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At the moment, Global Positioning System (GPS) is the only positioning system with 

global coverage. Currently, there are efforts to modernize GPS with the aim of 

improving its performance. Meanwhile, Europe is developing its own satellite 

positioning system, GALILEO. In order to provide interoperability with GPS and 

globally available navigational systems, new modulation techniques have been 

introduced. Multiplexed Binary-Offset-Carrier (MBOC) modulated signals are the main 

candidates for the future Galileo Open Services (OS) and modernized GPS L1C signals. 

Spreading waveforms corresponding to pilot and data components can be formed in a 

number of ways, including Composite Binary Offset Carrier (CBOC) and Time-

Multiplexed Binary Offset Carrier (TMBOC). CBOC is considered here because CBOC 

has been selected for Galileo E1 OS signals in the most recent Galileo SIS-ICD of 2008 

[1].  

 

This new composition of E1 signal allows different techniques for acquiring the signal, 

i.e. data-only channel, pilot-only channel and joint data and pilot channel. The 
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MBOC(6,1,1/11) power spectral density (PSD) has better performance than 

SinBOC(1,1) power spectral density because it is a mixture of BOC(1,1) spectrum and 

BOC(6,1) spectrum. MBOC modulation schemes also bring new challenges due to 

additional side lobes in the envelope of the Autocorrelation Function (ACF) compared 

with the traditional BPSK modulation used in the basic GPS signals, which make the 

signal acquisition process challenging. In order to deal with the side lobes, the steps 

‘∆tbin’ for searching the time-bin search space should be chosen carefully.  

 

The goal of this thesis has been to develop an acquisition unit based on CBOC reference 

code and analyze the performance of new acquisition unit in terms of acquisition 

performance because MBOC signal has better power spectral density compared to 

SinBOC(1,1) signal. A brief study about the choice of the time-bin step ‘∆tbin’ for 

searching the time-frequency window has been studied. Three different strategies have 

been used to acquire the signal and results are presented for each approach. The 

switching architecture model has introduced in the transmitter part which operates at 

dual frequency are also addressed under the scope of this thesis. The simulations are 

carried out with an own developed Simulink model for Galileo OS E1 signals, based on 

the most recent Galileo Signal-in-Space Interface Control Documentation.  

 

Conclusions are drawn with respect to the performance deterioration of a reference 

SinBOC(1,1) receiver compared to a reference CBOC receiver, and also with respect to 

different techniques used for acquiring the signal. Comparisons between the infinite 

bandwidth (theoretical case, typically used in literature) and a limited front-end filter 

bandwidth of 3 MHz (double-sided bandwidth) are also made. The choice of significant 

detection threshold in order to detect the signal properly and the performance 

degradation of the CBOC reference receiver when using switching architecture model in 

terms of detection probability are also presented. 
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Chapter 1  

Introduction 

In recent years, positioning and navigation based applications have seen impressive 

growth due to their application in different fields, e.g., land transportation, civil 

aviation, maritime commerce, surveying and mapping, construction, mining, 

agriculture, earth sciences, electric power systems, telecommunications, and outdoor 

recreational activities. Due to the increasing demand in the field of navigation, several 

countries started to develop or modernize their own navigational systems. For instance, 

the European Union is developing GALILEO, the Russian GLONASS is under 

maintenance phase towards modernization and the China is designing COMPASS to 

meet the positioning needs. During the past couple of years, the global positioning 

system is being modernized with the addition of new frequency bands for civilian and 

military usage. The ambition of these projects is to increase the accuracy and 

availability for all users.  

 

1.1 Motivation and Background 

The Navstar Global Positioning System (GPS) is currently the only fully operational 

global navigation satellite system (GNSS) available. Officially named as NAVSTAR 

GPS, it was developed by United States (US) Department of Defense (DoD) and 

declared fully operational on July, 1995. It uses a constellation of 24 satellites that 

provides reliable positioning, navigation and timing services to all users worldwide. The 

primary goal of the GPS was to serve military purposes [2] but later on it has been 

widely used for civilian applications, such as from personal navigation to vehicular 

application, land and maritime transportation to aircraft navigation and search and 

rescue operation to safety of life execution. However, because GPS is military 

controlled, there is no guarantee of its availability. In case GPS system is switched off, 
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the users of it will be exposed and experience the discontinuity of its service. This is one 

of the reasons, that during 90's, the European Union decided to develop its own global 

satellite navigation system under civilian control [5].  

 

The Galileo system will have a constellation of 30 satellites, which will be placed on 

three different orbital planes at an altitude of 23 222 Km above the Earth. The Galileo 

system will transmit on four different frequency bands and offer a variety of services 

like Open Service free of user charge for mass markets, Commercial Service (CS) 

which offers more precise positioning services, Public Regulated Service (PRS) 

allocated for police or defense use with controlled access, Safety-of-Life Service (SoL) 

and Search and Rescue Service (SAR) [5]. In this thesis, we will only focus on E1 OS 

signal.  

 

With the advent of the new global navigation satellite system i.e. European Galileo, 

Russian GLONASS and Chinese Compass, new modulation schemes have been 

introduced in order to provide interoperability with GPS and globally available 

navigational systems. The agreement reached in 2004 by United States and European 

Commission (EC) focusing on the Galileo and GPS coexistence stated that Binary 

Offset Carrier (BOC) modulation would be the common baseline structure for signal in 

space (SIS). Considering the recent activities carried out by the Galileo signal task force 

(STF) jointly to US experts in the Working Group A, it came out that the Multiplexed 

BOC could be a good candidate for both GPS and Galileo satellites [3].  

 

In fact, on the 26th of July 2007 US and EC announced their decision to jointly 

implement the MBOC on the Galileo open service and the GPS IIIA civil signal [5]. 

Different time waveforms can be used to produce MBOC power spectral density (PSD), 

including Composite BOC and Time-Multiplexed BOC. CBOC is considered here 

because CBOC has been selected for Galileo E1 OS signals in the most recent Galileo 

SIS-ICD of 2008. This new modulation is the sum (or difference) of two Sine-BOC (or 

SinBOC) sub-carrier waves. The one used in E1 band is called Composite Binary Offset 

Carrier modulation and it is denoted as CBOC(6,1,1/11), or, briefly, as CBOC(+) or 

CBOC(-), which is the sum (or difference) of SinBOC(1,1) and SinBOC(6,1), 

respectively. The factor 1/11 stands for the power fraction from SinBOC(6,1). The 
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CBOC(+) modulation is employed for the data channel (or E1-B), while CBOC (-) is 

used for the pilot channel (or E1-C) [4].  

 

Acquisition is the first stage in the digital signal processing section of a GNSS receiver 

that aims to get rough estimates of the Doppler frequency and code delay of the 

received signals. In the acquisition process, the received signal is correlated with locally 

generated replica of the spreading code with different code delays and frequencies, in 

order to provide correct estimates of the code phase and Doppler frequency of the 

satellite signals. The E1 OS signal is composed of two channels: the data and the pilot 

channel. The former carries the navigation data whereas the latter is data-free channel. 

This new composition of E1 signal allows one to choose different techniques in order to 

acquire the signal. The presence of pilot channel in E1 band allows the receivers to have 

the choice to acquire the data or the pilot component, or both. Since the new modulation 

CBOC(6,1,1/11) combines two sub-carrier wave components, the acquisition can be 

done either with CBOC modulated reference code, which is the same as transmitted 

signal, or with SinBOC(1,1) modulated reference code, since more than 90 percent 

power is in SinBOC(1,1) component [16]. 

 

The Power spectral density of MBOC signal is a combination of SinBOC(1,1) and 

SinBOC(6,1) power spectra (i.e., including  both  pilot and  data  channel  components).  

The contribution of the BOC(6,1) subcarrier increases the amount of power on higher 

frequencies, which leads to signals with narrower autocorrelation function (ACF) and 

then yielding better performance at the receiver level [3]. Therefore, two types of 

receiver are used here; one with CBOC reference code and one with SinBOC(1,1) 

reference code. More precisely, the reference CBOC receiver correlates the incoming 

CBOC-modulated waveform with a reference CBOC-modulated waveform (i.e., 

transmit and receive modulations are the same). The reference SinBOC(1,1) receiver 

correlates the incoming CBOC modulated waveform with a reference SineBOC(1,1)-

modulated waveform. In the second approach, the implementational complexity is 

lower and thus, it is more suitable for mass-market receivers. 

 

One challenge for the acquisition task is the new modulation type proposed for Galileo 

and modernized GPS signals. The normalized ACF of CBOC modulated signals may 

have ambiguities within ± 1 chip interval around the maximum peak [17] and therefore, 

the choice of the step for searching the time bin ‘∆tbin’ is even more crucial.  
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1.2 Thesis Objectives 

This thesis work has been carried out within 2 research projects of the Department of 

Communications Engineering (DCE) at Tampere University of Technology: the 

Academy of Finland-funded project “Digital Processing Algorithms for Indoor 

Positioning Systems” and the EU FP7-funded project under grant agreement number 

227890 “Galileo Ready Advanced Mass Market Receiver (GRAMMAR)”. The main 

objective of this thesis is to analyze the effects of CBOC modulations on signal 

acquisition stage. The goals have been to implement and analyze the performance of 

CBOC reference receiver, variable time-bin steps (steps ‘∆tbin’ for searching time-bin 

window) and switching architecture (transmitter operates at dual frequency i.e. E1 and 

E5 bands) model for signal acquisition. 

1.3 Thesis Contributions 

The primary contributions of this thesis are summarized as follows: 

 

• Implementation of a new acquisition unit based on CBOC reference signal. 

 

• Modification of the existing acquisition block in such a way that also steps 

higher than 1 BOC/CBOC sample are allowed. 

 

• Implementation of different acquisition strategies i.e. data-only, pilot-only and 

joint data and pilot channel to acquire the signal. 

 

• Implementation of switching architecture model at transmitter unit. 

1.4 Thesis Outline 

The thesis is organized as follows: 

 

• In Chapter 2, a brief overview of Galileo system and signals is presented; in 

particular, the focus is put on BOC modulation. The BOC modulation is 

explained in detail, followed by a description of MBOC and CBOC 
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modulations. In the end, detailed discussion about E1 OS signals characteristics 

are presented. 

 

• In Chapter 3, the acquisition principles in GNSS receiver are illustrated. The 

false alarm and detection probabilities are also discussed here. 

 

• In Chapter 4, detailed Simulink model developed at TUT is described, further 

discussion explains the implementation of new block and modification of 

existed block in the model. 

 

• In Chapter 5, Simulink-based simulation results are presented and a discussion 

on the results is included. 

 

• In Chapter 6, Matlab-based simulation results are presented and comparisons 

with Simulink results have been made. 

 

• Chapter 7 draws the conclusion of this research and provides recommendation 

regarding the future work.  

 



Chapter 2  

Emerging Galileo System and CBOC 

Modulation 

Global Navigation Satellite System is a specific term for a satellite navigation system 

that provides autonomous geo-spatial positioning with global coverage. The Global 

Navigation Satellite System is being progressively used throughout the world in order to 

overcome many of the limitations of today’s air navigation infrastructure. GNSS allows 

a small electronic receiver to compute position (longitude, latitude and altitude) with 

accuracy of few meters using time signals transmitted from satellites. 

 

Nowadays, United States Global Positioning System [7] is the only fully functional, 

available global navigation system. The Russian GLONASS is a GNSS under the 

maintenance phase towards modernization. Russia accelerated the modernization 

program with a goal of restoring global coverage by 2012 [9]. People’s Republic of 

China has decided to expand its regional BEIDOU navigation system into global 

COMPASS navigation system by 2015 [8]. The European Union’s GALILEO 

positioning system is a GNSS in initial deployment phase, scheduled to be operational 

in 2013. This chapter starts describing the Galileo system and its signal characteristics, 

then it discusses BOC and CBOC modulations and in the end, E1 signal characteristics 

are explained in detail. 

2.1 Introduction to Galileo System 

Galileo is a global navigation system currently being built by a joint initiative of the 

European Commission and the European Space Agency (ESA) in order to provide 

Europe its own independent global civilian controlled satellite navigation. It was named 

after the Italian astronomer Galileo Galilei. The European positioning system is 
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officially referred to as just Galileo. The €3.4 billion project [6] is an alternative and 

complementary to the U.S. Global Positioning System and the Russian GLONASS. 

 

Galileo system will provide a highly accurate, guaranteed global positioning service 

which will lead to a fully civilian controlled global satellite navigation system. It will be 

an autonomous system inter-operable with GPS and globally available. A user will be 

able to measure position using the same receiver with the help of at least four satellites 

in any combination. Moreover, Galileo system will provide real-time positioning 

accuracy down to the meter range, which will be a milestone for a publicly available 

system [5]. It is based on the same technology as GPS, i.e., "Direct Sequence Code 

Division Multiple Access (DS-CDMA)". Galileo aims to provide more precise 

measurements than the GPS and GLONASS including the height (altitude) above sea 

level and better positioning services at high latitudes.  

2.1.1. Galileo System Overview 

The Galileo system will be based on a constellation of 30 satellites (27 operational and 

3 spares), orbiting around 3 circular Medium Earth Orbit (MEO) planes at an altitude of 

23 222 Km, and at an inclination of 56 degree. The placement of satellites is made in 

such a way that each plane will contain nine operational satellites, equally spaced, 40 

degrees apart, plus one spare satellite to replace any of the operational satellites in case 

of failure. The Galileo navigation satellites will provide good coverage even at latitudes 

up to 75 degrees north, which correspond to the North Cape and beyond. The basic idea 

is that at any time four satellites are located above the horizon for all points of the Earth 

[1]. 

 

The following Galileo satellite-only services [1][11] will be provided worldwide and 

independently from other systems by combining Galileo signals-in-space: 

 

• The Open Service results from a combination of signals, free of user charge, and 

it provides position and timing performance competitive with other GNSS 

systems. 

 



 SIMULINK-BASED ACQUISITION UNIT FOR GALILEO E1 CBOC MODULATED SIGNALS 8

  

• The Safety-of-Life Service improves the open service performance through the 

provision of timely warnings to the user when the latter fails to meet certain 

margins of accuracy. It will be mostly used for professional applications.  

 

• The Commercial Service provides access to two additional signals, in order to 

allow a higher data throughput rate and to enable users to improve accuracy. It 

will provide high accuracy and guaranteed service. 

 

• The Public Regulated Service provides position and timing to specific users 

requiring a high continuity of service, with controlled access. Two PRS 

navigation signals with encrypted ranging codes and data will be available. 

 

• The Galileo support to the Search and Rescue Service represents the 

contribution of Europe to the international COSPAS-SARSAT co-operative 

effort on humanitarian Search and Rescue activities. Galileo satellites will be 

able to pick up signals from emergency beacons carried on ships, planes or 

persons and ultimately send these back to national rescue centers. From this, a 

rescue centre can know the precise location of an accident [13]. 

2.1.2. Galileo Signal Characteristics 

The Galileo navigation signals are transmitted in the four frequency bands indicated in 

Figure 2.1. These frequency bands are E5a, E5b, E6 and E1. Different frequencies have 

been assigned to the Galileo system depending on the service type.  Frequency bands 

are divided into lower L-band (corresponding to E5a and E5b frequency bands with 

carrier frequencies, fc = 1176.45 MHz at E5a and fc = 1207.14 MHz at E5b), middle L-

band (i.e., E6 frequency band with fc = 1278.75 MHz) and upper L-bands (E2-L1-E1 

band with fc = 1575.42 MHz) [10].  It can be noticed that both GPS and Galileo use 

certain identical carrier frequencies. This guarantees the ability to attain interoperability 

between the two systems [11]. OS is planned to operate on the E5a, E5b and E1 carriers, 

SAR on the E5a, E5b and E1 carriers, CS on the E5b and E6 carriers, and PRS on the 

E6 and E1 [10]. 

 

The  Galileo  frequency  bands  have  been  selected  in  the  allocated  spectrum  for  

Radio Navigation  Satellite  Services  (RNSS)  and  in  addition  to  that,  E5a,  E5b  and  
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E1  bands  are included  in  the  allocated  spectrum  for  Aeronautical  Radio  

Navigation  Services  (ARNS), employed by Civil-Aviation users, and allowing 

dedicated safety-critical applications [1]. 

 

 

Figure 2.1: Galileo signal in space [1]. 

A summary of Galileo signal specifications, based on current standards [1] is shown in 

Table 2.1. Galileo satellite transmits six different navigation signals: E1, E6, E5, E5a 

and E5b signals. Table 2.1 also shows the carrier frequencies of all the signals. Note 

that E5a and E5b signals are part of E5 signal in its full bandwidth. 

Table 2.1: Carrier frequency per signals. 

Signal Carrier Frequency (MHz) 

E1 1575.420 

E6 1278.750 

E5 1191.795 

E5a 1176.450 

E5b 1207.140 

 

Table 2.2 shows the receiver bandwidths centered on the carrier frequencies of Table 

2.1. Since Galileo has longer spreading codes than GPS, wider receiver bandwidth is 

required. These are the nominal bandwidths specified in the standardization documents; 

however, for mass-market applications, much lower bandwidths may be employed.  

 

 



 SIMULINK-BASED ACQUISITION UNIT FOR GALILEO E1 CBOC MODULATED SIGNALS 10

  

Table 2.2: Galileo Signal Receiver Reference Bandwidth. 

Signal Receiver Reference 

Bandwidth (MHz) 

E1 24.552 

E6 40.920 

E5 51.150 

E5a 20.460 

E5b 20.460 

 

The ranging codes are built from the primary and secondary codes by using a tiered 

codes construction. The code length for six different signals which Galileo transmits is 

given in Table 2.3. 

Table 2.3: Code Lengths for Different Signals. 

Signal 

Component 

Tiered Code 

Length (ms) 

Code Length (chips) 

Primary Secondary 

E5a-I 20 10230 20 

E5a-Q 100 10230 100 

E5b-I 4 10230 4 

E5b-Q 100 10230 100 

E1-B 4 4092 N/A 

E1-C 100 4092 25 

 

The most important characteristics of the Galileo signals, in comparison with the GPS 

signals, are the different modulation types and code lengths. The code length for the E1 

signals is 4092 chips with 1.023 MHz chip rate for the pilot channel. A secondary code 

of length 25 chips extends the repetition interval to 10 ms. For the E5 signals, the code 

length is decided to be as high as 10230 chips. The multiplexing scheme here means the 

modulation type by which two signals are combined. For the E5 signals, the 

multiplexing scheme is Alternative BOC(15,10), and for the E1 signals, it is addition 

and subtraction of SinBOC(1,1) and SinBOC(6,1) for CBOC Data and CBOC Pilot, 

respectively [1]. 



 CHAPTER 2. EMERGING GALILEO SYSTEM AND CBOC MODULATION 11

Introduction of longer codes and new types of modulations are the main differentiating 

features of Galileo compared to GPS. For many years, SinBOC(1,1) has been the 

candidate modulation type for the Galileo OS signal in the E1 band [15]. Recently, the 

GPS-Galileo working group on interoperability and compatibility has recommended 

MBOC modulation that would be used by GALILEO for its Open Service signal at E1 

frequency, and also by GPS for its modernized L1 Civil (L1C) signal [16]. The 

spreading codes for Galileo systems are pseudorandom data streams, whose design 

depends on the desired correlation properties and the acquisition time. The code length 

for the OS signal is 4092 chips, which is four times higher than the GPS Coarse 

Acquisition (C/A) code length of 1023 chips. Longer codes help to reduce the cross-

correlation levels, but increase the acquisition time. Since the chip rate of 1.023 MHz is 

the same for Galileo OS and GPS C/A signals, a spreading factor of 1023 is used in 

both cases. This means that Galileo employs long codes, that is codes that are different 

from one symbol to another. 

2.2 BOC Modulation 

BOC modulation is a square sub-carrier modulation, where a signal is multiplied by a 

rectangular subcarrier of frequency fsc, which splits the spectrum of the signal into two 

parts [17][18]. Typically, the sine and cosine BOC modulations are defined via two 

parameters BOC(m, n) [17]. These two parameters are related to the reference 1.023 

MHz frequency as follows: m = fsc/1.023 and n = fc/1.023, where fc is the chip rate, 

both fsc and fc are expressed in MHz here. There are several variants of BOC 

modulation: SinBOC [17], CosBOC [17], AltBOC [10] and MBOC [10]. BOC stands 

both for SinBOC modulation, and that the BOC notation is usually used within this 

thesis (for simplicity reason). 

 

A sine BOC modulation is similar to Manchester code [19], that is, in digital domain, a 

'+1' is encoded as a '+1 -1' sequence, and a '0' is encoded as a '-1 +1' sequence. From the 

point of view of the equivalent baseband signal, the BOC modulation can be defined by 

a single parameter, known as BOC modulation order: 

 

BOC
N 2 2

m fsc

n fc
=≜                                                                                      (2.1) 
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Here NBOC should be an integer number, therefore m and n should be chosen in a way 

that BOC order remains integer i.e., for SinBOC(1,1), the modulation order NBOC  = 2. 

In the same way, the modulation order NBOC  = 12 for SinBOC(6,1). If modulation order 

NBOC, chip rate and the carrier frequencies are known, passband signal can be easily 

reconstructed.  

 

The SinBOC-modulated signal x(t) can be seen as the convolution between a SinBOC   

waveform SSinBOC(t) and a modulating waveform d(t), as follows [20] 

 

                  ,
1

( ) ( )
FS

n sym cSinBOCk n
n k

x t b c s t nT kT
+∞

=−∞ =

= − −∑ ∑  

 
   ( ),

1

( )( ) ( )
F

SinBOC t

S

n sym cSinBOC k n
n k

d ts t b c t nT kT sδ
+∞

=−∞ =

⊗= ⊗ − −∑ ∑ ≜  (2.2) 

 

where ⊗ is the convolution operator, d(t) is the spread data sequence, bn is the n-th 

complex data symbol (in case of a pilot channel, it is equal to 1), Tsym is the symbol 

period, ck,n  is the k-th chip corresponding to the nth symbol, Tc = 1/ fc is the chip 

period, SF is the spreading factor (SF = Tsym/Tc), and δ(t) is the Dirac pulse. The signals 

used in GPS and Galileo are wideband signals. The signal x(t) shown in Equation 2.2 is 

a wideband signal, that is, a signal spread by a pseudorandom (PRN) sequence. 

 

According to its original definition in [17], the SinBOC waveform SSinBOC(t) is defined 

as:  

 

 ( ) (sin( )),0BOC
cSinBOC

c

tN
s t sign t T

T

π
= ≤ ≤  (2.3) 

 

where sign(.) is the signum operator. Since, the above waveform is a sequence of +1 

and −1, it can also be written as: 

 

 
1

1

1
0

( ) ( ) ( 1) ( )
BOC

B

N
i

TSinBOC B
i

s t P t t iTδ
−

=

= ⊗ − −∑  (2.4) 

      

       



 CHAPTER 2. EMERGING GALILEO SYSTEM AND CBOC MODULATION 13

where 
1BT

P (.) is the rectangular pulse of amplitude 1 and support TB1 = Tc/ NBOC. Time 

domain waveforms for SinBOC(1,1) are shown in Figure 2.2. 

 

 

Figure 2.2: Examples of time-domain waveform for SinBOC(1,1).   Upper plot:   PRN 

Sequence; Lower plot: SinBOC(1,1) modulated waveform. 

 

The SinBOC(1,1) modulation is part of the SinBOC(m,n) family, where the length of 

one subcarrier period equals one Pseudo-Random Noise (PRN) chip duration. To 

analyze its impact on signal tracking, a few details are included here. SinBOC(m,n) 

modulation splits the usual BPSK(n) spectrum into two symmetric side lobes centered 

at ±fsc MHz around the carrier frequency as seen in Figure 2.3. This allows a wider 

spectral occupancy. The SinBOC(m,n) PSD envelope is given by [17]: 

 

 

2

(1,1)

sin sin
2

( )

cos
2

SinBOC
c

f f

fc fc
G f f

f
f

fc

π π

π
π

    
    
    
  
     

=  (2.5) 

 

The SinBOC(1,1) PSD envelope is shown in Figure 2.3 along with the BPSK(1) PSD 

envelope that characterizes the GPS C/A code modulation.  The SinBOC(1,1) PSD has 

its side lobes on the zeros of the GPS C/A code PSD. Consequently, its spectrum is well 

separated from the spectrum of C/A signal.  BOC modulation provides a simple and 
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effective way of moving the signal energy away from band center, offering a high 

degree of spectral separation from conventional phase shift keyed signals whose energy 

is concentrated near band center. The resulting split spectrum signal effectively enables 

frequency sharing, while it provides attributes that include simple implementation, good 

spectral efficiency, high accuracy, and enhanced multi-path resolution [17]. 

 

 

Figure 2.3: SinBOC(1,1) and BPSK(1) normalized power spectral densities. 

2.3 MBOC Modulation 

The power spectral density of MBOC signal can be obtained as a combination of 

SinBOC(1,1) and SinBOC(6,1) power spectra (i.e., including  both  pilot and  data  

channel  components).  The  notation introduced is MBOC(6,1,1/11), where the  term  

(6,1)  refers  to the BOC(6,1), and the ratio 1/11 represents the power split between the 

BOC(1,1) and BOC(6,1) spectrum components as given by [3] 

 

 MBOC (1,1) (1,1)

10 1
G ( ) ( ) ( )

11 11
SinBOC SinBOC

f G f G f= +  

 

where GMBOC(m,n)(f) is the unit power PSD of a sine-phased BOC spreading modulation 

as defined in [17].  
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Figure 2.4 shows the PSDs of the BOC(1,1) and the MBOC(6,1,1/11). Due to 

SinBOC(6,1) component, extra lobes can be noticed at around ±6 MHz of the MBOC 

PSD as compared to SinBOC(1,1) case. The curves from Figure 2.4 were obtained with 

the Simulink model, and therefore, they are noisier than the theoretical curves reported 

in Figure 2.3, due to non-idealities of the used codes and channel imperfections. The 

curves in Figure 2.4 are centered to 0 frequency (baseband) here; however, if we talk 

about the modulated signal, they have to be shifted around the E1 carrier frequency. 

 
 

Figure 2.4: Power Spectral Density for MBOC and SinBOC(1,1)-modulated signals. 

 

Spreading waveforms corresponding to pilot and data components can be formed in a 

number   of   ways,   including Composite  BOC  (CBOC),  which  adds  or  subtracts 

BOC(6,1)  spreading  symbols at the appropriate power level with BOC(1,1) spreading  

symbols, and time-multiplexed BOC, which produces a spreading waveform containing 

BOC(1,1) spreading symbols,  interspersed  with  the  appropriate  fraction  of time  of  

BOC(6,1) spreading symbols. In the following contexts, TMBOC and Composite BOC 

is described here but the focus has given to CBOC because it has been selected for 

Galileo E1 OS signals in the most recent Galileo SIS-ICD of 2008 [1]. 
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2.3.1. TMBOC Implementation 

In a TMBOC implementation, the whole signal is divided into blocks of N code 

symbols. Out of N code symbols M < N are SinBOC(1,1)-modulated, while the 

remaining N-M code symbols are SinBOC(6,1)-modulated [20]. Since different 

spreading time series can be used to form data and pilot components, the total signal 

power can be divided between the data and pilot components so many different 

implementations of TMBOC are possible. TMBOC has been selected for the 

modernized GPS signal L1C in L1 band [22]. 

2.3.2. CBOC Definition and Implementation  

Composite BOC (CBOC) uses multilevel spreading symbols formed from the weighted 

sum of BOC(1,1) and BOC(6,1) spreading symbols, interplexed to form a constant 

modulus composite signal [16]. CBOC can be implemented using four-level spreading 

symbols formed by the weighted sum of SinBOC(1,1) and SinBOC(6,1) modulated 

code symbols [16][21]. A time domain representation of a CBOC implementation is 

shown in Figure 2.5 [22]. 

 

 

 

Figure 2.5: Pseudo-random time multiplexing of BOC(6,1) and BOC(1,1) in the 

CBOC solution [22]. 

 

Two different implementations of CBOC could be considered for a 50%/50% power 

split between data and pilot components [16]. 
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• CBOC symbols could be used in both data and pilot channels, and formed from 

the sum of 10 /11SinBOC(1,1) symbols and 1/11 SinBOC(6,1). This is the 

variant currently selected in the SIS-ICD [1]. 

 

• Alternatively, CBOC symbols could be used on only the pilot components while 

leaving all the data component with SinBOC(1,1).  In this case, CBOC is formed 

as the sum of 9 /11  SinBOC(1,1) symbols and 2 /11 SinBOC(6,1) symbols.  

As defined in [23], CBOC can be implemented using three signals models:  

• CBOC (‘+’) 

• CBOC (‘–‘) 

• CBOC (‘+/-‘) 

The time waveforms of CBOC(’+’), CBOC(’-’) and CBOC(’+/-’) along with the 

original PRN sequence are depicted in Figure 2.6. 

 

Based on the BOC model and derivations of [20], CBOC(’+’) can be written as [36]: 

 

(' ') 1 (1,1), 2 (6,1),( ) ( ) ( )
CBOC SinBOC held SinBOC held

S t w s t w s t+ = +  

 

2

1 1

1
1

0 0 1 2

( 1) ( )
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N N
i c c

i k BOC BOC

T T
c t i k

N N

−
−

= =

− − −∑ ∑  

 

2

2 1

0 2

( 1) ( )
BOCN

i c

i BOC

w
T

c t i
N

−

=

+ − −∑                                                               (2.6) 

 

Where 
1 2

BOC

fsc
N

fc
=  and 2BOCN  is the BOC modulation order of the second stage, 

w1 and w2 represents the weighting factors. An example of weights, as given in [1] is w1 

= 10
11

 and w2 = 1
11

. In equation 2.5, the first term represents SinBOC(1,1) 

modulated code and the second term represents SinBOC(6,1) modulated code. Above, 

c(t) defines the modulation waveform. 

 

CBOC(’-’) modulation can be implemented by subtracting the weighted SinBOC(6,1) 

modulated symbol from the weighted SinBOC(1,1) modulated symbol [22]. This 

composite subtraction can be written as:  
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(' ') 1 (1,1), 2 (6,1),( ) ( ) ( )
CBOC SinBOC held SinBOC held

S t w s t w s t− = −                                    (2.7) 

 

CBOC(’+/-’) modulation can be implemented in a way that the weighted SinBOC(1,1) 

modulated symbol is summed with the weighted SinBOC(6,1) modulated symbol for 

even chips and the weighted SinBOC(6,1) modulated symbol is subtracted from the 

weighted SinBOC(1,1) modulated symbol for odd chips [22]. 

 

(' / ')

1 2(1,1), (6,1)

1 2(1,1), (6,1)

( ) ( )
( )

( ) ( )

SinBOC held SinBOC

CBOC

SinBOC held SinBOC

w s t w s t even chips
s t

w s t w s t odd chips
+ −





+
=

−
 

 

 

 
 

Figure 2.6: Examples of CBOC time waveforms.   Upper left plot:  PRN sequence; 

Upper right plot: CBOC(’+’) modulated waveform; Lower left plot: CBOC(’-’) 

modulated waveform; Lower right plot: CBOC(’+/-’) modulated waveform. 

 

Figure 2.7 shows the correlation function of each of the CBOC types. The sign of the 

SinBOC(6,1) component also shapes the correlation function [20].  
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Figure 2.7: Normalized ACFs of CBOC(+), CBOC(’-’) and CBOC(’+/-’). 

Based on the above figure, CBOC(-) has the sharpest main lobe peak, and therefore is 

the most suitable for high-accuracy tracking. This might have been one of the reasons 

for which CBOC(-) was selected as  the modulation for the pilot E1-C channel. The data 

channel uses a CBOC(+) modulation [1]. 

 

2.4 Why CBOC  

The agreement reached in 2004 by United States and European Commission focusing 

on the Galileo and GPS coexistence clearly stated that BOC(1,1) is to be the common 

baseline structure for signal in space (SIS). In addition, the same agreement paved the 

way for common signal optimization with the goal to provide improved performance as 

well as considerable flexibility to receiver manufacturers. Therefore, EC and US started 

to analyze possible innovative modulation strategies in the view of Galileo E1 OS 

optimization and for the future L1C signals of the new generation GPS satellites. 

Considering the recent activities carried out by the Galileo signal task force (STF) 

jointly to US experts in the Working Group A, it came out that the MBOC could be a 

good candidate for both GPS and Galileo satellites. In fact, on the 26th of July 2007 US 

and EC announced their decision to jointly implement the MBOC on the Galileo open 

service and the GPS IIIA civil signal [3]. 
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In the context of the integration between wireless communication and satellite 

navigation, one of the major problems is that usually the GNSS receiver has to work in 

a critical environment characterized by a heavy presence of multi-path or interference 

sources. The new MBOC modulation has been studied with the goal to create a signal 

more robust with respect to multi-path, bringing the high performance of Galileo in 

situations in which the present BOC(1,1) shows limitations. The European approach to 

the MBOC implementation consists  in  adding  in  time  a  BOC(1,1)  and  a  

BOC(6,1), defined as composite BOC modulation. CBOC signal  structure allows  the  

receivers  to  obtain  high  performance  in  terms of  multi-path  rejection  and  tracking 

[21]. The contribution of the BOC(6,1) subcarrier brings in an increased amount of 

power on higher frequencies, which leads to signals with narrower correlation functions 

and then yielding better performance at the receiver level. This is mainly due to a higher 

transition rate brought by the BOC(6,1) on top of the BOC(1,1). All these 

considerations together with the major advantages in terms of better tracking 

performance and multi-path rejections capabilities clearly justify the selection of the 

CBOC as implementation of the agreed MBOC [3]. 

2.5 E1 Signal Description 

E1 CBOC signal generation can be visualized in Figure 2.8 [1]. The E1 CBOC signal 

components are generated as follows [1]:  

 

• eE1-B  from  the  I/NAV  navigation  data  stream  DE1-B  and  the  ranging  code  

CE1-B, then modulated with the sub-carriers SCE1-B,a and SCE1-B,b. 

 

• eE1-C (pilot component) from the ranging code CE1-C including its secondary 

code, then modulated with the sub-carriers SCE1-C,a and SCE1-C,b. 

 

Mathematical formulations of these components are given in equation 2.9 [1] 
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where 
cT

P (.) is the rectangular pulse of amplitude 1. The parameters α and β are chosen 

such as that the combined power of the 1 ,
( )

E B b
sc t− and the 1 ,

( )
E C b

sc t−  subcarrier  

components  equals to  1/11  of  the  total  power  of  eE1-B  plus  eE1-C, before 

application of any bandwidth limitation. This yields: 

 

10

11
α = = w1 and

1

11
β = = w2

     

 

 

Figure 2.8: Modulation Scheme for the E1 CBOC Signal. 

Galileo satellites transmit ranging signals for the E1 signal with the chip rates and sub-

carrier rates defined in the following Table 2.4 [1]. 

Table 2.4: E1 CBOC Chip- and Subcarrier Rates.  

Component 

(Parameter 

Y) 

Sub-carrier 

Type 

Sub-carrier Rate 

RS,E1-Y,a (MHz)   RS,E1-Y,a 

(MHz) 

Ranging Code 

Chip- Rate RC,E1-

Y  (Mcps) 

B CBOC, in-

phase 

(CBOC(+)) 

1.023 6.138 1.023 

C CBOC, anti-

phase 

(CBOC(-)) 

1.023 6.138 1.023 

 

After channel encoding, the navigation data message stream is transmitted with the 

symbol rate as stated in Table 2.5 [1]. 
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Table 2.5: E1 Symbol Rates.  

Component 

(Parameter Y) 

Symbol Rate 

RD,E1-Y (symbols/s) 

B 250 

C No data (‘pilot component’) 

 

The E1 composite signal is then generated according to Eq. 2.9 below, with the binary 

signal components eE1-B(t) and eE1-C(t). Note  that  as  for  E6,  both  pilot  and  data 

components  are  modulated  onto  the  same  carrier  component,  with  a  power  

sharing  of  50 percent. 

 

1 1 1 , 1 ,

1 1 , 1 ,

1
( ) ( ( )( ( ) ( ))

2

( )( ( ) ( )))

E E B E B a E B b

E C E C a E C b

s t e t sc t sc t

e t sc t sc t

α β

α β

− − −

− − −

= +

− −

 (2.9) 

2.5.1. Logic Level 

The correspondence between the logic level code bits used to modulate the signal and 

the signal level is according to the values stated in Table 2.6 [1]. This corresponds to 

BPSK symbol mapping.                              

Table 2.6: Logic to Signal Level Assignment.  

Logic Level Signal Level 

1  -1.0 

0 +1.0 

                 

The edge of each data symbol coincides with the edge of a code chip. A periodic 

spreading code coincides with the start of a data symbol. The  edge  of  each  secondary  

code  chip  coincides  with  the  edge  of  a  primary  code  chip. Primary code start 

coincides with the start of a secondary code chip [1]. 
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2.5.2. Received Power Levels on Ground 

The Galileo satellites will provide Galileo E5, E6 and E1 signals strength in order to 

meet the minimum levels specified in Table 2.7. The minimum received power on 

ground is measured at the output of an ideally matched Right-Hand Circular 

Polarization (RHCP) 0 dBi polarized user receiving antenna when satellite elevation 

angle is higher than 10 degrees. For a 5 degree user elevation angle, the user minimum 

received power will be typically 0.25 dB lower than what specified in Table 2.7 [1]. 

Table 2.7: Logic to Signal Level Assignment.  

Signal Signal Component Total Received Minimum 

Power (dBW) 

E5 E5a -155 

E5b -155 

E6 E6 CS (components B+C) -155 

E1 E1 OS (components B+C) -157 

 

Using the same assumptions, the  user’s  maximum  received  signal  power  level  is 

not  expected  to  exceed  3  dB  above  the corresponding minimum received power. 

For purposes of establishing user receiver dynamic range for receiver design and test, 

the  maximum  received  signal  power  level  is  not  expected  to  exceed  7  dB  above  

the  corresponding minimum received power [1]. 

 

 



Chapter 3  

Delay-Doppler Acquisition of Galileo 

Signals 

Acquisition is the first step in the digital signal processing section of a GNSS receiver. 

The process of detecting a specific satellite signal and the coarse propagation time delay 

and Doppler shift corresponding to a particular satellite-receiver link is called 

acquisition. Its purpose is to determine visible satellites and to provide estimates of code 

phase and Doppler frequency of the satellite signals. A GNSS receiver has to detect the 

presence of a satellite signal in order to be able to track and decode the information 

which enables position, velocity and time computation. The acquisition stage is 

followed by the tracking stage, where the synchronization with higher accuracy is 

performed and maintained. This chapter discusses the concepts of signal acquisition in a 

GNSS receiver. 

3.1 Signal Acquisition  

The purpose of acquisition is to determine visible satellites and to produce coarse 

estimates of carrier frequency and code phase of the satellite signals. Each satellite is 

distinguished by a unique pseudorandom noise sequence. The basic idea of the search 

process is to know the code phase of the received signal in order to generate a local 

PRN code [24]. It is generated to de-spread the signal (i.e. remove the code). The 

incoming code can be removed successfully only when there is an alignment between 

the received signal and the local generated code. Besides code delay estimation, the 

Doppler frequency shift has to be determined as well, since its value varies over time 

due to the continuous motion of the satellite (it may also be due to the motion of the 

receiver). In the worst case, the Doppler frequency can deviate up to 10 KHz. It is 
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important to know the frequency of the incoming signal in order to be able to generate a 

local carrier signal which is used to remove the carrier from the incoming signal [16]. 

 

Figure 3.1 depicts a simplified block diagram of code acquisition stage. First, the 

received signal is correlated with the locally generated PRN code, followed by coherent 

integration over Nc chips (coherent integration period or coherent integration length) 

where I- and Q-branches of the complex signals are Integrated and Dumped (I&D) to 

form the correlation output. I&D-block is also used to perform coherent integration 

which acts as a low pass filter. The I&D-block removes the higher frequency 

components from the signal. Coherent integration is further followed by non-coherent 

integration over Nnc blocks (non-coherent integration length). Non-coherent integration 

is basically used to decrease the noise floor and also because the coherent integration 

time Nc could be limited by channel fading, Doppler effects [27] and by the instability 

of the oscillator clocks. 

 

| |•

 

Figure 3.1: Simplified Block Diagram of Code Acquisition Stage. 

3.1.1. Correlation  

The tentative time-frequency bins are tested and the signal is detected via cross-

correlation and comparison with a threshold. This means that the received signal is 

correlated with the reference code with different code phases and frequencies, and then 

the resulting values are combined in order to achieve a two-dimensional correlation 

output for the whole window. A correlation peak will be present only in the correct 

code-frequency bin. Based on the correlation outputs, we can determine whether we are 

in a correct search window (or bin), i.e., if signal is present, or whether we are in an 

incorrect search window or bin, i.e., signal is absent. In an ideal case, if the auto- and 
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cross correlation properties of the codes are perfect and in the absence of any types of 

noise, the autocorrelation function would be modeled by a pure Dirac pulse at the 

correct delay and would have zero values elsewhere. However, there are always some 

signal interference and noise present, which affect the correlation outputs of the 

received signal and reference code. The reference signal for a CBOC-modulated signal 

can be either CBOC-modulated or SinBOC(1,1)-modulated code. Hence, both 

approaches have been considered under the scope of this thesis work. 

 

 

Figure 3.2: An example of correlation outputs for two time-frequency windows: A 

correct window with low noise (left) and a correct window with high noise (right). The 

coherent integration length Nc = 4 ms. 

Figure 3.2 depicts time-frequency mesh of correlation output for correct window with 

low noise for C/N0 = 50 dB-Hz (i.e. signal is present) and for correct window with C/N0 

= 35 dB-Hz, (i.e. signal is still present) but with high noise. This plot is obtained using 

CBOC(‘+/-’) modulation. The correlation output is compared with the specified 

detection threshold to see if the signal is present or not. It can be observed in the plots 

that in very noisy scenarios (e.g., in indoor environment), the signal is not strong 

enough, thus many correlation peaks are present in the correlation output, which makes 

the acquisition process quite challenging.  

3.1.2. Search Space  

The signal acquisition process is a two-dimensional search in time (code phase) and 

frequency (Doppler offset) which requires the replication of both code and the carrier of 

the incoming signal in order to detect the satellite [25]. The search space for code delay 

is typically equal to the length of the code which is 4092 chips in the case of Galileo 
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E1-B and E1-C signals. The search interval for the Doppler frequency domain can be 

several KHz [26]. In the acquisition stage, it is preferable to have some a-priori 

information about Doppler frequency (e.g., assisted acquisition) because it would help 

to reduce the search time. 

 

Figure 3.3 depicts a two dimensional C/A code search pattern. In the search process, all 

possible code delay and frequency combinations are examined with some pre-defined 

search steps. The two-dimensional search pattern consists of discrete search cells with 

each cell representing one code bin (or a time bin) and one carrier Doppler bin (or a 

frequency bin). The size of one code bin is typically 0.5 chips for GPS signals [2] and 

0.175 chips for CBOC and SinBOC(1,1) signals because most of the signals energy is 

found within half of the width of the main lobe of auto-correlation function. The 

combination of one code bin and one Doppler bin makes a test cell or a time-frequency 

bin. The whole time frequency-uncertainty region can be divided into several search 

windows and each window can be divided into several time-frequency bins. In Figure 

3.3, ∆fbin represents one frequency bin length and ∆tbin represents one time bin length [2]. 
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Figure 3.3: Two dimensional GNSS code search pattern. 
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3.1.3. Search Strategy 

In the search pattern, the search windows are examined to see whether the time-

frequency estimate is correct or not. The search process is started from one search 

window, with a certain tentative Doppler frequency and a certain tentative code delay.  

All delays and frequencies, which correspond to the size of the search window at issue, 

are searched through with the pre-defined search steps. If the window is decided to be 

dismissed, the search process continues to the next search window, and the same 

procedure is continued, until the correct window and the correct delay-frequency 

combination are found [1][24].  

3.1.3.1 Serial Search 

In serial search, the search window consists of one bin and the delay shift is changed by 

steps of the time-bin length ∆tbin. Thus, all bins are searched one by one in a serial 

manner and only one search detector is needed for the acquisition structure. The 

received signal is complex; therefore, one search detector contains two real correlators, 

one for the real part (I-branch) and other for the complex part (Q-branch) [23]. 

 

Serial search approach goes in a way that, it tests one time-frequency bins at a time 

which, in the end, leads to a very time consuming process if the uncertainty regions are 

large. For this reason, this method is mostly used if there is some assistance information 

available about the correct Doppler and code delay [24]. The serial search is rather time 

consuming because it performs two different sweeps: a frequency sweep over all 

possible carrier frequencies and a code phase sweep over all different code phase. This 

exhausting search routine also tends to be the main weakness of the serial search 

algorithms [28]. 

3.1.3.2 Fully Parallel Search 

This method of acquisition parallelizes the search for one of the parameters (i.e. code-

delay or Doppler bin). In fully parallel search strategy, there is only one window in the 

search space, i.e., the window size is equal to the code-frequency uncertainty. In parallel 

search strategy, code-frequency bins are examined concurrently. Although it reduces the 

acquisition time, the complexity increases, since more correlators are needed [29]. This 
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is the reason why such approach is preferable in software defined receivers. Parallel 

search strategy has been used in the Simulink model for this thesis. 

3.1.3.3 Hybrid Search  

As described above, serial search requires only one complex correlator (i.e., two real 

correlators), which makes the implementation of the algorithm quite simple. However, 

acquisition time can be too high if the search space is large. With fully parallel search 

faster acquisition can be achieved, but at the same time complexity increases as more 

correlators are needed. A hybrid search is a tradeoff between the fully parallel and serial 

searches strategies and it allows achieving a proper balance between the acquisition 

speed and the hardware complexity. In hybrid search strategy, the number of bins per 

window is still limited by the feasible numbers of correlators [23][29][31]. 

3.1.4. Detection Threshold  

The choice of a suitable detection threshold has a great importance in the acquisition 

process. Figure 3.4 illustrates the Probability Density Function (PDF) of a detection 

stage. It can be easily noticed in the Figure 3.4 that if the detection threshold is set too 

low, the probability of detection (i.e., Pd) increases, but on the other hand, the 

probability of false alarm (i.e., Pfa) increases as well. In the same way, if the detection 

threshold is set too high, Pfa decreases but at the same time Pd decreases as well. A brief 

discussion about selecting a suitable detection threshold can be found, for example, in 

[23]. 

 

 

Figure 3.4: PDFs for correct and incorrect windows. 
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3.2 Detection and False Alarm Probabilities  

In the detection stage, the test statistics are computed based on the correlation output for 

each search window, and then this statistics are compared to pre-defined threshold ‘γ ‘ 

in order to decide whether the signal is present or not. The test statistics can be formed 

in the following ways: 

 

• as the global maximum of the correlation output in one search window [26][37].  

• as the ratio between the global maximum and the next local maximum [38][39]. 

If the value of the test statistics is higher than the specified threshold, it means that the 

signal is detected and an estimate for code-phase and frequency is achieved. If the peak 

is not detected, the process continues in the next search window.  

 

The detection probability in this thesis is defined as the probability of signal being 

detected correctly if the maximum code phase error is within 0.35 chips and maximum 

frequency error is within 125 Hz. In the same way, a false alarm situation occurs when a 

delay and/or frequency estimate is wrong (i.e. absolute error in code higher than 0.35 

chips and absolute error in frequency higher than 125 Hz) but still the test statistics is 

higher than the threshold. In this case, the signal is declared present in an incorrect 

window. The probability of a false alarm case is denoted as Pfa. It may also be the case 

that signal is present but not detected. This may happens if the threshold is set too high 

or the environment is so noisy that the signal is lost in the background noise [23][26]. 

This is a miss detection situation. 

3.3 Standard Methods of Acquisition  

In Galileo system, the proposed lengths for the spreading codes are higher than in the 

GPS system, e.g., 4092 chips for E1-B and E1-C signals [14]. As described earlier, 

signals acquisition involves a two-dimensional search in time and frequency domain. 

Thus, the acquisition of Galileo signals is more time consuming due to the larger 

uncertainty regions. In the search for fast and efficient acquisition methods, several 

search algorithms have been developed. The following sections describe the theory 

behind three standard methods of acquisition to demonstrate the possibility of 

implementing an efficient method in a software receiver. 
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3.3.1. Ambiguous Acquisition  

Auto-correlation functions of BOC and MBOC modulation schemes bring new 

challenges in acquisition process. BOC- and MBOC- modulated signals have narrower 

main lobes in their ACFs, which allow better accuracy in the tracking stage. On the 

other hand, additional peaks appear within ± 1 chip interval around the maximum peak, 

which make the ACF to become ambiguous. These challenges can be solved to a certain 

extent by using unambiguous acquisition methods such as those mentioned in the 

previous section. However, such methods are out of the scope of this thesis, therefore 

they will not be considered.  

 

Figure 3.5 shows the envelope of the normalized ACFs of SinBOC(1,1) and CBOC(‘+/-

’) modulations where additional peaks can be seen; these peaks will cause more 

challenges to the acquisition process. In order to detect the main lobe of the ACF, the 

step ‘∆tbin’ for searching the time bins in the acquisition process should be sufficiently 

small [32]. The process becomes more challenging when the reception is performed in 

indoor environment, where CNR is very low. 

 

 

Figure 3.5: Normalized ACFs of SinBOC(1,1) and CBOC(‘+/-’)ambiguous acquisition. 

3.3.2. Unambiguous Acquisition  

Several algorithms have been proposed in order to deal with the ambiguities of the 

envelope of the ACF of BOC or MBOC modulation and to increase the step for the 
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time-bin in the acquisition process which helps to decrease the acquisition time. These 

techniques are: ‘BPSK- like techniques’, proposed by Martin, Heiries et al. [33][34], the 

sideband (SB) techniques’ proposed by Betz, Fishman et al. [16][21][22] and 

Unsuppressed Adjacent Lobes (UAL) method [35]. These techniques are based on the 

idea that the BOC- or MBOC-modulated signal can be seen as a superposition of two 

BPSK modulated signals, located at negative and positive subcarrier frequencies.  All 

these techniques can make use of the single- or the dual- side band signal approach [36]. 

These algorithms are not addressed in this thesis because of the fact that FFT-based 

acquisition is used here, with step equal to 1/fs, , where fs is the sampling frequency and 

is equal to 13 MHz, and therefore, a sufficiently small step was used to justify the 

choice of ambiguous methods. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 4  

Simulink Model for Galileo Signal 

Acquisition  

The complete Galileo Simulink model has been developed at Tampere University of 

Technology, Finland. In the basic Simulink model, the whole E1 chain is implemented, 

including the E1 transmitter block, the multi-path channel, the acquisition block and the 

tracking unit block. The E1 signal is composed of E1-B and E1-C channels, data signal 

is carried by E1-B channel and E1-C carries the pilot channel. Both E1-B and E1-C 

channels are tracked in the Simulink model. There are 2 receiver options: one which 

uses a reference SinBOC(1,1) modulated code for both E1-B and E1-C, another one 

which uses a reference CBOC(+)-modulated code for E1-B and a reference CBOC(-)-

modulated code for E1-C. A new acquisition model based on CBOC reference signal 

has been built by the author (basic model included only the SinBOC(1,1) acquisition). 

Modification of the acquisition block has been done in order to allow for variable time-

bin steps. In the original model, a fixed time-bin step was used in the acquisition unit. 

The author extended the original model to variable time-bin steps. Additionally, the 

implementation of switching architecture is done, where E1 and E5 transmitters 

alternate periodically and the reception is done based on E1 signal only. A study was 

carried out in order to investigate the impact of detection probability using different 

acquisition thresholds. The effects of front-end bandwidth on the performance of signal 

in terms of detection probability are also presented here. These issues are described in 

this chapter and they constitute the main research results for this thesis. 
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4.1 Description of the Simulink Model 

The Simulink model consists of a transmitter block, a channel block, an acquisition 

block and a tracking block. Figure 4.1 illustrates the block diagram of the whole E1 

chain. Next section describes the details about the individual blocks of E1 chain model. 

 

 

Figure 4.1: A snapshot of whole E1 Chain Simulink model. 

4.1.1. Transmitter Block 

The E1 transmitter block is implemented based on CBOC modulation, which is in 

accordance with the latest Galileo OS ICD [1]. In the block, E1-B and E1-C channels, 

in which the OS signals are carried on, are modeled according to Eq. 2.9. 

 

Figure 4.2 shows the snapshot of the E1 transmitter Simulink block. The code length for 

the Galileo OS signal is 4092 chips, which is four times higher than the GPS C/A code 

length. The code epoch length is 4 ms, which means that the codes are not the same 

from one code symbol to another. Moreover, the spreading factor for this model is 

considered to be the same as for the C/A GPS signals (i.e. 1023 chips where one code 

symbol having 1 ms duration) in order to avoid long simulation times. In each frame, 

fs*10
-3

 samples are included, for example, each frame contains 13,000 samples when 
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the sampling rate is 13 MHz. Table 4.1 shows some of the input parameters used for 

this Simulink model. 

 

 

Figure 4.2: A snapshot of the E1 transmitter Simulink block. 

• In the transmitter block, E1-B is the CBOC(‘+’) modulated signal with 

navigation data (upper part) and E1-C is the CBOC(‘-‘) modulated signal 

without data (pilot channel). E1 signal is formed as the difference between the 

two signals above-mentioned (Eq. 4.1).  

 

• In E1-C channel, there is no navigation data, but only a secondary code.  

 

• The sampling frequency fs is a variable of the model (currently, it is set to 13 

MHz). 

Table 4.1: Input parameters used for Simulink model. 

Variable 

Name 

Description Unit Dimension Typical Value 

sv Satellite index for selecting 

the corresponding code 

 1 1~50 

fs Sampling frequency Hz 1 any value OK 

fIF Intermediate frequency Hz 1 any value OK 

Navi_bit Navigation bit  ≥  1, -1 
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4.1.2. Channel  

In the channel block, only the multi-path signals and complex noise are generated. The 

basic function of the channel block can be modeled as   
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Figure 4.3: A Snapshot of the channel Simulink block. 

Here 1( )Er t is the received E1 signal, which is the output of the channel block; ( )i tα and 

iτ are the time-varying path gain with complex value and path delay for i-th path; n(t) is 

the AWGN. Figure 4.3 depicts the block diagram of channel used for this model. 

 

• The path amplitude remains the same within 1 ms, which is the frame duration 

of the signal in the transmitter and channel. This is because the Doppler spread 

is usually small.  

 

• Only ‘static’ channel is used during the reported simulation. 

 

• The whole chain is in Intermediate Frequency (IF). Therefore, the carrier phase 

is also affected by the path delay. Therefore, for MEE (Mean Error Envelopes) 

simulation, it is better to use a baseband chain by setting the fIF to be 0 in order 

to avoid the carrier phase errors. 
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4.1.3. Acquisition Block 

The acquisition unit performs FFT-based correlation. The Fourier transform of the input 

signal is multiplied with the Fourier transform of the PRN code. The result of the 

multiplication is transformed into time domain by taking inverse Fourier transform. The 

absolute value of the output of the inverse Fourier transform represents the correlation 

between the input and the PRN code. Figure 4.4 shows the block diagram of acquisition 

block implemented partly using Matlab based S-function. 

 

Figure 4.4: A snapshot of acquisition Simulink block. 

The acquisition detection is implemented according to a Constant False Alarm Rate 

(CFAR) algorithm explained briefly in [20]. The acquisition is implemented using m-

language based S-function. The input and output data and the parameters of this block 

are listed in table 4.2. 

 

With CFAR algorithm, the decision is made based on the correlation output. Here we 

use the average of the absolute values of E1-B and E1-C correlation outputs. The 

acquisition decision variable will be according to the ratio of peaks (which will be 

explained in the next section), after setting to 0 a neighborhood of a time range between 

-3 and 3 chips and a frequency range between -500 and 500 Hz. The detection threshold 

values between 1.27 and 1.3 have been used for simulations.  

 

The output data are stored in the memory, using the Simulink library block ‘Data Store 

Memory’, i.e. ‘Tracking_Ena’, ‘Est_freq’ and ‘Est_code_delay’. The stored data are 

read outside the acquisition block, for instance, in the tracking unit. Once the correlation 
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output is higher than specified threshold, the output parameter ‘Tracking_Ena’ will 

enable the tracking part. The estimated frequency and code phase of the signal can be 

examined by the parameters ‘Est_freq’ and ‘Est_code_delay’, respectively. The focus in 

this thesis is on the acquisition part and therefore tracking will not be discussed in 

detail. 

Table 4.2: Acquisition unit input and output data and other parameters. 

 Description Unit Typical Values 

Input data Incoming signal of duration 4 ms Samples  Vector  

 

Output 

data 

Tracking Unit enabling signal Unitless  Scalar  

Estimated frequency from acquisition Hz Scalar  

Estimated code delay from acquisition Chip Scalar  

 

 

 

Parameters 

Sampled E1-B reference signal (the 

BOC(1,1) or CBOC(+)-modulated 

E1-B primary code) 

 

Samples  

Vector   

Sampled E1-C reference signal (the 

BOC(1,1) or CBOC(-)-modulated E1-

C primary code) 

 

Samples  

Vector 

Frequency uncertainty range Hz fIF+ 

(-1000:500:1000) 

Receiver sampling frequency Hz fs 

Acquisition detection threshold Unitless  e.g., (1.3-1.4) 

 

Currently, the coherent integration is 4 milliseconds. Therefore, the frequency 

uncertainty range is from -5 kHz to + 5 kHz with step of 125 Hz. The frequency 

uncertainty range can be redefined according to the requirements. The time uncertainty 

range is equal to 4 ms code epoch; the time-bin step is equal to 1 sample. In the basic 

block, the time bin step was limited to 1 sample, but the modified block with variable 

time-bin steps which is the focus of this thesis will be described in Section 4.2.2. We 

remark that in the original implementation of the acquisition unit, the reference code at 

the receiver is the SinBOC(1,1)-modulated code. In order to use the CBOC reference 

receiver as well, the author did modifications to the original model that are explained in 

Section 4.2.1.  
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4.1.4. Tracking Block 

The tracking block is not addressed here since it is out of the scope of this thesis, but the 

basic tracking block contains a FLL, a PLL and a code tracking loop based on early-

minus-late power discriminator from literature, e.g. the one found in [2]. In the ‘Dual 

channel correlation and discriminator’ block, E1-B and E1-C channels are implemented 

separately. 

4.2 Modified Acquisition Block 

The main focus of this thesis was to build new blocks and modify the functionality of 

some existing blocks in the Simulink model i.e. by introducing new acquisition unit 

with CBOC reference code, implementing a switching architecture model and 

modifying the time-bin steps in the acquisition. The author also studied the impact of 

the acquisition threshold on the detection probabilities. In what follows, we briefly 

explain the modifications which have taken place under the scope of this thesis. 

4.2.1. CBOC Based Acquisition Unit 

The main modification which was done is the introduction of another acquisition unit in 

the previous model shown in Figure 4.1 based on CBOC modulated code. The key idea 

of introducing this block is to study the behavior of CBOC signal in terms of detection 

probability, mean error and variance which will be explained briefly in Chapter 5.  

 

In the previous model, the reference code at the receiver was the SinBOC(1,1) but now 

CBOC based reference code has also been implemented which works in the same way 

as the previous model. This new acquisition unit improves the reception because 

CBOC-modulated signals have better characteristics, due to a narrower correlation 

function. CBOC signal structure allows the receivers to obtain high performance in 

terms of multi-path rejection and tracking. Here we used the average of absolute of 

CBOC data and CBOC pilot. Figure 4.5 shows the modified block diagram of 

acquisition unit. In the model, the data channel is implemented using CBOC(‘+’) 

modulation scheme according to Eq. 2.6. In the same way, the pilot channel is 

implemented according to Eq. 2.7. 
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Figure 4.5: A snapshot of modified acquisition Simulink block 

4.2.2. Variable time-bin Step 

As explained in previous chapters the Galileo spreading code lengths are much longer 

than the traditional GPS C/A code. The dimension of the search space for Galileo 

signals increases with the code length.  For the new codes, a traditional sequential 

acquisition algorithm is not practical because it results in unacceptable acquisition 

times. Parallel search strategy has been used in the Simulink model for this thesis. In the 

previous model, the time uncertainty range is equal to 4 ms code epoch; the time-bin 

step ‘∆tbin’ is equal to 1 BOC or CBOC sample, 1 sample time-bin step results in 52 000 

samples all together which indeed spend a significant amount of time in baseband 

processing for acquisition.  

 

From the point of view of real-life applications, acquisition process should be fast 

enough to detect the signal. Based on these observations, acquisition block has been 

modified for steps higher than 1 BOC/CBOC sample. The effect of variable time-bin 

step is clearly visible from Figure 4.6. Further discussion about the performance of the 

model based on this modification will be presented in the next section. 
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Figure 4.6: A correct time-frequency window with time-bin step = 1 sample (left) and a 

correct window with time-bin step = 0.5 chips (right). 

4.2.3. Choice of the time-bin Size 

The acquisition process becomes more complex due to ambiguities (i.e. additional peaks 

within ± 1 chip interval around the main lobe) present in the envelope of the ACF. The 

steps ‘∆tbin’ for searching the time axis have to be chosen quite carefully to avoid the 

ambiguities and to be able to detect the signal carefully. Thus, the acquisition becomes 

more computationally expensive, the computational load being inversely proportional 

with the time-bin size (or step) ‘∆tbin’ [35]. Typically, a step of ∆tbin = 0.5 chips is used 

in BPSK modulation (i.e. C/A code for GPS) [2]. The presence of BOC modulation also 

creates some additional deep fades within ±1 chip from the main peak. For this reason, a 

time-bin step of 0.5 chips is typically not sufficient and smaller steps need to be used for 

BOC modulated signals. On the other hand, smaller ‘∆tbin’ means more time will be 

consumed while searching for more bins that will increase the mean acquisition time 

and the complexity of the receiver [42]. 

 

A rule of thumb for selecting the step-time bin should be typically half of the width of 

the main lobe (e.g., 0.5 chips in GPS BPSK-modulated signals, about 0.35 chips in 

Galileo MBOC/SinBOC(1,1)-modulated signals) [36]. Figure 3.5 shows the 

autocorrelation function of SinBOC(1,1) and CBOC(’+/-’). It can be noticed that, one 

fourth of the width of the main lobes of ACF envelope for SinBOC(1,1) and CBOC(‘+/-

’) is around 0.175 chips, which needs to be set as a step ‘∆tbin’  for time-bin window for 

correct acquisition. 
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4.2.4. Switching Architecture Studies 

A switching architecture has been introduced into the Simulink model of E1 chain. The 

transmitter operates at dual frequency i.e. E1 and E5 bands, which were down converted 

to same intermediate frequency. The basic idea for introducing this feature is to study 

the behavior of jointly transmitted signals in terms of detection probability. Figure 4.7 

depicts the block diagram of switched transmitter model. In the transmitter model, E1 

and E5 transmitters have been combined through a switch. In other words, only one 

front-end is used for receiving both E1 and E5 signals. The benefit of such architecture 

is that the power consumption is lower, which would be an advantage in dual frequency 

in the future. That is why this section addresses the issue of performance deterioration 

in baseband if such a switching architecture is employed. 

 

 

Figure 4.7: A snapshot of switched transmitter model. 

The Switch block comprises of three inputs. The Switch block passes through the first 

input or the third input based on the value of the second input. The first and third inputs 

are called data inputs. The second input is called the control input. A Sine wave block is 

attached with the control input. Control signal is set to zero. Once the control input is 

higher than the specified threshold, E1 signal will be transmitted, otherwise E5 signal 

will be transmitted through the transmitter. A set of different switching time between E1 

and E5 transmitters have been set to see how they affect the acquisition in terms of 
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detection probability. Acquisition model is not employed with E5 reference code, it is 

still correlating with BOC(1,1) and CBOC signals. 

 

Figure 4.8 shows the simple waveform of switching time between E1 and E5 

transmitter. The upper plot of Figure 4.8 shows the sinusoidal waveform used for 

switching between E1 and E5 transmitter. Here switching time is 2 ms. From the bottom 

plot, we observe that E1 signal is transmitted for the first 2 ms duration and afterwards, 

E5 signal is transmitted which is all zero for the simplicity of the model and in order to 

find out the maximum achievable performance of a switching architecture. This 

switching architecture has also been studied in the tracking stage in [44]. The simulation 

results are shown in Chapter 5. 

 

 

Figure 4.8: Switching interval between transmitters. 

Figure 4.9 shows the plots of autocorrelation function of joint CBOC signals with 

different switching time interval (CBOC reference receiver is used here). The effect of 

different switching intervals on the shape of ACF of CBOC signal is clearly visible e.g. 

when switching time is less than 2 ms, more than one autocorrelation shape is present 

due to the fact that E1 transmitter is transmitting the signal more than once.  The time 

‘T’ mentioned in each graph is the total period of the sine wave as shown in Figure 4.8 

and the switching of the transmitter occurs at half cycle of each time period. 
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Figure 4.9: ACFs of joint CBOC signal with different switching interval.



Chapter 5  

Simulink-Based Simulation Results 

This chapter presents the simulation based results achieved from the acquisition unit. It 

starts by presenting the results for detection probability, mean error and variance for the 

processing of Galileo E1 signal with reference CBOC and reference SinBOC(1,1) 

receivers, respectively. The results are shown for both single- and multi-path, and for 

static channels with AWGN. Further plots deal with the comparison of data, pilot and 

joint data-pilot channel in terms of detection probability, mean error and variance. 

Additionally, we present the results related to the choice of the weighting factor when 

combining data and pilot channel, effect of time-bin step on detection probability, effect 

of limited front-end bandwidth on detection probability. Last section describes the 

impact of choosing different detection thresholds in terms of detection probability for 

CBOC reference receiver and also the results based on switching architecture. 

5.1 Performance Measures in Simulation  

As mentioned in Chapter 4, CBOC unit for acquisition has been introduced in the 

Simulink model by the author. The main purpose of introducing this block is to make 

comparison between the BOC and CBOC signals in terms of detection probability. E1 

chain model has been simulated according to the following parameters: acquisition unit 

running time = 5 s, time-bin step in the acquisition ∆tbin = 1 sample, multi-path delay 

spacing is 0.35 chips and the amplitude of the second path is 3 dB lower than the first 

one. The statistics were computed for 5 s of simulation for each Carrier to Noise Ratio 

(CNR or C/N0) value. The acquisition threshold is set to 1.27 for both reference BOC 

and reference CBOC acquisition. All the results computed in this chapter are for infinite 

bandwidth (or no front-end filter at the receiver). 
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A test statistic is computed based on the values of code delay error which is calculated 

by subtracting the true delay from estimated delay, and then this test statistic is 

compared to a certain threshold in order to plot the detection probability. The code 

delay error is compared with the threshold equal to 0.175 chips which is one-fourth of 

the width of the main lobes of ACF envelope of CBOC. The detection probability (Pd) 

is computed as follows: 

 

( & | | _ )dP prob Z Delta error thr errorγ= > <  (5.1) 

 

Where "| |" means absolute value and "&" means AND operator, ‘Z’ is the decision 

statistic, here the correlation output, ‘γ ’ is the decision threshold, here 1.27, ‘Delta 

error’ is the delay error in chips, and ‘thr_error’ is the maximum delay error used as 

threshold (e.g., 0.175 chips).  

 

The mean error values are expressed in chips and they are computed as: 
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LOSτ  is the estimated LOS delay in chips for i-th observation, ( )i
LOSτ  is the 

true LOS delay in chips and n is the number of observations (random points) used to 

compute the statistics. 

 

The variance of the delay error is expressed in units of chips square and is computed as: 
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5.2 Detection Probability with Certain Threshold  

The results reported in Section 5.3 to 5.8 in this chapter are based on best-case 

approximation which means that, no matter whether the decision variable is higher or 

less than the specified threshold, we still output the estimated delay and use it for 

computing the detection probability. However, it is important to find out how far from 
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average is the best-case approximation. In this section, we compare the best-case 

approximation (i.e., no thresholding) with the average detection probability curves for a 

threshold equal to 1.27. Only the points which are higher than threshold are considered 

in the statistics. Figure 5.1(a) shows the comparison between the two cases in terms of 

detection probability for multi-path channel with SinBOC(1,1) and CBOC reference 

codes, respectively. 

 

 

Figure 5.1(a): Pd versus C/N0 in multi-path channel for SinBOC(1,1) (left) and CBOC 

reference code (right). 

It can be observed from the plots that best-case is indeed the best in terms of detection 

probability, it has 2.2 dB and 0.65 dB better detection probabilities with SinBOC(1,1) 

and CBOC reference code, respectively at Pd = 0.8. On the other hand, it also has an 

increased false alarm probability which can be observed from Figure 5.1(b).  

 

 

Figure 5.1(b): Pfa versus C/N0 in multi-path channel for SinBOC(1,1) (left) and CBOC 

reference code (right). 
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In what follows, we use the best-case approximation for the simplicity of the 

calculation. From real receiver’s point of view, it is not feasible to use the best-case 

approximation.    

 

Detection probability is computed using different code delay error thresholds, ranging 

from 0.15 chips to 1 chip but there is not any significant difference in the performance. 

In most of the literature, test statistics are computed within 1 chip but we have used 

0.175 chips throughout the simulation. The reason is that, for GPS signal, 1 chip 

represents half of the width of the main lobe. In CBOC case, half of the width of the 

main correlation lobe is 0.35 chips. If we want to acquire the signal with even higher 

accuracy than half of the width of the main correlation lobe, it makes sense to use a 

threshold of 0.175 chips (i.e., if the delay error coming from the acquisition stage is 

higher, in absolute value,  than 0.175 chips then we consider that the signal has not been 

detected correctly). 

5.3 Comparison Between SinBOC(1,1) and CBOC Reference 

Receiver  

Figure 5.2 compares the detection probability, mean absolute error and variance of BOC 

and CBOC reference receivers. The simulations were carried out in single-path scenario 

and static channel was considered here. It can be concluded from the figure that at low 

C/N0 levels, the detection probability of CBOC is better than SinBOC(1,1). As the 

C/N0 value increases, detection probability also increases. CBOC modulation gives 0.1 

dB better detection probability compared to SinBOC(1,1) at Pd = 0.9. As explained 

already in Chapter 2 MBOC has better power spectral density than SinBOC(1,1). This is 

mainly due to a higher transition rate (the number of phase transitions per unit time) 

brought by the BOC(6,1) on top of the BOC(1,1). The contribution of the BOC(6,1) 

subcarrier brings in an increased amount of power on higher frequencies, which leads to 

signals with narrower correlation functions and therefore yielding better performance at 

the receiver level.  

 

Figure 5.3 depict the plots of detection probability, mean error and variance for 

SinBOC(1,1) and CBOC reference receiver for multi-path channel. First path delay is 0 

chips and the second path delay is 0.35 chips. It can be noticed from the figure that at 

low C/N0 levels, the detection probability of CBOC is better than SinBOC(1,1). CBOC 
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has 0.15 dB better performance than SinBOC(1,1) at Pd = 0.9. Mean error and variance 

are converging to zero for both SinBOC(1,1) and CBOC signals but these errors are less 

for CBOC modulation. In other words, we can say that CBOC has slightly better 

detection probability in multi-path scenarios as well, but the difference in performance 

is not higher than 0.15 dB. 

 

 
   a 

 

 
                  b                          c 

Figure 5.2: (a) Pd (b) Mean Absolute Error (c) Variance versus C/N0 for single-path 

channel profile. 

 
   a 
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                b                            c 

Figure 5.3: (a) Pd (b) Mean Absolute Error (c) Variance versus C/N0 for multi-path 

channel profile. 

 
    a 

 

 
                                           b                                                                                  c 

Figure 5.4: (a) Pd (b) Mean Absolute Error (c) Variance versus C/N0 for single and 

multi-path channel profile. 
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Figure 5.4 depicts the plots of detection probability, mean error and variance of CBOC 

reference receiver for single-path and multi-path channel profiles. The idea is to 

compare the performance of CBOC signal in single-path and multi-path channel 

profiles. It can be seen from Figure 5.4(a) that CBOC reference receiver gives 0.2 dB 

better performance in single-path channel as compared to multi-path channel at Pd = 0.8. 

It also has less mean and variance error in single-path channel. 

5.4 Data-Pilot Combinations for BOC Reference Receiver  

The acquisition block has also been modified in order to allow the use of individual 

channels, i.e. data-only or pilot-only. Comparison among the three different cases (i.e. 

data-only, pilot-only and non-coherent combining of data and pilot channel) has been 

made and plots are available for single and multi-path channel profiles. In this non-

coherent combining, received signal is correlated individually with the data and pilot 

local replicas. The correlation outputs are then summed and afterwards, the mean is 

taken non-coherently over these correlation outputs. It can be easily observed by the 

plots presented in next sections that non-coherent combining gives more reliable signal 

detection. BOC reference receiver was used here for the acquisition stage. 

 

We used three different approaches to acquire signal i.e. data-only channel, pilot-only 

channel and joint data and pilot channel. Considering individual channel to acquire the 

signal will result in losing half of the useful signal power which degrades the detection 

probability. Joint data and pilot channel allows recovering of all the available signal 

power to be used for processing which ultimately improves the signal acquisition and 

provides better detection probability [4] which can be observed from the Figure 5.5 and 

5.6.  

 

  
    a 
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               b                                                                             c                                                

Figure 5.5: (a) Pd (b) Mean Absolute Error (c) Variance versus C/N0 for SinBOC(1,1) 

signal in single-path channel profile. 

 
    a 

 

   
                                      b                                                                                   c 

Figure 5.6: (a) Pd (b) Mean Absolute Error (c) Variance versus C/N0 for BOC signal in 

multi-path channel profile. 
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Figure 5.5 and 5.6 depict the plots for detection probability, mean error and variance of 

SinBOC(1,1) reference receiver for data-only, pilot-only and joint data and pilot 

channel for single and multi-path channel profiles, respectively. In multi-path channel, 

first path delay is 0 chips and second path delay is 0.35 chips. 
 

In single-path scenario, joint data and pilot channel gives 3 dB better detection 

probability than data-only and pilot-only channel, respectively at Pd = 0.9, which is in 

accordance with the expected 3-dB losses in single-channel processing mode. It is worth 

noticing here that pilot-only channel is performing slightly better than the data-only 

channel. It has 0.04 dB better performance than data-only channel. Data channel 

contains navigation data and pilot channel has no data so that no bit transition occurs 

and this makes the reception of signal better than with data channel. Similarly, joint data 

and pilot channel gives 3dB better detection probability than data-only and 3.02 dB 

better detection probability than pilot-only channel in multi-path scenario. Pilot-only 

channel and data-only channel has similar performance in multi-path scenario at Pd = 

0.90. 

5.4.1. Data-Pilot Combinations for CBOC Reference Receiver 

Same acquisition strategies were adopted for CBOC reference receiver in order to 

acquire the signal. Figures 5.7 and 5.8 show the plots of detection probability, mean 

error and variance for single-path and multi-path channel profiles, respectively. Here 

acquisition was performed using CBOC reference receiver.  

 

 

 
    a 
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                  b                           c 

Figure 5.7: (a) Pd (b) Mean Absolute Error (c) Variance versus C/N0 for CBOC signal 

in single-path channel profile. 

 

 
                                                    a                              

 

 

 
                                    b                         c 

Figure 5.8: (a) Pd (b) Mean Absolute Error (c) Variance versus C/N0 for CBOC signal 

in multi-path channel profile. 
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In single-path scenario, joint data and pilot channel gives 3.2 dB and 3.23 dB better 

detection probabilities than data-only and pilot-only channel, respectively, at Pd = 0.9. 

Pilot channel has better performance with CBOC reference receiver as well. Pilot 

channel has 0.03 dB better performance than data channel. The presence of the peak at 

the 39 dB is caused possibly due to the insufficient simulation time. Similarly, joint data 

and pilot channel gives 2.8 dB better detection probability than data-only and 2.9 dB 

better detection probability than pilot-only channel in multi-path scenario. Pilot channel 

has 0.1 dB better performance than data-only channel at Pd = 0.9 in multi-path scenario. 

It is worth noticing here that pilot-only channel is performing slightly better than the 

data-only channel. This is somehow counter-intuitive result, since the expectation 

would be that CBOC (-) signal has worse acquisition properties than CBOC(-) signal (to 

counter-balance the better tracking properties); however, the differences in detection 

probability are very small. Joint data and pilot channel combines all the significant 

power from data and pilot channel which ultimately improves the signal detection up to 

3 dB extent and more in case of CBOC reference receiver.  

5.4.2. Comparison between BOC and CBOC Reference Receiver 

Figure 5.9 depicts combined graph of detection probability, mean absolute error and 

variance for data-only, pilot-only and joint data and pilot channel with SinBOC(1,1) and 

CBOC reference signal. The idea is to compare the performance of CBOC reference 

receiver in terms of detection performance of signal in multi-path scenario. 

 

 

 

 

 
                                                                        a 
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             b                       c          

Figure 5.9: (a) Pd (b) Mean Absolute Error (c) Variance versus C/N0 in multi-path 

channel profile. 

CBOC reference receiver has better performance than SinBOC(1,1) reference receiver. 

It is quite evident from the plots that CBOC joint data and pilot gives the best result 

among different acquisition strategies. CBOC joint data and pilot channel has 0.28 dB 

better detection probability than SinBOC(1,1) joint data and pilot channel at Pd = 0.8. 

Similarly, CBOC data-only has 1 dB better detection probability than SinBOC(1,1) 

data-only and CBOC pilot-only channel has 1.05 dB better detection probability than 

SinBOC(1,1) pilot-only channel. Mean absolute error and variance are also low for 

CBOC joint data and pilot.  

 

Figure 5.10 shows the curve of joint data and pilot signals for single and multi-path 

channel profile for CBOC reference receiver. The idea is to see how much better is the 

result of detection probability in single-path compared to multi-path channel profile. 

 

 

Figure 5.10: Pd versus C/N0 for joint CBOC signal. 
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In multi-path channel profile, first path delay is 0 chips and the second path delay is 

0.35 chips. Joint CBOC data and pilot in single-path channel gives 0.05 dB better 

detection probability than in multi-path channel. 

5.4.3. Choice of the Weighting Factor 

In order to choose the best weighting factor for combining non-coherently the data and 

pilot channels, a study has been carried out and plots are available for detection 

probability and variance for different weighting factors.  

 

                       
                                    a                                                                                    b 

Figure 5.11: (a) Pd (b) Variance versus Weighting Factor in multi-path channel. 

Figure 5.11 depicts the plots of detection probability and variance for both reference 

BOC and CBOC receiver, for various combinations of data and pilot. In this approach, 

non-coherent combining of data and pilot signals are used where received signal is 

correlated individually with the data and pilot local replicas. The correlation outputs are 

then multiplied with different weighting factors and finally summed to make the 

correlation output. It is evident from the graph that weighting factor = 0.5 gives the best 

detection probability among others. The same conclusion is reached by looking at the 

variance of the delay errors in the acquisition stage from Figure 5.11(b) (i.e., in terms of 

variance of the delay error, the optimum combining factor of 0.5 is clearly much better 

than the neighborhood values). 

5.5 Detection Probability Versus time-bin Step 

The effect of the time-bin step ∆tbin is depicted in Figure 5.12 for SinBOC(1,1) and 

CBOC signals. Here multi-path scenario was considered with first and second path 
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delay equal to 0.15 chip and 0.5 chip, respectively. C/N0 = 45 dB-Hz and the step for 

time-bin ∆tbin ranges from 1 sample to 1 chip. Figure 5.12 shows the plot of detection 

probability and variance against time-bin step. 

 

  
                                           a                           b 

Figure 5.12: (a) Pd (b) Variance versus time-bin steps for multi-path channel profile. 

The results reported so far in the acquisition stage were performed with a time-bin step 

of 1 sample, corresponding to 0.078 chips. However, the lower the time-bin step in the 

acquisition process is, the higher the mean acquisition time becomes, and therefore a 

higher time-bin step is usually preferable.  As seen in Figure 5.12, the choice of the 

time-bin step has indeed a tremendous importance in the acquisition stage. It can be 

observed from the graph that steps higher than 4 samples are likely to give poor 

detection probability. At some higher steps, detection probability is still better 

especially for CBOC receiver but variance has higher values for such steps. As a rule of 

thumb, time-bin step for BOC modulated signal should be quarter of the width of the 

main lobe (i.e., 0.17 chips) to achieve better detection probability. This is matching also 

with GPS case, if we make the analogy that one quarter of the main correlation lobe in 

GPS C/A code is 0.5 chips, and this is the typical time-bin step used in the GPS 

acquisition [2]. 

5.6 Acquisition with Limited Bandwidth 

This part describes the effect of front-end bandwidth on the signal acquisition of 

SinBOC(1,1) and CBOC reference receiver. For mass market receivers, limited front-

end bandwidth design is the only possibility to reduce the manufacturing cost. In this 

approach, different front-end bandwidths are considered and plots of detection 
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probability across different ranges of C/N0 for BOC and CBOC receiver are depicted in 

Figure 5.13.  

 

 
                                    a                                                                                  b 

Figure 5.13: Pd versus C/N0 (a) SinBOC(1,1) reference signal. (b) CBOC reference 

signal, double-sided bandwidth. 

It is obvious from the graph that the performance of BOC and CBOC receiver with 

infinite bandwidth is better in terms of detection probability. BOC receiver with infinite 

bandwidth has 0.04 dB better performance than receiver with 25 MHz front-end 

bandwidth and 0.2 dB better performance than receiver with 3 MHz front-end 

bandwidth. Similarly, CBOC receiver with infinite bandwidth has 0.1 dB better 

performance than receiver with 25 MHz front-end bandwidth and 0.2 dB better 

performance than receiver with 3 MHz front-end bandwidth. Both the receivers with 25 

MHz front-end bandwidth have slightly better performance than receivers with 3 MHz 

front-end bandwidth. The choice of 25 MHz front-end bandwidth is an expensive choice 

for mass market receiver and receiver with 3 MHz front-end bandwidth has more or less 

the same performance in terms of detection probability. Thus, receiver with 3 MHz 

front-end bandwidth is a suitable choice for mass market receiver design. 

5.7 Impact of the Threshold  

The effects of choosing different acquisition threshold are discussed in this section. 

Figure 5.14 (a) depicts the plot of detection probability (i.e., Pd) with different 

acquisition threshold across different C/N0 values and impact of choosing different 

acquisition threshold are presented in Figure 5.14 (b) in terms of false alarm (i.e., Pfa). 

CBOC reference receiver was used here. Time-bin step ∆tbin = 1 in the acquisition unit. 



 SIMULINK-BASED ACQUISITION UNIT FOR GALILEO E1 CBOC MODULATED SIGNALS 60

  

Code delay error is computed within 0.175 chips. First path delay is 0 chips and the 

second path delay is 0.35 chips. Infinite front-end bandwidth was considered here. 

 

 
                                    a                                                                                  b  

Figure 5.14: (a) Pd versus C/N0 with CBOC reference signal. (b) Pfa versus C/N0 with 

CBOC reference signal. 

It is very important to choose suitable acquisition threshold in order to detect the signal 

properly. It can be observed from the graph that, if the detection probability is set too 

low, for example, when threshold, γ  = 1, the probability of detection (i.e., Pd) increases 

(blue curve in Figure 5.10(a)) but on the other hand the probability of false alarm (i.e., 

Pfa) increases as well (blue curve in Figure 5.10(b)). In the same way, if detection 

threshold is set too high i.e., γ  = 1.3, Pfa decreases (Pfa is zero in this case) but at the 

same time Pd decreases as well (pink curve in Figure 5.10(a)). The choice of a suitable 

detection threshold γ  has great importance in the acquisition process. In our simulation 

model, acquisition threshold is set to 1.27. 

5.8 Switching Architecture Simulation Results  

Figure 5.15 depicts the plot of detection probability for switching architecture model in 

single-path channel profile. It is clearly evident from the graph that the performance of 

CBOC reference receiver with different switching time is significantly worse than the 

one without switching.  The red curve which is the Pd without switching time is giving 

around 5 dB better performance than those with switching time. However, based on the 

simulation results, the best switching time is 2 ms. 
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Figure 5.15: Pd versus C/N0 with different switching time. 

 

 

 

 

 

 



Chapter 6  

Matlab-Based Simulation Results 

This chapter deals with the simulation results achieved from the Matlab model. The 

Matlab model consists of the transmitter part, the channel part and the receiver 

acquisition unit. This chapter starts by specifying the difference between Matlab and 

Simulink models then presenting the results for detection probability and root mean 

squared error of CBOC and BOC signals for single-path and then multi-path channel 

profiles. Further plots deal with the comparison of data, pilot and joint data-pilot 

channel in terms of detection probability and root mean squared error. Last section 

describes the impact of choosing different detection threshold and maximum delay error 

in terms of detection probability for CBOC reference receiver. 

6.1 Difference between Matlab and Simulink Model  

Figure 6.1 shows the simplified block diagram of Matlab model. The transmitter block 

is implemented based on CBOC modulation i.e. combination of CBOC(‘+’) and 

CBOC(‘-’) modulated signals. The E1-B signal is the CBOC(‘+’) modulated signal with 

navigation data and E1-C is the CBOC(‘-’) modulated signal without navigation data 

(pilot channel). Similarly, in the Simulink model, the E1 transmitter block is also 

implemented based on CBOC modulation. In the channel block of Matlab model, 

Nakagami-m fading channel is used, where multi-path fading channel environment 

affects the transmitted signal via specific fading coefficients, whereas in Simulink 

model, static channel with AWGN is used. The receiver block of Matlab model is based 

on two receiver options: one which uses a reference SinBOC(1,1)-modulated code for 

CBOC based transmitted signal, another one which uses a reference CBOC 

(combination of CBOC(‘+’) and CBOC(‘-’)) modulated code for the transmitted signal. 

The operation of Simulink based receiver is different with what we have in Matlab 

model i.e. SinBOC(1,1)-modulated code is correlated individually with E1-B and E1-C 
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channel for BOC reference receiver. A reference CBOC(+)-modulated code is 

correlated with E1-B and a reference CBOC(-)-modulated code is correlated with E1-C 

channel for CBOC reference receiver. In Matlab-based model, transmitted signal is 

correlated with SinBOC(1,1) reference code and CBOC reference code for SinBOC(1,1) 

and CBOC reference receiver, respectively. 

 

 

Figure 6.1: Block diagram of Matlab model with BOC/CBOC reference receiver. 

Matlab model is a simplified version developed for the faster algorithmic development 

and analysis, whereas Simulink model is more realistic from implementation point of 

view. Other parameters which are different in both the model are reported in Table 6.1. 

Table 6.1: Comparison between Simulink and Matlab simulation parameters. 

Parameters Matlab Model Simulink Model 

Spreading factor (SF) 41 chips 1023 chips 

No. of frequency bins 2 5 

Search strategy Serial search Parallel search 

Time-bin step 0.020 chip 0.078 chip 

Sampling frequency 49.10 MHz 13 MHz 

Correlation type Time domain Frequency domain 

Coherent Integration 

time (Nc) 

20 ms 4 ms 
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6.2 Simulation Parameters   

In the simulations, the time-bin length ‘∆tbin’ was 0.020 chips that comes in fact from 

1/Ns/ NBOC, NBOC = 12 for CBOC and the oversampling factor Ns for the received signal 

was 4 samples per BOC/MBOC interval. A coherent integration time, Nc = 20 ms was 

used, followed by non-coherent integration on Nnc = 1 block. The multi-path delay 

spacing is 0.35 chips and the amplitude of the second path is 1 dB lower than the first 

one. The PRN codes length or spreading factor, SF = 41 was considered, smaller 

spreading factor was used in order to speed up the simulation (however, since in GPS 

and Galileo, SF =1023 chips, our Matlab model is only an approximation of the real 

system, and the purpose here was to study the impact of those simplifying 

approximations on the performance analysis). The statistics were computed for Nrand = 

500 points for each Carrier to Noise Ratio (CNR or C/N0) value. The false alarm 

probability, Pfa = 10
-3

 and acquisition threshold equal to 1.3 was used in the simulations. 

The code delay error is compared with the threshold equal to 0.175 chips which is one-

fourth of the width of the main lobes of ACF envelope of CBOC (this is the same as in 

Simulink model). The root mean square error values used in the statistics are expressed 

in meters and they are computed as: 
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where c is speed of light and other parameters have the same meaning as in formula 5.1.  

6.3 Comparison of SinBOC(1,1) and CBOC Reception   

Figure 6.2 compares the performance of SinBOC(1,1) reference receiver with joint 

CBOC reference receiver in terms of detection probability in single-path channel 

profile, root mean squared error is also depicted in the figure. The SinBOC(1,1) 

reference receiver gives 0.4 dB better detection probability than CBOC reference 

receiver at Pd = 0.8. RMSE errors for SinBOC(1,1) reference code is also less than those 

of CBOC reference code.  



CHAPTER 6. MATLAB-BASED SIMULATION RESULTS  65

 
                                    a                                                                    b 

Figure 6.2: (a) Pd (b) Root Mean Squared Error versus CNR for single-path channel. 

Figure 6.3 shows the plot of detection probability versus CNR of SinBOC(1,1) and 

CBOC reference receiver for single-path channel achieved from Simulink model. The 

performance deterioration of CBOC signal in the plot achieved by Matlab model is 

clearly visible. It is due to the different operation of Matlab based receiver as explained 

in Section 6.1. Another reason is the use of different codes for Matlab and Simulink 

model i.e. in Matlab model, simple pseudorandom codes have been used for CBOC 

modulation but in Simulink model primary and secondary codes for E1-B and E1-C 

signals have been used exactly according to SIS ICD documents [1].  

 

 

Figure 6.3: Pd versus C/N0 for single-path channel. 

6.4 Comparison of Data-only, Pilot-only and Joint Data-pilot 

Processing with BOC Reference Receiver   

Figure 6.4 depicts the plots of detection probability versus CNR for single-path and 

multi-path channel profiles for reference SinBOC(1,1) receiver achieved from Matlab 

model. The transmitted signal is based on joint CBOC modulation i.e., non-coherent 
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combining of CBOC(‘+’) and CBOC(‘-’). It can be analyzed from the graph that, in 

single-path, data-only channel has 0.35 dB better performance than joint channel and 

0.04 dB better performance than pilot-only channel. In multi-path channel, joint channel 

provides 0.6 dB better performance than pilot-only and 0.08 dB better performance than 

data-only channel. 

 

 
                                    a                                                                                  b 

Figure 6.4: Pd versus CNR with SinBOC(1,1) reference receiver (a) single-path channel 

(b) multi-path channel. 

Figure 6.5 depicts the plots of Pd versus CNR for SinBOC(1,1) reference receiver 

achieved from the Simulink model. It can be clearly observed that pilot-only channel is 

performing slightly better than data-only channel in single and multi-path channel 

profiles which is not the case in Matlab model.  

 

 
                                    a                                                                                  b 

Figure 6.5: Pd versus CNR with SinBOC(1,1) reference receiver (a) single-path channel  

(b) multi-path channel. 
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6.5 Comparison of Data-only, Pilot-only and Joint Data-pilot 

Processing with CBOC Reference Receiver   

Figure 6.6 depicts the plots of detection probability versus CNR for single-path and 

multi-path channel profiles for reference CBOC receiver obtained from Matlab model. 

The transmitted signal is based on joint CBOC modulation. It can be noticed from the 

graph that, data-only channel has 0.6 dB better detection performance than joint channel 

acquisition and 0.7 dB better performance than pilot-only channel at Pd = 0.8 in single-

path scenario. In multi-path scenario, data-only channel has 0.3 dB better performance 

than joint channel and 1.1 dB better performance than pilot-only channel at Pd = 0.8. 

 

  
                                     a                                                                    b 

Figure 6.6: Pd versus CNR with Matlab model (a) single-path channel (b) multi-path 

channel. 

 

 
                                           a                                                                    b 

Figure 6.7: Pd versus CNR with Simulink model (a) single-path channel (b) multi-path 

channel. 

 

Figure 6.7 shows the plots of Pd versus CNR for CBOC reference receiver achieved 

from the Simulink model. It can be clearly observed that pilot-only channel has slightly 
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better performance than those of data-only channel in single-path and multi-path 

channel profiles. 

 

We remark that in the Simulink model, pilot-only channel was slightly better than data-

only channel and joint channel was giving the best detection performance among 

different acquisition strategies. The reason for this contradictory result is due to the 

different simulation parameters as reported in Table 6.1 and different operations of 

Simulink and Matlab receiver. 

6.6 Impact of Acquisition Threshold   

The effect of choosing different acquisition thresholds on the detection performance of 

the CBOC receiver is discussed here. Figure 6.8 shows the plot of Pd versus CNR for 

different threshold. Multi-path channel scenario is considered here and the code delay 

error is fixed to 0.175 chips, joint CBOC reference receiver is used here. It can be easily 

observed from the plots that as the acquisition threshold is decreasing, Pd is decreasing 

as well. The choice of the acquisition threshold is indeed a non-trivial task, for example, 

if the acquisition threshold is set too low, the probability of detection (i.e., Pd) increases 

but at the same time the probability of false alarm (i.e., Pfa) increases as well. Similarly, 

if threshold is set too high, Pfa decreases, on the other hand Pd decreases as well which is 

quite obvious from the graph presented below. 

 

 

  
                                           a                                                                                   b 

 

Figure 6.8: (a) Pd (b) Pfa versus CNR with different acquisition thresholds. 
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6.7 Impact of Maximum Delay Error  

In Figure 6.9, a comparison among the Pd of joint CBOC reference receiver with 

different code delay error is depicted. Pfa is fixed to 10
-3

. The detection probability is 

computed by the same formula as stated in Eq. 5.1.  

 

 

Figure 6.9: Pd versus CNR with different delay error. 

 

It is evident from this comparison that when the delay error is higher, maximum 

detection rates can be achieved e.g., when delay error is 1 chip, higher detection 

probability is obtained. In order to detect the signal properly for the tracking stage, the 

maximum delay error must not be more than 0.35 chips in case of CBOC signal (this is 

equal to half of the main lobe correlation width and defines the linear region of most 

delay tracking structures). As explained in the previous chapter, most of the CBOC 

signals energy is found within half of the width of the main lobe of auto-correlation 

function which is 0.35 chips so even smaller delay error should be adopted in order to 

detect the signal significantly. 

6.8 Normalized ACFs of Reference BOC and CBOC 

Receiver   

Figure 6.10 depicts the ACF curves of CBOC(‘+’), CBOC(‘-’) and SinBOC(1,1) signals 

obtained by Matlab and Simulink model. The transmitted signal is based on joint CBOC 

modulation for both the Simulink and Matlab model. At the receiver, the reference code 

is CBOC(‘+’), CBOC(‘-’) and SinBOC(1,1) for Simulink and Matlab model, 

respectively in plots 6.5(a), 6.5(b) and 6.5(c). It is to be noticed the very good match 

between the ACFs of Matlab and Simulink model.  
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Figure 6.10: Normalized ACF of (a) CBOC(‘+’) (b) CBOC(‘-’) and (c) SinBOC(1,1). 

 



Chapter 7  

Conclusion and Further Research Issues 

 

This chapter deals with the conclusions obtained from the simulation results and 

continuation of the research in the future. 

7.1 Conclusions   

The new Galileo OS signals introduce new challenges due to the longer spreading codes 

and require increased computational power as compared to GPS signals. However, the 

use of BOC modulated signals guarantees better performance against multi-path fading, 

and the presence of longer tired code helps the Galileo OS signals to have increased 

efficiency in indoor environment. In this thesis, a new acquisition unit based on CBOC 

reference code has been implemented in the basic Galileo Simulink model in order to 

investigate the performance of Galileo E1 OS signal with two receiver types: a 

reference CBOC receiver and a reference SinBOC(1,1) receiver. From the simulation 

results, it was shown that the CBOC reference receiver has slightly better performance 

than SinBOC(1,1) reference receiver mainly due to a higher transition rate brought by 

the BOC(6,1).  

 

The E1 OS signal is composed of two channels: the data and the pilot channel. The 

former carries the navigation data whereas the latter is a data-free channel. This new 

composition of E1 signal allows one to choose different techniques in order to acquire 

the signal. Three different approaches were used for acquiring the received signal: data-

only channel, pilot-only channel and joint data and pilot channel. A study was also 

carried out in order to find the best weighting factor for combining data and pilot 

channels. Based on the simulation results, it has been observed that acquisition with 

individual channel is not the best approach to acquire the signal. Joint data and pilot 
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channels combine all the significant power from data and pilot channel which ultimately 

improves the signal detection up to 3 dB in case of both the receivers. However, if only 

one channel has to be used, the acquisition with pilot-only channel has the best 

performance with both SinBOC(1,1) and CBOC reference receiver. 

 

The acquisition with pilot-only channel leads towards new findings that acquisition 

based on CBOC(+) modulated signal is no better than the acquisition based on CBOC(-) 

signal. Moreover, such analysis has not been done before in the literature, to the best of 

the authors’ knowledge. It was also shown that pilot-only channel gives better 

performance than data-only channel with both SinBOC(1,1) and CBOC reference 

receiver.  

 

Another issue in the acquisition stage of Galileo OS signal is the presence of additional 

peaks within ± 1 chip interval around the main lobe. The steps should be chosen quite 

carefully in order to detect the signal properly. The impact of acquisition on time-bin 

steps was analyzed and it was shown that the time-bin step for SinBOC(1,1) modulated 

signal should be quarter of the width of the main lobe (i.e., 0.175 chips) to achieve 

better detection probability.  

 

Under infinite bandwidth case, CBOC reference receiver has clearly better performance 

than SinBOC(1,1) reference receiver, however, the difference in performance is rather 

small (less than 0.5 dB) in the acquisition stage. This difference is no longer visible in 

the narrowband case, where a SinBOC(1,1) reference receiver is the best solution. From 

mass market receiver point of view, lower front-end bandwidth design is preferable due 

to low cost and based on the results, 3 MHz front-end bandwidth has proposed for mass 

market receiver design. 

 

From the simulation based on acquisition threshold, it was observed that lower detection 

threshold increases the probability of detection but increases the probability of false 

alarm. Similarly, if detection threshold is chosen too high, probability of false alarm 

decreases but probability of detection decreases. Thus, γ  = 1.3 is the best acquisition 

threshold among different values used during simulation.   
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The performance of switching architecture model has been reported and it was shown to 

perform worse in terms of detection probability compared to those without switching, 

but switching time, 2 ms gives the best result among different switching time.  

7.2 Future Work   

The acquisition methods proposed in this research were applied for Galileo OS signal 

which operates at E1 carrier frequency. However, there are other frequencies like E5a 

and E5b where Galileo OS signals are going to operate in future. They have different 

frequency bands, modulation schemes and shapes of the auto-correlation function. As 

such, the techniques proposed during this research would need to be adapted and 

investigated. 

 

The Simulink based simulator can be further developed with respect to real Galileo 

receiver with the addition of some new blocks, such as Low Noise Amplifier (LNA), 

Analog to Digital Converter (ADC) and etc.  

 

With the development and modernization of new GNSS signals, new horizons are 

opening in terms of signal combinations at the same frequency and at different 

frequencies. It is anticipated that once Galileo system will be fully operational, most of 

the receiver will be sold with both GPS and Galileo compatible. Thus, further efforts 

can be carried out to develop a dual band GNSS receiver.  
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