guarantee synchronous behavior. If
the API does not return sufficiently fast from previous function call, the behavior of the

Conclusions and Future Work 71

actuators is unpredictable. In order to reach genuinely synchronized behavior, changes
in the implementation of SCU3DControl API are required. Another issue related to
SCU3DControl API is its extendibility. Extensive usage of C++ #define directive
within the API may result in tedious changes of the developed program code, when a
new version of the API is released. The problem could be avoided through
implementation of an additional layer of abstraction between the SCU3DControl API
and the program code.
 Selection of Qt framework as the base of CoSMic has proven to be effective
solution from the developer’s point of view. The Qt signal-slot mechanism and the
cross-platform multithread support have greatly reduced the time required in the
implementation of CoSMic. In addition, cross-thread communication is less prone to
errors as Qt signal-slot mechanism provides a thread-safe method for cross-thread
communication. Furthermore, Qt’s object-oriented approach for GUI development
enhances reusability of developed GUI components. Especially in the implementation
of MiCo, the component based GUI has been an effective and easily configurable
solution. Operators using the MiCo are required to make only minor modifications to
MiCo configuration file when the hardware configuration is altered.

Section 5.3 presented CoSMic-Frame simple framework designed to be used in
application development for Microrobotic Platform. One of the most significant
deficiencies of the framework is lack of guidelines for exception handling. In Qt-based
applications exception handling is a topic of particularly high importance, as Qt does
not fully support C++ standard exceptions. Hence creation of guidelines for exception
handling within CoSMic-Frame should be concerned as a high priority task.

7.2. Future Work

Continuation of this thesis aims to fulfill the requirements of a fully automated paper
fibre characterization process. However, in order to reach the functionality required in
ACM, each subsystems of CoSMic requires additional features.
 In MiCo, the development of collision prevention for MiS hardware has been
started and the fundamental concept together with the required CD library has been
selected. Implementation of the collision prevention will continue the multithreaded
approach of CoSMic. The development of collision prevention should be directed
towards path-planning, which is an essential feature for fully automated fibre
characterization. A thorough investigation of suitable path-planning libraries should be
conducted in order to reach optimal solution. However, implementation of path-
planning does not have high priority; the collision prevention alone has a large impact
on the usability of CoSMic. After successful implementation of collision prevention,
integration of DAQCo and MiCo should take place. Implementation of collision
prevention prior to integration is proposed to avoid unnecessary modification of the
GUI; collision prevention is likely to result in large changes of the MiCo GUI, as the
visualization of the VR may be desired. An additional MiCo related task is the

Conclusions and Future Work 72

implementation of the aforementioned hardware initialization sequence. This task is has
high priority as the impact to usability is obvious.
 Visualization and image based measurements are important issues for usability
as well as for automatic fibre characterization. The ongoing implementation of ViCo
will provide a solid base for development of the required machine vision (MV)
algorithms. The developed MV algorithms should be able to recognize single fibre, to
measure its length and to provide MiCo with position data and to enable automatic
grasping of the characterized fibre. Integration of the FiberVision and FiberStation
network nodes is required in order to enable communication between ViCo and MiCo.
The communication will be based on the CoSMic-Frame communication presented in
5.3.2. Communication between the ViCo and MiCo is thought to have high priority, as
it may reveal the possible deficiencies of the proposed network communication.
Development of MV algorithms may run parallel with all other activities, as it is
independent from CoSMic. Thus algorithm development may be assigned to another
party in order to reduce workload of the development team.

The future vision of MP includes extension of the existing hardware with
different kinds of actuators. Some of these actuators may require real-time control in
order to reach reliable behaviour. This aspect promotes implementation of the real-time
capable extension presented in 5.2.

This section presented the most significant features required to automate the
paper fibre characterization with MP. The development team is in the belief that the
goal of fully automated paper characterization can be reached within a year.

 73

8. REFERENCES

[1] A. Puder, K. Römer, F. Pilhofer, Distributed systems architecture: a middleware
approach, ISBN-10: 1558606483, Morgan Kaufmann, 2005

[2] F. Buschmann, K. Henney, D. C. Schmidt, Pattern-Oriented Software
Architecture Volume 4: A Pattern Language for Distributed Computing, ISBN-
10: 0470059028, Wiley, 2007

[3] E. Gamma, R. Helm, R. Johnson, J. M. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, ISBN-10: 0201633612, Addison-Wesley,
1994

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-
Oriented Software Architecture Volume 1: A System of Patterns, ISBN-10:
0471958697, Wiley, 1996

[5] M. Rintala, J. Jokinen, Olioiden ohjelmointi C++:lla, ISBN: 952-14-0936-3,
Talentum Media, 2005

[6] V-P. Eloranta, J. Koskinen, M. Leppänen, V. Reijonen, A Patternlanguage for
Distributed Machine Control Systems, ISBN: 978-952-15-2318-2, Tampereen
Yliopistopaino, 2010

[7] B. P. Douglass, Real-time UML Advances in The UML For Real-Time Systems,
ISBN: 0321160762, Addison-Wesley, 2006

[8] N. Audsley, A. Burns, Real-time System Scheduling, Technical Report No. YCS
134, Department of Computer Science, The University of York, UK, 1990

[9] Linux kernel documentation [www][cited 1.4.2010]. Available at
http://www.kernel.org/doc/

[10] Xenomai: Real-Time Framework for Linux [www][cited 1.4.2010]. Available at
http://xenomai.org

[11] RTAI - the RealTime Application Interface for Linux from DIAPM [www][cited
1.4.2010]. Available at http://rtai.org

[12] D. J. Tracy, S. R. Buss, B. M. Woods, Efficient Large-Scale Sweep and Prune
Methods with AABB Insertion and Removal. [cited 1.4.2010]. Available at
http://sweepandprune.com/Daniel_Joseph_Tracy/Sweep_and_Prune_files/SAP_
paper.pdf

[13] OPCODE documentation [www][cited 1.4.2010]. Available at
http://www.codercorner.com/Opcode.htm

[14] S. A. Ehmann, M. C. Ling, Accurate and Fast Proximity Queries Between
Polyhedra Using Convex Surface Decomposition, Eurographics 2001, Volume
20, Issue 3, 2001

 74

[15] Speedy Walking via Improved Feature Testing for Non-Convex Objects.
[www][cited 1.4.2010]. Available at http://gamma.cs.unc.edu/SWIFT++

[16] P. Saketi, “Microrobotic Platform for Manipulation and Flexibility
Measurement of Individual Paper Fibers”, Master of Science Thesis, 2010

[17] SmarAct [www][cited 5.4.2010]. Available at http://www.smaract.de
[18] Sony XCD-U100 data sheet [www][cited 5.4.2010]. Available at

http://pro.sony.com/bbsc/ssr/product-XCDU100/
[19] 12x Zoom Vision System [www][5.4.2010]. Available at

http://www.machinevision.navitar.com/catalog/?c=372
[20] SCU3D Simple Control Unit Reference Guide, SmarAct, 2009
[21] Korundum / QtRuby [www][cited 10.4.2010]. Available at

http://rubyforge.org/projects/korundum/
[22] About PyQt [www][cited 10.4.2010]. Available at

http://wiki.python.org/moin/PyQt
[23] Qt Jambi Reference Documentation [www][cited 10.4.2010]. Available at

http://qt.nokia.com/doc/qtjambi-4.4/html/com/trolltech/qt/qtjambi-index.html
[24] J. Thelin, Foundations of Qt Developement, ISBN-10: 1590598318, APress,

2007
[25] Qt – a Cross-platform application and UI framework [www][cited 1.4.2010].

Available at http://qt.nokia.com
[26] Qt 4.6 Reference Documentation [www][cited 1.4.2010]. Available at

http://qt.nokia.com/doc/4.6
[27] NI-DAQmx Software [www][cited 10.4.2010]. Available at

http://www.ni.com/dataacquisition/nidaqmx.htm
[28] Pattern: Broker [www][cited 1.4.2010]. Available at:

http://www.vico.org/pages/PatronsDisseny/Pattern%20Broker/
[29] P. Kruchten, The Rational Unified Process – An Introduction, Addison-Wesley-

Longman, 1999
[30] (ISO/IEC 42010:2007). Systems and software engineering – Recommended

practice for architectural description of software-intensive systems.
[31] L. Podivin, Unknown title, Master of Science Thesis, 2010
[32] M. Ling, J. Canny, A Fast Algorithm for Incremental Distance Calculation”,

IEEE International Conference on Robotics and Automation, 1991
[33] Robotic Motion Planning [www][cited 15.4.2010]. Available at

http://www.cs.cmu.edu/~motionplanning/
[34] Software Library for Interference Detection [www][cited 1.4.2010]. Available at

http://www.win.tue.nl/~gino/solid/
[35] RAPID - Robust and Accurate Polygon Interference Detection [www][cited

1.4.2010]. Available at http://gamma.cs.unc.edu/OBB/
[36] I-COLLIDE [www][cited 1.4.2010]. Available at http://gamma.cs.unc.edu/I-

COLLIDE/

 75

[37] M. Ramaekers, Introduction to Advanced Computer Architecture: Parallel
Collision Detection [electronical book][cited 1.4.2010]. Available at
http://parallel.vub.ac.be/documentation/pvm/Example/Marc_Ramaekers/parallel.
html

[38] P. Terdiman, Sweep-and-prune [electronical document][cited 10.4.2010].
Available at http://www.codercorner.com/SAP.pdf

[39] D. Baraff, Dynamic Simulation of Non-Penetrating Rigid Bodies, Ph. D
dissertation, 1992

[40] G. Zachmann, Optimizing the Collision Detection Pipeline, Proceedings of the
First International Game Technology Conference, 2001

[41] OpenSG [www][cited 10.4.2010]. Available at http://www.opensg.org
[42] Autodesk 3ds Max Products [www][cited 15.4.2010]. Avaible at

http://usa.autodesk.com/adsk/servlet/pc/index?siteID=123112&id=13567426
[43] Blender [www][cited 1.4.2010]. Available at http://www.blender.org
[44] S. LaValle, Planning Algorithms [electronical book][cited 15.4.2010]. Available

at http://planning.cs.uiuc.edu/
[45] G. Zachmann, Virtual Reality in Assembly Simulation – Collision Detection,

Simulation Algorithms, and Interaction Techniques, Ph.D dissertation, 2000
[46] CollDet – A Library for Collision Detection [www][cited 14.4.2010]. Available

at http://cg.in.tu-clausthal.de/research/colldet/index.shtml
[47] CollDet Reference Manual 1.0 [www][cited 22.5.2010]. Available at

http://cg.in.tu-clausthal.de/research/colldet/data/CollDetDoc.pdf
[48] Qwt - Qt Widgets for Technical Applications [www][cited 23.5.2010]. Available

at http://qwt.sourceforge.net/

APPENDIX A QT SIGNAL/SLOT MECHANISM

Program A.1 presents usage of Qt signal/slot mechanism in form of an example. Class
MySender inheriting QObject represents an object capable of emitting signal
mySignal. The signal is emitted upon calling member function shoot, which is
declared as a slot. It is important to understand that slots are member functions;
behavior of a slot differs from ordinary member function only when connected to a
signal using QObject::connect. MyReceiver class represents a class capable of
connecting to a signal by the slot mySlot.
 Fundamentally, the most important part of the example presented in , resides in
the main function. After creating an object from both of the presented classes,
mySignal and mySlot are connected. The QObject:connect is provided with
pointers to both of the objects and with names of the respective signal and slot. The
mechanism indicates that the participating objects do not require information about
each other. After connecting the two objects together with the signal-slot mechanism,
the program does a normal function call to MySender::shoot, which commands the
MySender object to emit the signal mySignal. Based on the meta-object data, the
MyReceiver::myReceiver slot is called in response to the emitted signal.

Qt Signal/Slot Mechanism

Program A.1 Usage of Qt signal/slot mechanism

class MySender: public QObject {
 // required macro
 Q_OBJECT
 public:
 MySender();
 public slots:
 void shoot();
 signals:
 // no implementation!
 void mySignal();
};

class MyReceiver: public QObject {
 // required macro
 Q_OBJECT
 public:
 MyReceiver();
 public slots:
 // must have implementation!
 void mySlot();
};

void MySender::shoot() {
 emit mySignal();
}

int main() {
 MySender sender;
 MyReceiver receiver;
 connect(&sender, SIGNAL(mySignal()),
 &receiver, SLOT(myReceiver)));
 sender.shoot();
 return EXIT_SUCCESS;
}

Qt Signal/Slot Mechanism

Compatibility of QThread and Xenomai was tested with a small program presented in
Program A.2.

Program A.2 Test program running QThread under Xenomai

class XenomaiTestThread: public QThread {
 RT_TASK rt_this_task;
protected:
 void run();
};

void XenomaiTestThread::run() {
 mlockall(MCL_CURRENT | MCL_FUTURE);
 rt_task_shadow(&rt_this_task, "Task 1", 10, 0);
 rt_print_init(4096, "Task 1");
}

int main() {
 XenomaiTestThread testTread;
 testThread.start();
 testThread.wait();
 testThread.quit();
 return 0;
}

APPENDIX B SCU3DCONTROL API

Program B.1 presents a simple example program describing acquisition of the
positioner type with the SA_GetSensorType_A function. Prior to sensor type query,
the initialization function SA_InitDevices must be called. In addition, the
asynchronous communication mode requires creation of an event object which is
activated in case of data reception.
The event object is registered to the specific device using
SA_SetReceiveNotification, a function which is able to inform an application
when a data packet has been received from the hardware. After the described initial
steps are taken, the SA_GetSensorType_A can be called. The hardware performs
the actual query, stores the acquired data into the data buffer of the device and uses the
event handle to inform the application program. The application retrieves the packet
from the queue using the SA_ReceiveNextPacket_A function.

Program B.1 Asynchronous retrieval of positioner sensor type

#include ”SCU3DControl.h”
#include <windows.h>

int main() {

 unsigned int channelIndex = 0;
 unsigned int deviceIndex = 0;
 SA_PACKET packet;
 HANDLE handle;
 handle = CreateEvent(NULL, false, false, NULL);

 SA_InitDevices(SA_ASYNCHRONOUS_COMMUNICATION);
 SA_MovePositionAbsolute_A(0, 0, 100, 0);
 WaitForSingleObject(handle, INFINITE);
 SA_ReceiveNextPacket_A(deviceIndex, channelIndex, &packet);
 return EXIT_SUCCESS;
}

APPENDIX C HIGH-LEVEL USE CASES

The following describes the high-level use cases of MiCo and DAQCo. Table C.1
presents MiCo related use cases Move Actuator, Record Trajectory and Run Stored
Trajectory. The functionality related to these use cases is presented in Section 6.1. The
GUI component related to herein presented use cases of MiCo is described in Appendix
E.

Table C.1 Description of MiCo high-level use cases

Use case name MiCo1: Move Closed-Loop Actuator
Performer Operator
Preconditions MiS hardware is turned on

MiCo is initialized
Description Operator enters desired coordinates into input field MiCoCL.8.. Operator presses

push button MiCoCL.6, MiCoCL.7 or MiCoCL.8 depending on which type of
movement is desired. MiCo moves the actuator to selected position

Exceptions 1. MiCo cannot communicate with SmarAct interface module. Operator is
informed with an error message. MiCo is closed and reserved memory is
released.

2. An error occurs at the actuator during the movement. Operator informed
with an error message, which describing the error.

Result Actuator moved to given position
Use case name MiCo2: Record Trajectory
Preconditions See use case MiCo1
Performer Operator
Description Operator activated trajectory recording mode from MiCo GUI and moves the

actuators as described in use case MiCo2. MiCo records each movement into a file
and wait for next movement. Operator finalizes the recording process by
deactivating trajectory recording mode from the GUI.

Exceptions See use case MiCo1

Error in generating or opening file for the created trajectory. Operator informed
with error message. Trajectory recording mode deactivated.

Result A new trajectory recorded into a file
Name MiCo3: Run Stored Trajectory
Performer Operator
Preconditions See use case MiCo1

Trajectory with legal format is available
Description Operator loads predefined trajectory into MiCo through MiCo GUI. MiCo tests

legality of the trajectory and re-executes it.
Exceptions See use case MiCo1

Trajectory format is illegal or cannot be opened. Operator informed with error
message.

Result Actuators are moved to target positions
Use case name MiCo4: Teleoperation
Performer Operator
Preconditions See use case MiCo1

Teleoperator / telemanipulator is initialized

High-level Use Cases

Description Operator assigns a target actuator for the telemanipulator. In addition, parameters
describing the relation between the movements of the telemanipulator and the
actuator are given. Operator moves the telemanipulator (e.g. joystick) and the
assigned actuator moves respectively.

Exceptions See use case MiCo1

Telemanipulator fails to communicate with MiCo. Operator informed with error
message. Actuators assigned to the telemanipulator are stopped.

Result The actuator is moved to position, which is relative to position of the
telemanipulator.

Use case name MiCo5: Test Collisions
Performer MiCo / Administrator
Preconditions Collision detection data loaded into MiCo by administrator

Operator has performed the steps described in use case MiCo1
Description MiCo forwards the parameters received through the GUI to collision detection

system, which performs the given movements in virtual reality.
Exceptions None
Result If no collisions where found, MiCo moves the actuator to given position as

described in use case MiCo1. Otherwise operator receives an error message due to
illegal movement.

Table C.2 presents the high-level use cases related of DAQCo, which have been used
as a basis for the design of DAQCo. The design of DAQCo is presented in Section 6.2
and the GUI components related to DAQCo use cases are described in Appendix F.

Table C.2 Description of DAQCo high-level use cases

Use case name DAQCo1: Visualize Data and DAQCo3: Acquire Data
Performer DAQCo
Preconditions DAQS hardware initialized with required sensors

DAQCo initialized
Description DAQCo starts acquiring data from DAQ unit immediately after initialization. A/D

converted signals are stored in a data buffer.
The signals stored in the data buffer are automatically visualized in DAQPlot.1.

Exceptions DAQCo fails to retrieve data from DAQ unit. Operator is informed with error
message. DAQCo is closed and reserved memory is released.

Result A/D converted signals are continuously stored into data buffer
Use case name DAQCo2: Store data
Preconditions See use case DAQCo1
Performer Operator
Description Operator activates data storing by entering desired file name (DAQFile.1.) and

directory (DAQFile.4.). The file name can be appended with a timestamp by
selecting “Append with time” option from DAQFile.2. Operator starts data storing
by pressing DAQFile.5. Data storing is stopped by pressing DAQFile.6.

Exceptions DAQCo fails to write to given file. Operator is informed with error message.

See use case DAQCo1

Result Incoming signals are stored in the given file

APPENDIX D ABSTRACT BASE CLASS FOR
COSMIC APPLICATIONS

Implementation of abstract base class for CoSMic application is presented in Program
D.1. The declaration shows that only few functions are implemented on the base class
level. Thus only minimal restrictions for the developer are made. The developer may
change the implementation of the event loop by writing replacement for the virtual
function customEventLoop.

Program D.1 Implementation of abstract CosmicApplicationBase class

class CosmicApplicationBase: public QThread {
Q_OBJECT
public:
 CosmicApplicationBase(QObject *guiParent=0);
 virtual void initialize()=0;
 virtual QWidget *getGui() { return mGui; }

protected:
 virtual void run() {
 if (!customEvenLoop()) {
 exec();
 }
 }

private:
 virtual bool customEvenLoop() { return false; }
 QWidget *mGui;
 CosmicApplicationInvoker *mInvoker;
};

APPENDIX E MICO USER INTERFACE

This appendix describes functionality of MiCo GUI components known as
PositionerBaseGUI and ClosedLoopGUI. The first describes a base class
capable of providing the functionality required to control an actuator, which does not
contain an integrated position sensor. PositionerBaseGUI inheriting Qt user
interface base class QWidget, is presented in Figure E.1

Figure E.1 MiCo GUI component PositionerBaseGUI

PositionerBaseGUI contains several input and output fields, which are
implemented as Qt GUI components. Description of each the fields are given in Table
E.1.

Table E.1 Input and output fields of PositionerBaseGUI

Identifier Category Description
MiCoOL.1. Output

QTextLabel
Status indicator for MiCo actuators. Three possible states:
OK…………………………….…....
BUSY……………………….….…..
ERROR…………………………….

MiCoOL.2. Output
QTextLabel

Name label for actuator. Can be changed through configuration file

MiCoOL.3. Input
QPushButton

Moves actuator forwards relatively to current position. Moved
distance in determined by fields MiCoOL.5., MiCoOL.6. and
MiCoOL.7.

MiCoOL.4. Input
QPushButton

Moves actuator backwards relatively to current position. Moved
distance in determined by fields MiCoOL.5., MiCoOL.6. and
MiCoOL.7.

MiCoOL.5. Input
QSpinBox

Number of steps performed while moving the actuator. Valid range
0-30000 steps
Note: See [20]

MiCoOL.6. Input
QSpinBox

Actuator’s control frequency that the steps described in MiCoOL.5.
are performed with. Valid range 1-18500 Hertz

MiCoOL.7. Input
QDoubleSpin
Box

Actuator’s amplitude that the steps described in MiCoOL.5. are
performed with. Valid range 15-100 Volts

MiCoOL.1. MiCoOL.2.

MiCoOL.3.

MiCoOL.4.

MiCoOL.5. MiCoOL.6. MiCoOL.7.

MiCo User Interface

Fields MiCoOL.1 and MiCoOL.2 are output fields, which provide information
regarding the actuator’s state and name. The remaining field, MiCoOL.3 – MiCoOL.7
are input fields. Each input field can be invoked by the operator, response of the GUI
component is described in Table E.1. More detailed information regarding each Qt GUI
component type is available in [26].

PositionerBaseGUI can be specialized to extend functionality of the
provided GUI component. ClosedLoopGUI, presented in Figure E.2, is used as an
example of specializing PositionerBaseGUI. ClosedLoopGUI extends the
functionality of the base class with additional features, which are required to control
SmarAct actuators with in-built position sensor.

Figure E.2MiCo GUI component ClosedLoopGUI

The input and output fields of ClosedLoopGUI are presented in Table E.2. Fields
MiCoCL.1 – MiCoCL.5 are output fields that work as indicators. These fields are
responsible for providing the operator with information such as actuator’s status, current
position and name. Fields MiCoCL.6 – MiCoCL.13 are input fields. Purpose and
description of each field is described in Table E.2.

MiCoCL.1. MiCoCL.2. MiCoCL.3.

MiCoCL.4. MiCoCL.5.

MiCoCL.6.

MiCoCL.8.

MiCoCL.7.

MiCoCL.9.

MiCoCL.10. MiCoCL.11.

MiCoCL.12.

MiCoCL.13.

MiCo User Interface

Table E.2 Input and output fields of ClosedLoopGUI

Identifier Category Description
MiCoCL.1. Output

QTextLabel
Status indicator for MiCo actuators. Three possible states:
OK…………………………….…....
BUSY……………………….….…..
ERROR…………………………….

MiCoCL.2. Output
QTextLabel

Collision detection indicator. Two possible states:

Collision detection enabled…….….

Collision detection disabled………
MiCoCL.3. Output

QTextLabel
Synchronous movement indicator. Two possible states:

Synchronous movement enabled......

Synchronous movement disabled….
MiCoCL.4. Output

QTextLabel
Name label for actuator. Can be changed through configuration file

MiCoCL.5. Output
QLineEdit

Displays actuator’s current position in micrometers

MiCoCL.6. Input
QPushButton

Moves actuator forwards relatively to current position. Moved
distance in determined by field MiCoCL.8. The button’s text can be
replaced through configuration file. In addition, a shortcut key
indicated within brackets can be changed through the configuration
file.

MiCoCL.7. Input
QPushButton

Moves actuator backwards relatively to current position

MiCoCL.8. Input
QDoubleSpin
Box

Describes the moved distance in micrometers. The type of
movement is determined by pressing MiCoCL.7., MiCoCL.8., or
MiCoCL.9.

MiCoCL.9. Input
QPushButton

Moves actuator to absolute position described in field MiCoCL.8.

MiCoCL.10. Input
QCheckBox

Determines whether movements are performed a one single
movement or a series of smaller steps. The size of maximum step is
given through field MiCoCL.11.
Note: This feature is currently disabled

MiCoCL.11. Input
QSpinBox

Describes maximum step size for sequential movement, which can
be enabled with field MiCoCL.10
Note: This feature is currently disabled

MiCoCL.12. Input
QPushButton

Enables and disables synchronous movement. The state of this
option is indicated through field MiCoCL.3.

MiCoCL.13. Input
QPushButton

Enables and disables usage of collision detection for the particular
actuator. The state of this option is indicated through field
MiCoCL.4.

APPENDIX F DAQCO USER INTERFACE

The graphical user interface of DAQCo consists of three GUI components implemented
in UDaqMainWidget, UDaqPlotter and UDaqFileWidget.
UDaqMainWidget is a composite object hosting the two other objects.
UDaqMainWidget itself provides only minimum functionality through three menus
called File, Acquisition and View, which are shown in Figure F.1. The first menu is
provides the functionality required to stop DAQCo, the second opens configuration
dialog, and the third shows or hides the UDaqFileWidget.

Figure F.1 DAQCo user interface

UDaqPlotter is responsible for providing the functionality required in visualization
of the acquired data. UDaqPlotter provides few features that allow customizing of
the visualized data. Table F.1 presents the functionality provided through
UDaqPlotter and describes types of the used Qt GUI components. More detailed
information regarding the Qt GUI components is available in [26].

UDAQPlotter

DAQPlot.1.

UDAQFileWidget

DAQPlot.2.

DAQPlot.4.

DAQFile.1.

DAQFile.2.

DAQFile.3.

DAQFile.4.

DAQFile.6.DAQFile.5.

DAQPlot.3.

DAQCo User Interface

Table F.1 Functionality of UDaqPlotter

DAQPlot.1. Output
QwtWidget

Input signals Visualization of acquired signals

DAQPlot.2. Input
QwtLabel

N/A List of acquired signals. Operator may show/hide
signals shown in DAQPlot.1

DAQPlot.3. Input
QDoubleSpinBox:
y-min
y-max
y-interval.
QPushButton:
rescale

Scales Scaling options for DAQPlot.1 y-axis.
y-min: y-axis minimum value
y-max: y-axis maximum value
y-interval: interval between y-axis major ticks
Rescale: applies the modification made to
DAQPlot.3. fields

DAQPlot.4. Input
QPushButton

Clear plotter Clears the history data of DAQPlot.1.

UDaqFileWidget is responsible for providing a GUI component, which allows
storing of the acquired data into a file. The functionality is provided through several text
input fields, which determine filename, directory and possible usage of timestamp.
UDaqFileWidget features are presented more in details in Table F.2.

Table F.2 Functionality of UDaqFileWidget

DAQFile.1. Input
QLineEdit

Base name Base for naming the recorded data.

DAQFile.2. Input
QRadioButton

Save options Time stamp option for file name entered to field
DAQFile.1. Options are:
Append with time, which appends the file name with a
time stamp containing date, hour, minutes and second.
Don’t append, which maintains to original file name

DAQFile.3. Output
QLineEdit

Full file
name

Shows whole file name, including format of the
possible time stamp

DAQFile.4. Input
QLineEdit

Directory Directory where the recorded data will be stored with
file name indicated by field DAQFile.3.

DAQFile.5. Input
QPushButton

Start
Recording

Starts recording incoming signals to file indicated by
field DAQFile.3. located in directory of DAQFile.4.

Note1: Button is disabled when pressed.
Note2: Pressing enables button DAQFile.6.
Note3: If a file indicated by the fields DAQFile.3. and
DAQFile.4. already exists, the overwriting is
confirmed with a dialog.

DAQFile.6. Input
QPushButton

Stop
Recording

Stops recording incoming signals and closes the file,
where the data has been stored

Note1: Button is disabled when pressed.
Note2: Successful closing of measurement file enables
button DAQFile.5.

DAQCo User Interface

DAQCo user interface includes an additional dialog called UDaqConfigureDialog,
which allows the operator to alter the channel configuration of the DAQ units attached
to DAQS. Illustration of UDaqConfigureDialog is presented in Figure F.2.

Figure F.2 Configuration dialog UDaqConfigureDialog

UDaqConfigureDialog dialog allows operators to configure each channel of a
DAQ unit separately. Operator may assign each channel with different output range and
visualization colour. Channel can be removed from visualization and data storing by
deactiving them. In addition, each channel may have its own custom conversion scale,
which converts the input signal into user defined unit. The custom conversion scales are
given as polynomials. The detailed functionality of UDaqConfigureDialog is
presented in Table F.3.

DAQSl.1.

DAQSl.2.

DAQSl.3.

DAQSl.4.

DAQSl.5.

DAQSl.6.

DAQSl.8.

DAQSl.9.

DAQSl.10.

DAQSl.7.

DAQSl.11.

DAQSl.14.

DAQSl.15.

DAQSl.12.

DAQSl.13.

DAQSl.16. DAQSl.17.

DAQCo User Interface

Table F.3 Functionality of UDaqConfigureDialog

DAQSl.1. Input
QDoubleSpinBox

Sampling
frequenc
y

Data acquisition sampling frequency in Hertz. Valid
range 10-15000 Hertz.

DAQSl.2. Input
QDoubleSpinBox

Plotter
refresh
rate

Refresh rate for UDaqPlotter in Hertz. Valid range
1-300 Hertz.

DAQSl.3. Output
QTableWidget

Channel
settings

Presents lists of available channels together with user
defined parameters.
Column 1: Physical address
Column 2: Assigned name
Column 3: Output minimum value in Volts
Column 4: Output maximum value in Volts
Column 5: Channel active in data acquisition
Column 6: Name of assigned custom conversion scale
Column 7: Assigned visualization colour

Note: Prior to editing fields DAQSl.4-DAQSl.15, the
channel must be selected by pressing the respective
row of DAQSl.3.

DAQSl.4. Output
QLineEdit

Selected
channel

Indicates selected channel’s physical address

DAQSl.5. Input
QLineEdit

Assigned
name

Assigns a name for selected channel

DAQSl.6. Output
QLineEdit

Assigned
colour

Indicates selected channel’s visualization colour

DAQSl.7. Input
QComboBox

N/a Assigns a new visualization colour for selected channel

DAQSl.8. Input
QDoubleSpinBox

Output
min

Assigns a new minimum output value for selected
channel. Valid range -10-10 Volts

DAQSl.9. Input
QDoubleSpinBox

Output
max

Assigns a new maximum output value for selected
channel. Valid range -10-10 Volts

DAQSl.10. Output
QLineEdit

Custom
scale

Active channel’s custom conversion scale

DAQSl.11 Input
QComboBox

N/A Assigns a new custom conversion scale for selected
channel

DAQSl.12 Input
QPushButton

View Displays the structure of selected custom conversion
scale

DAQSl.13 Input
QPushButton

Edit… Opens Custom Scale Editor dialog

DAQS1.14 Input
QCheckBox

Task
active

Activates or deactivates selected channel

DAQSl.15 Input
QPushButton

Apply Applies the modifications made to selected channel

DAQSl.16 Input
QPushButton

OK Applies the modifications made to selected channel and
closes the dialog

DAQSl.17 Input
QPushButton

Cancel Cancels the modifications made to selected channel
and closes the dialog

