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ABSTRACT 
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Master of Science Thesis 
Tampere University 
Master’s Degree Programme in Electrical Engineering 
May 2019 
 

Mankind has always been passionate about competing in sports of all sorts. First known sports 
originate thousands of years back in time. Despite the long history of sports, the last decades and 
years of technological improvements are now changing the nature of sports as we know it. Better 
technology has provided us ways to measure, quantify and analyse athlete performance in more 
detailed and profound ways than ever before. These tools have led to even more disciplined 
training programs, pushing the limits of athletes further and further. However, especially in team 
sports the best exercise programs and appropriate loads of training are hard to estimate. Every 
athlete and team are unique, as well as the training scenarios and games where the athletes push 
themselves. Therefore, there is an ever-increasing need for even better and more versatile mon-
itoring tools to meet the needs of team sports. 
 

In this thesis the objectives were to develop and evaluate a next generation elite team sports 
wearable heart rate monitoring and sensor solution for the heart rate and sports analytics com-
pany Firstbeat Technologies Oy. The work consists of evaluating an existing sensor system so-
lution Suunto Movesense and developing an application on top of it to meet the needs of demand-
ing team sports. The developed sensor software integrates an existing physiological algorithm 
monitoring library into the Movesense sensor, enabling wireless real-time monitoring of athletes 
with analytics being run on the sensor itself. The real-time analytics of each athlete is broadcasted 
over BLE advertising to a client device responsible for capturing and visualizing the data to team 
coaches. RR-intervals of measured ECG signal are also internally saved to non-volatile memory. 
This ensures that no single beat is lost, making all data accessible during and after the exercises. 
Client communication APIs for managing the sensor and data transfers were built on top of Move-
sense libraries. 
 

As part of the thesis, performance of the ECG R-peak detection algorithm of the Movesense 
sensor was also measured and evaluated against Firstbeat’s Bodyguard 2 monitoring device in a 
controlled field test. Suitability of the Movesense sensor and final software are also evaluated 
against predefined use cases. 
 

Development of the sensor software was performed in an iterative manner by continuously 
evaluating the sensor’s performance based on feedback from on-going team sports field test re-
ports. Summaries from field-test reports are provided and analysed as part of this thesis, to eval-
uate the sensor software development process and the performance of the sensor. Reports of 
memory usage and power consumptions are reported. A simple RRI-signal generator was also 
devised and used for testing and development purposes. Preliminary plans for continuous inte-
gration (CI) pipeline with hardware-in-the-loop simulation testing are briefly discussed. 
 

The result of the thesis project is a market-ready consumer product Firstbeat Sports sensor, 
which meets the needs and requirements set by the business. The reported results show that the 
sensor can reliably work in the challenging use cases of professional team sports. Future work 
and challenges of the development process are discussed at the end of the thesis. 
 
 

Keywords: heart rate monitoring, sensor system, wearable wireless technology, BLE, real-
time monitoring, monitoring system for professional team sports 
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Diplomityö 
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Ihmiskunta on aina ollut intohimoinen eri urheilulajeja kohtaan. Ensimmäiset urheilulajit 

periytyvät tuhansien vuosien takaa. Pitkästä urheilun historiasta huolimatta, viime 
vuosikymmenten teknologinen kehitys on muuttamassa urheilun luonnetta sellaisena kuin se on 
tunnettu. Parempi teknologia mahdollistaa nyt urheilusuoritusten mittaamisen ja analysoinnin 
tarkemmin ja syvällisemmin kuin koskaan ennen. Nämä työkalut ovat johtaneet kurinalaisiin 
treeniohjelmiin, auttaen huippu-urheilijoita ylittämään itsensä. Kuitenkin, erityisesti 
joukkueurheilussa on vaikea arvioida mitkä harjoitusohjelmat ja kuormitusmäärät ovat sopivia. 
Jokainen urheilija ja joukkue on erilainen, kuten ovat myös harjoitustilanteet ja pelit, missä 
kuormitus on suurta. Siksi paremmille ja monipuolisemmille joukkueurheilijoiden 
seurantatyökaluille on yhä enemmän tarvetta. 

 
Tässä diplomityössä tavoitteena oli kehittää ja arvioida seuraavan sukupolven huippu-

urheilijoiden joukkuelajeihin soveltuvaa puettavaa sykemonitorointiratkaisua syke- ja 
urheiluanalytiikkayritys Firstbeat Technologies Oy:lle. Työ koostuu olemassa olevan Suunto 
Movesense sensorijärjestelmän arvioinnista ja sen päälle kehitettävästä ohjelmistosta 
joukkueurheilukäyttöön. Kehitetty sensoriohjelmisto integroi olemassa olevan fysiologiseen 
seurantaan tarkoitetun algoritmikirjaston Movesense sensoriin, mahdollistaen sensorilla 
prosessoitavan langattoman urheilijoiden reaaliaikaseurannan. Kunkin urheilijan reaaliaikainen 
analytiikkatieto lähetetään BLE mainostuksen avulla vastaanottavalle laitteelle, joka on vastuussa 
tiedon visualisoinnista valmentajille. ECG:stä mitatut R-R-intervallit tallennetaan myös sensorin 
sisäiseen muistiin. Täten kaikki mittadata on saatavilla sekä treenin aikana reaaliajassa, että 
treenin jälkeen muistista ladattaessa. Sensorin hallinnointia ja datan latausta varten kehitettiin 
Movesensen alustan päälle kommunikaatiorajapinnat. 

 
Osana diplomityötä myös Movesensen ECG:n R-piikin tunnistusalgoritmia arvioitiin ja 

analysoitiin, verraten sitä Firstbeatin Bodyguard 2 monitorointilaitteeseen kenttätesteissä. Työssä 
arvioidaan myös Movesense-sensorin ja lopullisen ohjelmiston soveltuvuutta määriteltyihin 
käyttötapauksiin. 

 
Sensoriohjelmiston kehitystyö toteutettiin iteratiiviseen tapaan, arvioiden sensorin 

suorituskykyä pohjautuen palautteeseen jatkuvasti käynnissä olevista urheilujoukkueiden 
kenttätesteistä. Kenttätestien raporttien tuloksia on käsitelty ja analysoitu osana 
ohjelmistokehityksen prosessin ja sensorin suorituskyvyn arviointia. Muistin- ja virrankäyttö on 
raportoitu. Osana diplomityötä kehitettiin myös yksinkertainen R-R-intervallien signaalin 
generointiin soveltuva testaus- ja kehitystyökalu. Jatkuvan integraation ja testauksen 
kehittämisestä keskustellaan lyhyesti. 

 
Tämän diplomityön tuloksena on tuotettu markkinoille valmis ammattiurheilijoiden joukkueille 

suunnattu kuluttajatuote, Firstbeat Sports sensori, joka kohtaa sille asetetut tarpeet ja 
vaatimukset. Raportoidut tulokset näyttävät sensorin toimivan luotettavasti haastavissa 
urheilujoukkueiden käyttötapauksissa. Työn lopussa käsitellään kehitystyön haasteita ja 
tulevaisuuden jatkokehitystä. 

 
Avainsanat: sykemonitorointi, sensorijärjestelmä, puettava langaton teknologia, BLE, 

reaaliaikamonitorointi, ammattiurheilijoiden joukkuelajien seurantajärjestelmä 
 
Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla. 
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1. INTRODUCTION 

1.1 Motivation 

Throughout the history of mankind, sports of all sorts have always been a big part of 

societies. Team sports are a highly competitive field with lots of research, fans, support 

and money behind them. All the recent developments and research in technology and 

analysis tools have also led to new innovations and novel ideas on how to increase the 

performance of individuals and teams. There has been development in many different 

fields of science which have led to development of new type of smart wearable sensors 

and tracking devices, to collect and analyse data, both in real-time and offline. Some of 

these enabling technologies include wearable textile electronics, localization technolo-

gies, measurement technologies, algorithm development, machine learning, and better 

understanding of the human physiology. Overall the trend of having much more electron-

ics and technology being packed within smaller and smaller components, combining 

complex radio chips with traditional microcontroller units (MCUs) into complex System-

on-Chips (SoCs) running at extremely low power, have led to being able to measure and 

process lots of data within a tiny device embedded into clothing, or any wearables that 

we already have. 

This development of new and better technologies was the start point to this thesis as 

well, as there was a need for a more powerful and versatile wearable heart rate (HR) 

sensor product to be designed for team sports monitoring. The new product would need 

to introduce new advanced features, such as real-time on-chip processed algorithm re-

sults of a player’s exercise, accelerometer data analysis combined with advanced HR 

and heart rate variability (HRV) analysis, internal memory for datalogging, and easy pro-

grammable interface for future development. As part of this thesis, the requirements were 

taken, technical product specification were made, and a market-ready product Firstbeat 

Sports sensor was produced using a Movesense platform by Suunto. This project was 

done whilst working for Firstbeat Technologies Oy, a company which develops, pro-

duces, sells and licences advanced HR and HRV analytics products for customers and 

3rd party companies. Overall the objectives of the thesis were to: 

• Develop an application that would meet the requirements (e.g. power consump-
tion and resource usage as well as different use cases) for team sports monitor-
ing sensor, using Movesense 
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• Evaluate and analyse the suitability of Movesense sensor and developed system 
for team sports monitoring, using field test reports 

• Evaluate Movesense system as a suitable platform for team sports monitoring 

• Explore ways to perform offline-testing and debugging more effectively 

• Write a brief introduction and summary about Movesense development for some-
one without prior experience with it, as part of this thesis 

 

In this thesis sensor software development and evaluation was done to a commercial 

reprogrammable smart sensor Movesense. The main work of the thesis comprises of 

designing the specification of the application programming interfaces (APIs) between the 

sensor and a receiver device, software development, continuous evaluation and testing 

of the product. Work was done in collaboration with colleges responsible for receiver 

device software development, testing and product management. 

Software development of the product was done as an iterative work, continuously devel-

oping and evaluating the performance of the product. Both manual and hardware-in-loop 

testing was done for the software. A simple R-peak signal generator was devised for the 

purpose of hardware-in-loop simulation. Some unit testing and integration testing in a 

PC simulated environment were also explored. 

Final evaluations of the product include summarised and analysed reports from field 

tests, and other quality metrics reported.  

1.2 Structure of the thesis 

This thesis has been divided into six chapters, beginning with this Introduction. Following 

the introduction, a Background chapter about cardiovascular system and team sports 

monitoring will be provided. In this chapter, Firstbeat’s current team sports monitoring 

products will be briefly discussed together with some other companies in the field. 

Firstbeat Sports sensor development using Movesense technology will be discussed in 

Chapter 3, Firstbeat Sports sensor development. The chapter will begin by presenting 

Movesense related technologies, such as Bluetooth Low Energy (BLE), FreeRTOS, 

Representational State Transfer (REST) and Movesense sensor’s main SoC Nrf52832. 

Following these introductions, the Movesense platform will be discussed. Further speci-

fications and requirements for the new team sports monitoring HR sensor application will 

be presented in section 3.12. Some details about software development, such as state 

logic, its validation, and software testing will be discussed here as well. 
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Chapter 4, System evaluation, will present the results of the thesis. Here the results from 

field tests will be used to evaluate and analyse the suitability of the developed sensor 

application and Movesense platform for team sports monitoring. A report from controlled 

field test with a reference device for recording RRI-signal will also be provided and ana-

lysed. Power consumption and memory usage of the final application are reported. 

Finally, Chapters 5 and 6 present discussion and conclusions of the thesis project. Here 

the overall project flow will be analysed and pondered, and some current state of the 

product is considered. Future improvements are also discussed. Conclusions summarise 

the thesis and its results.  
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2. BACKGROUND 

2.1 Cardiovascular system 

 

Cardiovascular system is one of the most central parts of human physiology. It is a life 

sustaining part of the body which takes care of the circulation of oxygen and nutrients to 

the cells, as well as carrying away metabolic waste (Springhouse, 2002, p. 84). The 

continuously pumping heart can never fail in order to fulfil its mission to provide this flow 

of blood to the vessels, supporting rest of the systems and organs of the body. Therefore, 

the contraction of the heart muscle itself is an autonomous activity, making sure that no 

matter if the nervous system would fail, the heart keeps pumping. The rate of the con-

traction though, can be and is adjusted by the autonomous nervous system (ANS). This 

need of adjustment comes e.g. from need to adjust the blood flow to match the needs of 

an external physical load of the body, to increase or decrease the transportation of oxy-

gen and nutrients to muscles. In order to sustain a long-lasting physical exercise such 

as marathon running, control of the blood flow is critical to provide an effective oxygen 

transportation. In many sports, rapid changes in external load are also present, resulting 

in fast changes of cardiac output from 5 litres per minute to 25 litres per minute, which is 

mainly achieved by increasing the heart rate (HR). (Springhouse, 2002, p. 94) 

HR is one of the most important and common single physiological metrics which can be 

easily measured to estimate a person’s physiological response to external load when 

doing sports (Springhouse, 2002, p. 94). HR is generally expressed as bpm (beats per 

minute), indicating the number of times a heart pumps per minute. HR calculation is 

updated per each new pump, and these consecutive HR calculations can be called a HR 

-signal. This signal can be easily visualized, analysed and used to derive many important 

metrics out of it, making it a popular tool to assess one’s physiological condition e.g. in 

many clinical or sports use cases. 

Individual’s HR signal’s range is constrained within some range. As maximal HR of per-

son is limited, and largely determined by one's gender and age, it is not a factor used to 

define athlete's fitness level. Rather with more professional athletes', their hearts are 

more effective, resulting more cardiac output with same HR as with non-professionals. 

Also, their heart is usually larger. A more effective pumping of blood with one contraction 

results into much lower HR in rest. Therefore, it is not uncommon to have HRs below 40 

bpm (beats per minute) with professional athletes doing endurance sports. Resting HR 
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can be also used as a meter to determine someone's level of fitness. (Springhouse, 

2002, p. 94) 

Beat-to-beat -interval, or heart rate variability (HRV) is another important measure used 

to analyse physiological responses. It is calculated as a time distance between two con-

secutive pumps of heart. As with HR signal, these consecutive values form an HRV sig-

nal which can also be visualized and analysed for more advanced understanding of 

heart’s and body’s functioning. It is especially useful when analysing how body re-

sponses in relation to different internal or external stimulus, such as stress, exercise, 

relaxation, sleep, social events or eating. These stimuli affect our nervous system to 

react in different ways, which will increase or decrease the beat-to-beat interval of heart. 

Humans’ nervous system consists of two main parts: the central nervous system and 

peripheral nervous system. Central nervous system consists of brain and spinal cord. 

The PNS further consists of three parts: somatic, enteric and automatic nervous systems 

(ANS). Of these systems, ANS is the responsible for adjusting the HR of the body. 

(Springhouse, 2002, p. 86)  It is also largely responsible for controlling and regulating 

other functions of internal organs, affecting e.g. digestion, pupillary response and respi-

ration rate. ANS is yet subdivided in to two parts: sympathetic and parasympathetic nerv-

ous systems. Sympathetic nervous system is activated when there is need to stimulate 

the body’s fight-or-flight response, which e.g. increases HR. In the case of exercise this 

system ensures the sufficient delivery of oxygen to the muscles, by upkeeping the HR. 

Parasympathetic nervous system is largely the opposite, being active mainly when the 

body is in a relaxed state. Therefore, it slows the HR down. Together sympathetic and 

parasympathetic nervous systems help maintaining the homeostasis in the body. Pro-

longed imbalances in life can however disturb the natural balance of the body. Disturb-

ances in homeostasis can be caused by for example continued stress, bad healthy hab-

its, lack/excess of exercise, or lack of sleep (Kim, H. G., Cheon, E. J., Bai, D. S., Lee, Y. 

H., & Koo, B. H., 2018).  

Over the past two decades, HRV has been studied extensively as a signal to provide 

insight into body’s internal balance within the ANS. Nowadays HRV is being used in 

many clinical and consumer applications as a basis signal for analysing and detecting 

humans’ stress reactions and states of relaxation. Sleep analysis can also benefit from 

HRV, although it is only part of it. Several scientific and statistical methods have been 

developed and published to derive analyses from HRV signal. The most common meth-

ods of analysis can be divided into time and frequency domain methods. Some of the 

common time domain methods include root mean-square of successive differences 

(rMSSD) of adjacent NNIs (normal-to-normal intervals), standard deviation of all NNIs 
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(SDNN), and percentage of pairs of adjacent NNIs differing by more than 50 ms (pNN50). 

In frequency domain analysis, power spectral density (PSD) analysis is commonly used 

to analyse what frequency components are prevalent in the HRV signal, and how they 

change over time. Frequency domain analysis usually divides the interpretation of results 

to three separate frequency channels, of which each are associated with different phys-

iological phenomenon. These channels are high frequency (HF; 0.15–0.4 Hz) or vagal 

component, low frequency (LF; 0.04–0.15 Hz) or sympathetic component, and very low 

frequency (VLF; <0.003–0.04 Hz). Further, each of these frequencies are associated 

with different body functions such as respiratory sinus arrhythmia (HF), sympathetic 

nervous system’s regulatory mechanisms e.g. blood pressure (LF) and temperature reg-

ulations (VLF) (Malik, 1996) (Shaffer & Ginsberg, 2017). Recent studies have also pro-

posed new approaches to understanding the significance of HRV in relating to other hu-

man states as well, such as the psychological state of the person. The field is therefore 

going onwards and is under continuous development. (Ernst, 2017) HRV: 

As HR signal and HRV signal are closely related and complementary to each other, it is 

necessary to understand how they correlate. With higher HR the baseline of the HRV is 

lower, as the time between heart beats is shorter, and vice versa for lower HRs. How-

ever, this does not make them alternative measures, but rather HR signal is just an av-

eraged visualisation of the HRV signal. Therefore, HRV signal carries more information 

within it. (HeartMath Institute, 2019) 

Beat-to-beat signal can be measured in number of techniques such as ultrasonography, 

doppler, photoplethysmography (PPG) and electrocardiography. Each of these come 

from their own application domains and can give different kind of information about heart. 

As for measuring the plain HR, electrocardiography and PPG are the most commonly 

used, due to their easiness of access. In Figure 1 we can see signal measured with an 

electrocardiography, which is called an electrocardiogram (ECG). For comparison, PPG 

signal is also included. 
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Figure 1 Examples of how ECG and PPG signal look like. An inter-beat-interval (IBI) 
and an RR-interval are marked. (Fergus, 2017) 

Electrocardiography is used to measure the electrical activity of the heart, whereas pho-

toplethysmography indirectly measures the heart’s rhythm from blood pulse. In the last 

decade PPG, or optical heart-rate monitors have become extensively popular in not only 

consumer devices, but also medical grade devices, due to advanced sensor electronics 

and signal correction algorithms. One of PPGs benefits is easiness of access as it can 

be integrated e.g. into smart watches. It works by emitting short pulses of light into the 

skin and at the same time measuring the intensity of light reflected. The resultant signal 

is the reflected light intensity modulated by the blood flow under the skin. Accuracy of 

PPG can vary a lot, however, depending on factors such as brightness of the sunlight, 

arterial stiffness, skin colour and movement of skin in relation to the sensor. Electrocar-

diography does not have these restrictions, and as a more robust and accurate method, 

it is most often the choice of technique to measure accurate beat-to-beat signal. (Scheid, 

J. L. & O’Donnell, E., 2019) 

To further understand where ECG originates from, we need to understand heart, and 

how it functions. Figure 2 shows an open-cut image of heart with its main components, 

focusing on heart’s conductive system. Walls of the heart compose of cardiac muscle, 

called myocardium. It can be divided to left and right side. The left side receives oxygen-

ated blood from the lungs via pulmonary veins and pumps it to the body’s blood circula-

tion via aorta. The right side receives the unoxygenated blood and pumps it to lungs for 

oxygenation via pulmonary artery. Each side consists of an atrium for receiving the blood, 

two valves for controlling the blood flow, and a ventricle where the blood pressure is 

generated to pump the blood onwards. Pumping of the blood is caused by the heart 

muscle contracting itself. On a cellular level, contraction of the muscle cells (myocytes) 

originates from the electrical activation of the cells. An electrical stimulus signal causes 

cells to exchange ions between surrounding tissue fluid, which disturbs the electrical 

equilibrium of the cells. This results into mechanical contraction of the myocytes, and 
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propagation of this electrical stimulus to neighbouring cells in all directions making the 

muscle to contract. The electrical activation and propagation of the cells is called action 

potential. Action potential first begins with depolarization, where cell’s electric potential 

changes from -70 mV to around 20 mV. After a plateau phase follows a repolarization, 

when the cell returns to its equilibrium state. Action impulse lasts for about 300 ms. 

(Jaakko Malmivuo, 1995, pp. 185-189) 

 

Figure 2 Conduction system of heart (OpenStax College, 2013). 

Electric impulses which activate the heart muscle originate from Sinoatrial (SA) node  

– a part with specialized muscle cells, self-excitatory pacemaker cells. From SA node 

the electric impulse is conveyed first to both atriums, and then to Atrioventricular (AV) 

node. After a short delay the electric impulse then carries on into both ventricles via 

bundle of His and Purkinje fibres. The short delay allows time for the atria to contract and 

fill the ventricles with blood before it is time for the ventricles to contract. In the figure of 

the conduction system of heart we can see these conduction paths of the heart’s electric 

impulses. (Jaakko Malmivuo, 1995, p. 188) 
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Figure 3 12-lead ECG measurement system with limb leads, augmented leads and 
precordial leads (Cables and Sensors, 2019). 

From the clinical perspective, measuring the electrical activations and propagations of 

the heart cells can tell about possible pathological conditions, such as dead cells. There-

fore, much research has been done to model the heart’s electrical activity. These models 

usually benefit from the possibility to measure the changes of electrical potentials on the 

skin of the human torso noninvasively. Traditionally the heart is modelled as a volume 

source conductor consisting of multiple dipole sources. The sum of these dipole sources 

can be measured as projections of heart’s electrical activity against used measurement 

locations (leads). The most commonly used measurement location arrangement is called 

12-lead ECG, presented in Figure 3. It consists of three limb leads, three augmented 

limb leads and six precordial leads on the chest. The roots of 12-lead system originate 

from Willem Einthoven (1860-1927) about a hundred years ago. He established an Eint-

hoven’s triangle, or three limb leads. These are the only bipolar leads in the system, 

meaning that the leads are measured directly from one electrode location to another. 

Other leads are unipolar, having a reference point being averaged by other leads. Aug-

mented leads use pairs of two limb leads as a reference for the third electrode. Precordial 

leads’ reference is so called Wilson’s terminal, which is an averaged potential of the three 

limb leads. All these twelve different leads or their projections can visualise the heart’s 

electric activity from different directions, also providing different information from different 

parts of the heart. Figure 3 shows the directions which the 12-lead system tries to capture 

(the actual polarity of the six limb leads is not visible). (Jaakko Malmivuo, 1995, pp. 50, 

387-389) 
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Figure 4 Normal ECG signal with P, Q, R, S and T parts marked (Atkielski, 2007). 

In this thesis the application of electrocardiography is a HR or beat-to-beat monitoring 

system for team sports usage. Therefore, only the RRI signal is needed, and thus only 

one lead is enough to measure the ECG. Figure 4 shows an example of a typical ECG 

from one lead, consisting of five distinguish parts: P, Q, R, S and T. These all originate 

from different polarization phases of the heart, but for measuring the beat-to-beat inter-

val, the so called QRS complex is the most useful. Several mathematical methods, such 

as Pan-Tompkins algorithm have been developed to automatically and accurately meas-

ure the high peak of the R wave. These consecutive measurements form HRV signal as 

was illustrated earlier in Figure 1. Further, as we are only interested about the R-peaks, 

the overall quality of the other waves is less important. Most HR sensors in the markets 

measure the signal with a HR strap around one’s torso. It is one of the most convenient 

ways to measure accurate HR. The following sections will lead more towards the appli-

cation of the HR monitoring in team sports, and realization of the new monitoring system 

presented in this thesis. 

2.2 Physiological analysis tools for team sports 

As already stated, professional team sports are a highly competitive field of human so-

ciety. It is part of most of our lives in one way or another. Even if we don’t participate or 

actively follow any sports, we are still subjected to sports news, new world records, or 

competition scores through others or different media. However, much less is often spo-

ken about the work that led to the successes or the hours of training behind these 

achievements. This work consists of mentoring, exercise, recovery, sleep, and other 
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matters both physical and mental. Other people such as coach, family relations and other 

team members are all involved in bringing out the best performance of people. All these 

different aspects of individuals in teams make up a complex pack of different things af-

fecting the whole team performance. Not to even mention about other matters such as 

game strategies. Competitiveness of sports and technological advances are continu-

ously driving the level of coaching to bring the best out of teams. This is also the purpose 

of the monitoring system devised in this thesis, focusing on HR monitoring during the 

exercises or competitions. In this section a few common keywords, topics and measures 

are presented, which further expound on the topic of different possibilities of training 

analytics, related to sports monitoring. 

 

Figure 5 Physiological adaptation through cycles of adding training load and  
recovery (Soligard T., Schwellnus M, Alonso J., et. al., 2016). 

 

2.2.1 Training theory, training load and recovery 
 

In the competitive field of professional sports, athletes and their support staff are forever 

striving to reach higher and higher in performance – to close the small margins which 

keep them from rising to the next level. Many things may influence the individuals per-

sonal progress, of which their training routine is of the greatest importance. Many differ-

ent training theories exists, but the paramount of them all is to increase the fitness and 

performance of a person by the process of biological adaptation. In practise this means 

increasing the athletes’ training volume and intensity to their limits. This will be followed 

by the body adapting to the level of exercise, maximising performance improvement. The 

adaptation does not come overnight though, as the body needs time to recover after a 
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strenuous activity. The effect of training, training load (TL) and recovery has been visu-

alised in Figure 5. Poorly managed TL together with no time to recover may increase the 

risk of injury and prolonged fatigue and will lower the performance. Appropriate physio-

logical and psychological homeostasis needs to be reached by finding the right balance. 

Consequentially, there is a need to be able to scientifically or quantitatively measure the 

amount of TL and recovery. (Soligard T., Schwellnus M, Alonso J., et. al., 2016)  

At this current date, there are no golden standards or references as to clearly state or 

measure the precise TL of a person, due to complexity of the subject. When trying to 

estimate a TL, measurements regarding to it are often separated to two categories: in-

ternal and external TL. External TL defines only the external stimulus which is pressed 

on the athlete without considering athlete’s internal characteristics. Internal TL then de-

scribes the individual’s physiological and psychological response to that external load. 

External loads measured can be e.g. performance time, training frequency, power, 

speed, acceleration, number of repeats, or distance ran. In addition, e.g. life-events and 

daily travel could be an external load as well. Measurements related to internal TL can 

be for example HR, blood lactate concentration, oxygen uptake, rating of perceived ex-

ertion (RPE), sleep quality, biochemical assessments, TRIMP (Training IMPulse), HRV 

and different questionnaires (Soligard T., Schwellnus M, Alonso J., et. al., 2016). Differ-

ent measures emphasize different aspect of TL. Therefore, none of these parameters 

alone can give a total view of a person’s true internal TL, as it is a sum of many factors 

(Kaikkonen, P., Hynynen, E., Mann, T. et al., 2010) (Halson, S.L, 2014) 

2.2.2 Some notable measurements or metrics 
 

TRIMP (Training IMPulse) is a measure which aims to include both training intensity and 

duration into the calculation (Banister E, 1991). It is calculated from the training’s dura-

tion, maximal, resting and average HR, from the time of training. TRIMP accumulation 

rate per minute or TRIMP/min is a windowed version of TRIMP which can be calculated 

in real-time during training. This can be helpful for coach in assessing the immediate 

responses to on-going training (Firstbeat Technologies Ltd., 2019). Further modifications 

of TRIMP, such as Edward’s TRIMP or individualized TRIMP have been introduced. 

However, the original TRIMP is generally used and considered as a useful marker for 

estimating internal TL. (Halson, S.L, 2014) 

Lactate Concentration of blood is a physiological blood test biomarker sensitive to train-

ing intensity and duration. It is especially used in evaluating endurance performance 
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(Halson, S.L, 2014). Lactate is a by-product from energy usage in the body. During in-

tensive exercise, lactate concentration of blood rises. When the concentration reaches 

a lactate threshold, fatigue level of an athlete will rapidly rise. Therefore, the lactate 

threshold level is also used as a marker for endurance fitness. (Jules A. A. C. H., P. G., 

Stuurman F. E., Wouter A. S. de,Muinck Keizer, Yuri M. M., Cohen A. F., 2018) 

HRV or heart rate variability has been studied in many publications to be related to ath-

lete’s internal load, stress or recovery. Firstbeat Technologies Ltd. provides HRV based 

recovery analysis as part of their analytics libraries (Firstbeat Technologies Ltd., 2015). 

EPOC (Excess Post-Exercise Oxygen Consumption) is a measure which describes the 

level of disturbance of the body’s homeostasis, as caused by an exercise. It is related to 

the level of recovery required. The so called “oxygen debt” is caused by elevated meta-

bolic rate and replenishment of body’s resources after the training. (Gaesser, G. & 

Brooks, G., 1984) Generally, EPOC has been measured analysing respiratory gases in 

a laboratory. However, scientific studies have shown that indirect predictions of EPOC 

can also be calculated using HR measurements. (Firstbeat Technologies Ltd., 2012) 

HR Zones, by definition, are a set of HR ranges given as percentage ranges of an indi-

vidual’s maximal HR. These zones can be used as a tool e.g. to focus training on either 

anaerobic or aerobic workouts. HR is quite often divided into five zones plus HR reserve, 

though the exact percentage values do vary. (Scheid, J. L. & O’Donnell, E., 2019) 

Resting HR or heart rate during resting is most often correlated with an individual’s fit-

ness level. Elite athletes can have an extremely low HR of even 40 bpm.   (Springhouse, 

2002, p. 94) 

VO2max or maximal oxygen consumption means the individual’s maximal amount of ox-

ygen, which he can consume typically during one minute of intensive physical activity. It 

is generally considered as a golden standard for one’s level of aerobic fitness. 

(Scribbans, T. D., Vecsey, S., Hankinson, P. B., Foster, W. S., & Gurd, B. J., 2016) 

VO2max is measured by measuring gas exchanges during an exercise in a laboratory. 

Yet, accurate estimations of it can be made during running with 95% accuracy, using HR 

and speed data. (Firstbeat Technologies, 2014) 
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2.2.3 Team sports monitoring 
 

Wearable sports tracking and HR monitoring have been a major trend in the last decade. 

After optical HR sensors’ rapid development, multiple different sports devices have come 

to the consumer markets. However, the team sports market is slightly different, as it is 

much less crowded than rest of the wearable markets. Professional teams are a high 

demanding customer, with growing needs to reach the higher level of performance. Also, 

professional sports teams rely often on scientifically researched studies and analytics. In 

the teams sports the goal is to measure the external and internal load, estimate the re-

covery times, as was discussed in previous chapter. In addition, last few years have seen 

an increasing trend in the use of localization services such as GPS or BLE to track the 

players on the field. (Roell, et al., 2018) This information can be used for strategic plan-

ning, but also to follow different metrics of players, such as speed, movement and sprints. 

Localization metrics and other external measures themselves cannot, however, tell too 

much about the internal TL of a player, and it is therefore a complementary to tracking 

teams’ wellbeing. Therefore, HR monitoring is still essential to team monitoring. How-

ever, due to technological improvements and high competition, more is being required 

of the devices. Some companies have e.g. moved on from chest straps to sports under-

wear with electrodes embedded into the textile. Another thing is the need for coaches to 

both have internal memory on the sensors and have a possibility for real-time training 

data metrics from the athletes. Robustness of sensors is also an important matter, as 

tight schedules of teams don’t allow for any addition hassle with devices. 

Polar Electro, Catapult Sports and Firstbeat are some of the most notable players in the 

team sports markets. A brief introduction on each will now follow. 
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Figure 6 GPS and HR tracking system Polar team pro (left) and Catapult Sports' GPS 
solution OptimEye S5 (right) (Polar Electro, 2019) (Catapult Sports, 2019). 

Polar Electro Oy is a Finnish manufacturer of wearable HR monitors and trackers, which 

was established in 1975. Apart from manufacturing sports HR watches, they offer a team 

sports tracking system as part of their portfolio. Their tracking system includes a sensor 

and a special shirt with a place for the sensor, in addition to coach’s monitoring device 

iPad. The sensor is located at the upper back, below neck. The shirt also embeds elec-

trodes for HR measuring. The system allows tracking positioning, speed, distance, ac-

celerations, sprints, and running cadence, using GPS, HR and inertial sensor unit (IMU) 

sensor data. The system is capable of transmitting data over BLE. Figure 6 (left) presents 

their sensor charging dock with iPad. (Polar Electro, 2019) 

Catapult Sports Ltd. is an Australian sports technology company, founded in 2006, which 

provides both indoor and outdoor localisation tracking solutions to team sports. Over 

2500 teams use their solutions. Catapult’s outdoor tracking solution uses GNSS (Global 

Navigation Satellite System) localisation tracking solutions to access both GPS and 

GLONASS satellites. Indoor tracking solution uses several locally installed sensors to 

receive localisation transmission data at a license-free ultra-wideband 5,2 GHz fre-

quency. In addition to localisation, they also offer video monitoring and analysis software. 

As they also have IMU sensors, they provide similar metrics as Polar does about accel-

eration, jumps etc. They have also released information about their upcoming new device 

Catapult Vector. It has been advertised to have localisation capabilities for both indoor 

and outdoor tracking as well as a vest for HR monitoring with the same sensor. (Catapult 

Sports, 2019) 
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2.2.4 Firstbeat Sports 
 

Firstbeat Technologies Oy. is a Finnish company in the field of professional sports and 

wellbeing analytics. Their main products include HR and HRV analytics found from their 

own, and licensed devices. Firstbeat originally started their business around professional 

sports already in 2002, and the company has been actively involved in research and 

development in this field ever since. Firstbeat covers a notable part of the team sports 

markets, with more than 1000 elite teams, 26 national teams, 25% of Champion League 

soccer teams and over 50% of NHL teams using their analytics and devices. Firstbeat’s 

current team sports monitoring solutions include both memory belts for offline sports 

tracking as well as real-time transmitting HR belts. Additionally, the company’s Body-

guard 2 HRV recording device is being offered for more extensive and recovery analytics, 

allowing for example tracking of sleep quality and stress reactions during daily activities. 

Bodyguard 2 and a picture of the team sports real-time monitoring system have been 

presented in Figure 7. (Firstbeat Technologies Oy, 2019) 

 

 

Figure 7 An HRV measurement device for stress and recovery (left) and team sports 
real-time monitoring system (right) (Firstbeat Technologies Oy, 2019). 

Together with different device solutions, Firstbeat offers a software called Firstbeat 

Sports for managing the training data and analytics. Firstbeat Sports is a PC software 

running on a laptop. Mobile applications are also provided for individual athletes for ac-

cessing their own metrics.  

In this thesis a new sensor solution has been developed for the growing markets, to meet 

the needs of the increasing customers. The need came from a lack of having both 

memory recording and real-time monitoring features within a same device. Also, it was 

desired to run the real-time analytics within the sensor itself. At the same time together 

with the sensor development, a new client device monitoring software has also been 
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developed. The new software will be running on iPad, allowing more practical handling 

of the client device during training. The new sensor developed in this thesis, and the new 

upcoming monitoring software will work hand in hand to take team sports monitoring 

tools to a new level. 

2.2.5 Embedded Training Effect (ETE) library 
 

Embedded Training Effect library (ETE) is Firstbeat’s proprietary physiological analysis 

library. Different versions of ETE have been licensed to several different companies in 

the wearables’ markets. These companies include e.g. Samsung, Suunto, Garmin, 

Huawei and Huami. Most of the products where ETE is used are smart or sports watches, 

though other products exist as well. (Firstbeat Technologies Oy, 2019) In addition to 

licensing the ETE library, Firstbeat uses it within their own team sports monitoring solu-

tions. Prior to this project ETE library has never been run on any of the company’s team 

sports HR sensors themselves, but the analytics have been done on a client device.  

ETE has several physiological features which it can analyse and calculate in real-time, 

using beat-to-beat HR data, and optionally other data sources such as accelerometer 

and cycling power data. Many of these features, such as EPOC and Quick Recovery 

Test (QRT) are based on proprietary algorithms, based on scientific studies and re-

search. Further documentation and proof of their validity has been provided publicly in 

company’s whitepapers, but they will not be discussed in this thesis. However, here is a 

list of only a few major features of ETE library (Firstbeat Technologies Oy, 2019): 

• TRIMP and TRIMP per minute accumulation rate 

• EPOC 

• Anaerobic and aerobic training effect 

• Energy expenditure 

• Quick recovery test 

• Maximal oxygen intake (VO2max) fitness level 

• Training Load and recovery time 

• Lactate threshold 

• All-day Stress & Recovery 
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3. FIRSTBEAT SPORTS SENSOR DEVELOP-
MENT 

In this thesis a novel team sports monitoring HR sensor application Firstbeat Sports is 

developed using a commercial Suunto Movesense technology. Before discussing about 

Movesense sensor and platform, some background information is given on the topics of 

Bluetooth Low Energy (BLE), FreeRTOS and Representational State Transfer (REST). 

After these, the actual Movesense system and the Movesense sensor’s MCU (microcon-

troller unit) NRF52832 will be presented. Finally, the development of the team sports 

application Firstbeat Sports will be discussed. 

3.1 Bluetooth Low Energy (BLE) 

Bluetooth Low Energy (BLE) is a radio standard supported and used in many devices 

needing a wireless communication interface such as PCs, mobile devices, smart 

watches, sport tracking devices, IoT sensors, medical devices and many others. Since 

2010, when BLE was first introduced by Bluetooth Special Interest Group (SIG), BLE 

sensors have become more and more ubiquitous being available in many devices. It has 

been adopted as a wireless protocol solution at much faster rate than many other wire-

less technologies. Part of the reason for this has been the rise and increase of mobile 

and tablet device markets, at the same time as the BLE was introduced. Also, at this time 

the big companies such as Apple and Samsung adopted the technology early-on to their 

products. Not to mention the fact that nowadays you can purchase a full-featured Sys-

tem-on-Chip (SoC) with both microcontroller unit (MCU) and radio for less than 2$ per 

chip in low volumes. This hasn't always been true for WiFi, GSM, Zigbee, etc. although 

now some manufacturers, such as Nordic Semiconductor also provide e.g. Zigbee and 

Thread protocol stacks together with BLE stacks for the same SoC. (Akiba, et al., 2014) 

BLE standard is a subset of a wider wireless technology standard, which is just called 

Bluetooth. Bluetooth has been actively developed by SIG since late 90’s and has a dif-

ferent focus than BLE. Originally BLE was designed by Nokia under a name Wibree. Its 

baseline of design was to be the lowest power consuming radio protocol, optimized for 

low cost, low bandwidth and low complexity. With this technology it is easily realistic to 

run sensors for extended time using just a coin battery, with months to years of power-

on time. Original Bluetooth, often called Bluetooth Classic, fundamentally differs from 

BLE by being specified more on to a strict set of use cases. BLE instead was conceived 



19 
 

to allow more open hands for the developers to fulfil their ideas, without having to know 

too much about the underlying technology. (Akiba, et al., 2014) 

After its adoption to Bluetooth, BLE was also formerly marketed as Bluetooth Smart. 

Separation between Bluetooth Classic and BLE is needed because these protocols are 

not directly compatible with each other. Therefore, another branding name Bluetooth 

Smart Ready was introduced to signify that a Bluetooth device has capabilities to use 

both protocols, Bluetooth Classic and Bluetooth Smart, as it was called. These Bluetooth 

Smart Ready devices are also referred to as dual-mode devices, being able to act in two 

modes. Figure 8 presents the different Bluetooth versions and how they are configured. 

(Akiba, et al., 2014) 

 

Figure 8 Different Bluetooth versions and their configurations  
(Akiba, Davidson, Cufí, & Townsend, 2014). 

Bluetooth standard has incrementally upgraded to the state where it is today. These up-

dates have not only added improvements and new features for new use cases, but also 

different options for data transfer speeds. Notable versions of data transfer speeds of 

Bluetooth Classic protocol include Bluetooth Basic Rate (BR) since version 1.0, En-

hanced Data Rate (EDR) since version 2.0 and High Speed (HS) since version 3.0. The 

maximum data transmission speeds of these Bluetooth versions are consequentially 

721kbit/s, 2,1Mbit/s and 24Mbit/s. It must be noted though, that the Bluetooth HS does 

not actually use the Bluetooth protocol itself for the transmission but negotiates the data 

transfer to be done over a collocated 802.11 link. Inclusion of BLE standard into the 

Bluetooth's standard was committed to version 4.0 in June 2010. Since then, new re-

leased versions of the Bluetooth standard have been 4.1, 4.2, 5 and 5.1. BLE 4.0's data 

transfer speed depends on the use case, and it can range between 125 kbit/s to 1Mbit/s 

(whereas the actual modulation rate of the radio is set by the specification at a constant 
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1MBps). Update of the standard to Bluetooth 5 added a possibility for the BLE to double 

the speed to 2Mbit/s. (Akiba, et al., 2014) 

All these speed rates are however theoretical maximums, and when converted to real-

life data transfer speeds, the result depends on multiple factors, such as environment, 

data traffic, limitations of the devices and protocol overheads. For example, in a normal 

use case with BLE, a typical best-case scenario can be estimated to be anything be-

tween 5-10kB per second. (Akiba, et al., 2014) 

Although speed is an important aspect of a wireless protocol, it is important to remember 

that BLE is not designed for speed but for low power. These two often contradict, and 

therefore compromises must be made when designing applications for BLE. Maybe more 

important and interesting than speed, are some of the other new features added in the 

most recent upgrades of BLE. These upgrades include e.g. Bluetooth Mesh for creating 

large-scale device networks, Low Energy (LE) Long Range, LE Advertising Extensions 

enabling sending much more advertisement data, Higher Output Power up to 20dBm, 

and Angle of Arrival (AoA) and Angle of Departure (AoD) which are used for location 

services and tracking of devices. All these new upgrades bring some new use case pos-

sibilities for BLE, and manufacturers are constantly updating their protocol stacks to keep 

up-to-date with the latest available standards. (Akiba, et al., 2014) 

Both Bluetooth Classic and Bluetooth Low Energy use the industrial, scientific and med-

ical (ISM) radio bands, from 2.400 to 2.485 GHz. In BLE the frequencies are further 

divided into 40 2MHz-wide channels, whereas Bluetooth Classic uses 79 1MHz-wide 

channels. Presentation of these channels for BLE is included in Figure 9. For data trans-

mission BLE uses Gaussian frequency shift modulation, which is also used in Bluetooth 

Basic Rate scheme. Data transfers are also done in short bursts instead of continuous 

data flow. To save energy, radio is simply switched off between bursts. The same fre-

quencies of these ISM bands are also used by many other wireless standards, such as 

WiFi, Zigbee, ANT+, and Thread. As these different technologies have been designed 

for various use cases, no further comparison between them will be done. Also, as the 

Movesense sensor under investigation in the thesis, uses BLE 4.2, the scope of the fol-

lowing brief introduction will focus on this specific version of the Bluetooth standard. 

(Akiba, et al., 2014) 
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Figure 9 BLE standard separates the ISM frequencies to 37 data transmission chan-
nels and 3 advertising channels (Argenox, 2019). 

BLE standard defines three distinctively separate parts, which constitute the Bluetooth 

protocol stack. These three main building blocks are Application, Host, and Controller. 

Each of these blocks have their individual roles, which allows them to be also manufac-

tured as separate IC chips. Controller is the only critically real-time requiring block, in-

cluding the radio and lower layers of the protocol stack. Therefore, the BLE standard 

specifies a Host Controller Interface (HCI) to allow interoperability between Hosts and 

Controllers produced by different companies. Separation of host and application blocks 

is also possible by designing own proprietary protocols. (Akiba, et al., 2014) 

All the layers of Bluetooth Low Energy device have been presented in Figure 10. 
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Figure 10 BLE protocol stack with Application, Host and Controller layers  
(Akiba, et al., 2014). 

 

Now, a short overview of different parts of the stack is given, to explain and to understand 

different aspects of BLE which can be used and tweaked when designing one's own 

application working on top of BLE stack. (Akiba, et al., 2014) 

Controller 

The actual radio with the analogue communication circuitry is in the lowest layer of BLE 

stack. This is called LE Physical layer (PHY), and it does all the modulating and demod-

ulating of analogue signals and interpreting the received signals back into digital sym-

bols. As already mentioned, a constant 1Mbit/s modulation rate is used together with 

Gaussian Frequency Shift Keying (GFSK), using the free 2.4GHz ISM bands. During 

connection a frequency hopping spread spectrum technique is used to switch between 

used radio channels. Formula used for hopping is  

𝒏𝒆𝒙𝒕𝑪𝒉𝒂𝒏𝒏𝒆𝒍 =  (𝒄𝒖𝒓𝒓𝒆𝒏𝒕𝑪𝒉𝒂𝒏𝒏𝒆𝒍 +  𝒉𝒐𝒑) 𝒎𝒐𝒅 𝟑𝟕.    (1) 

The central device is responsible for selecting the value of hop when first establishing a 

connection with a peripheral device. Using this technique minimizes the amount of colli-

sions which can interfere with the transmission, with other wireless protocols using the 

same ISM bands. 

As can be seen from Figure 10, Link Layer (LL) is the part responsible for interfacing with 

both Host block, via HCI and Physical layer. This is the layer which does all the hard 
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work taking care of the BLE protocol stack's timing. This layer usually combines custom 

hardware and software to meet its requirements. Some of LL's responsibilities are provid-

ing e.g. preamble, access address, air protocol framing, CRC generation and verification, 

data whitening, random number generation and AES encryption. Link layer is also re-

sponsible for assigning the roles related to connection: advertiser, scanner, master and 

slave. Bluetooth device address defined by the LL can be either a Public device address, 

which is a factory-programmed unique address, or a Random device address, which can 

be dynamically generated at run-time. It is also possible to assign both to the device.   

 

Figure 11 Scanning interval of central device and advertisement interval of peripheral 
device can affect a time to find the advertising BLE device (Akiba, et al., 2014). 

As was presented in Figure 9, there are three advertising channels in BLE. These chan-

nels are provided as a way for advertising devices to inform other scanning devices of 

their existence. Through replying to these advertisements, it is possible to establish con-

nections between devices, if allowed or desired. From an application designer's point of 

view, advertising and discovering peripheral devices is one of the most visible parts per-

formed by the LL, and these can also be tuned by adjusting three parameters of the BLE 

network: advertising interval, scan interval and scan window. In BLE the advertising is 

done at set intervals, on the three advertising channels at almost same time. To minimize 

a chance of consecutive collisions, a random delay of up to 10ms is added on top of the 

set advertising interval. Figure 11 shows how the three parameters can affect discovering 

of a device. As the scanner does not scan more than one channel at a time, discovering 

of the device can take a long time if scan window is small and both advertising and scan 

intervals are long. This is especially true when there is a lot of traffic and interference 

with many collisions occurring. Increasing both the scan window and decreasing the in-

tervals would however consequently also increase power consumption, both in the ad-

vertising device and the scanner. Therefore, compromises need to be done by the user 
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to estimate the optimal power consumption in relation to how often the advertising pack-

ets needs to be received. 

For establishing different advertisement types in BLE, there are three properties defined. 

These properties and advertising packet types defined by them have been presented in 

Table 1. Connectability defines whether a Central device can establish a connection with 

the peripheral or not. Scannability means, that after scanner device has received an ad-

vertisement packet from the broadcaster, it can "scan" the advertiser by sending it a 

request packet asking for more information that the advertiser has to offer. Then the 

advertiser sends another packet with additional data. This does not provide any means 

for the scanner to send any data to the advertiser though, as it can only send a scan 

request. Finally, there is a possibility to direct the advertising packet to a specific device, 

with no data payload allowed in the advertising packet. This is used for offering the scan-

ner device a possibility to connect, without sending any other information. 

Table 1 Advertising packet types (Akiba, et al., 2014). 

Advertising Packet Type  Connectable  Scannable  Directed  GAP Name 

ADV_IND Yes Yes No Connectable Undirected 
Advertising 

ADV_DIRECT_IND Yes No Yes Connectable Directed Ad-
vertising 

ADV_NONCONN_IND No No No Non-connectable Undi-
rected Advertising 

ADV_SCAN_IND No Yes No Scannable Undirected Ad-
vertising 

 

Connection itself is established by the master, who first scans for advertising packets 

from slave, and then sends a connection request. In BLE, the connection between de-

vices is defined as a connection event, which happen at predefined times at specified 

channels (determined by hop), which have been agreed at the time of establishing the 

connection. A connection event consists of a sequence of data exchanges between slave 

and master. Between connection events, devices' radios go to idle mode to save energy. 

Connection events can be changed to anything between 7,5ms and 4s. This is also 

called connection interval. The data packets have a payload of 27 bytes, of which about 

20 bytes are usable depending on the selected payload protocol. Linker layer also makes 

sure that the packets have been received, by resending all the packets until they have 
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been acknowledged. Acknowledgement requires that the 24-bit CRC matches that pay-

load, and that packets were received. (Bluetooth SIG, 2013). This ensures that the BLE's 

data transmission is reliable.  

Host 

As seen in Figure 10, the components of Host block are Logical Link Control and Adap-

tation Protocol (L2CAP), Security Manager (SM), Generic Access Profile (GAP), Attrib-

ute Protocol (ATT), and Generic Attribute Profile (GATT). Here follows a short summary 

of each component with some key-points listed. 

Logical Link Control and Adaptation Protocol (L2CAP) 

L2CAP is the layer between HCI/Controller and upper layers (GAP, GATT, application), 

and takes care of the data transfers between them (Texas Instruments, 2016). Like TCP, 

it provides a way for multiple protocols to use a same single physical link. L2CAP multi-

plexes data between higher layer protocols and encapsulates and breaks them into 

smaller 27-byte BLE data packets, and then at the receiver's side joins the packets back 

together for the higher layers. 

Security Manager (SM) 

BLE supports devices to securely connect with each other by either doing a one-off pair-

ing, or a more permanent bonding. Both ways offer a secure link for connection but bond-

ing between devices will be remembered also after disconnection. 

Attribute Protocol (ATT) 

ATT is a simple client/server protocol which allows simple attributes to be shared from a 

server to a client. Basically, this means that the devices offer some data in the form of 

attributes, which compose of three parts: a 16-bit handle, and UUID which defines a type 

of the attribute, and a value of certain length. The ATT protocol offers functions for read-

ing and writing values, having permissions etc. (Epxx, 2019) 

Generic Attribute Profile (GATT) 

GATT is a profile in BLE which provides means of hierarchically structure sets of ATT 

attributes, and use them to provide more meaningful services to the client. GATT encap-

sulates the data into services, which consist of one or more characteristics. Bluetooth 

Classic has multiple profiles for transferring data between devices. These devices and 

their profile can be e.g. handsfrees, speakers and game controllers. BLE only imple-

ments two profiles: GATT profile and GAP. Of these two, GATT is the actual data trans-

mission profile. GATT profile offers many predefined services, already in BLE standard, 

such as HR service for offering a client HR data. HR Measurement and Body Sensor 
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Location are two of the characteristics which it has. It is also possible to define own 

services. (SIG, 2019). If a device, e.g. HR sensor wants to let other devices to know that 

it provides a HR service without needing to first connect to the sensor, it needs to add 

GATT Attribute data into its advertising packet's payload. Otherwise other devices might 

not allow connecting to that sensor for receiving HR data. 

Generic Access Profile (GAP) 

GAP is a profile which is used at the higher level to configure how the control layer should 

be used, e.g. regarding to device's discoverability, connection and security establish-

ment. GAP defines the framework for BLE devices, that they must follow to successfully 

operate with each other. It is in GAP where all the roles (central, peripheral, observer, 

broadcaster) and many other aforementioned matters are defined at the high level. Every 

BLE device should have a mandatory GAP service to be accessed via GATT. This ser-

vice provides for example Device name characteristic. 

GAP also specifies the advertising data format of the advertisement payload. In BLE the 

payload available for user is 31 bytes. GAP defines that the data constructed within pay-

load needs to be in the following format: length (1 byte), AD Type (Advertising Data Type, 

1 byte), and the actual data (variable length). Bluetooth SIG has specified some of the 

most common AD types, but there's also a Manufacturer Specific Data AD type available 

for own free form data. A full structure of an advertisement BLE packet is presented in 

Figure 12. One of the common AD types is Flags which informs scanners about the 

discovery or type of the advertisement packet, as presented in Table 1. 

It must be noted that the space in advertisement payload is very limited, and e.g. after 

including the overhead of Flags and Manufacturer specific data, there would be only 26 

bytes left for the application data (1B length, 1B Flags AD type, 1B variable + 1B length, 

1B Manufacturer Specific data AD type, 26 B for the data). If additional GATT services, 

such as HR service needs to be advertised, this further takes away from the application 

space. 
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Figure 12 Structure of a BLE advertising packet (Ardelean, 2015). 

Application 

Application block is the highest layer in the Bluetooth device. It contains everything re-

lated to the actual application logic, such as user interfaces, state logic or whatever the 

user wants to do with the device. Application architecture as such has not been specified 

at all by any standard, but is presented together with host and controller, to give an idea 

of where the application of the user resides in the whole big picture. 

3.2 FreeRTOS 

FreeRTOS kernel is a real-time operating system (RTOS) for embedded devices, which 

has been licenced under MIT licence as part of Amazon Web Services (AWS) open 

source project. Therefore, the sources are available for free of charge to be used in any 

commercial applications, without need to expose user's proprietary code of their appli-

cation. FreeRTOS is a market leading RTOS with more than 100K downloads per year, 

it is supported by over 35 microcontroller architectures, and it is actively being developed 

by AWS. Originally FreeRTOS started in 2003 by Richard Barry, who later transferred 

the stewardship of the development to AWS in 2017. The primary design goals of  

FreeRTOS are ease of use, small footprint, and robustness. (Microchip, 2019) 

(FreeRTOS, 2019) (Lacamera, 2018) 
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Some of the FreeRTOS's key features and their short descriptions (Gay, 2018):  

• Threads or tasks for multi-tasking and scheduling 

o Round-robin scheduling is used to assign time slices for processes in equal 

portions in circular order 

o Thread priorities are supported 

o Mutexes or locks for providing thread-safe operations by limiting access to 

resources which are being used by other threads 

o Semaphores for managing used resources 

o FreeRTOS uses queues for communication between interrupts, threads or 

tasks. They can be used as thread safe FIFO (First in First Out) buffers, to 

send data to a queue of another thread, to be handled in that thread when 

the queue has passed. (FreeRTOS, 2019) 

• Pre-emptive scheduling option 

o Pre-emption means that a thread or task can be interrupted by the system to 

handle e.g. time-critical interrupts from an MCU at the time when they occur. 

(Wikipedia, 2019) 

• Efficient Software timers 

• Tick-less mode for low power applications (Lacamera, 2018) 

• Flexible memory management 

o Applications can be completely statically allocated, or alternatively FreeRTOS 

provides five different schemes of memory allocation for dynamic allocation. 

• Small footprint. FreeRTOS has 6K to 12K read only memory (ROM) footprint 

• Low overhead 

• Trace support for debugging in real-time 

o With tracing it is possible to solve complex problems and understand how the 

system works 

o Tracing can help find answers to questions such as: how often interrupts oc-

cur, what is the program flow, how long do tasks run and how long do they 

need to wait. 

o Tracing allows more thorough profiling of the system to be done, to evaluate 

code timing and performance. 

o Figure 13 A commercial analysis tool SystemView by Segger, which supports  

FreeRTOS trace . 
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Figure 13 A commercial analysis tool SystemView by Segger, which supports  
FreeRTOS trace (SEGGER Microcontroller Systems LLC, 2019). 

Some of the more advanced features which FreeRTOS lacks, are e.g. device drivers, 

advanced memory management, user accounts and networking. These are usually 

found in traditional operating systems (OS) such as Linux, Microsoft Windows of OSX. 

Adding more advanced features would however quickly stray away from the original fo-

cus of being a small and simple. Also being a real-time OS means that the operating 

system has strict processing time requirements that it needs to fulfil, being consistent in 

the amount of time that it takes to process a task. This limits real-time OS's use-cases 

as to what it sensible to be done with it, as it is primarily designed for embedded systems 

with hard time constraints, rather than PCs or even single-board computers. (Wikipedia, 

2019) 

3.3 Representational State Transfer (REST) 

Representational State Transfer (REST) is an architectural style for helping create and 

organize distributed systems. It was first introduced by Roy Fielding in the year 2000 

(Fielding, 2000). The style does not imply any specific rules or guidelines, but rather an 

ideology of how distributed systems should be organized. REST itself is protocol-inde-

pendent, defined to be used within a URI scheme. REST -type style has been adopted 

mainly to the area of creating Web Services, and therefore these RESTful Web Services 

(RWS) are commonly using a set of HTTP methods and responses for their operations. 
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RESTful system can however be implemented without using any previously defined pro-

tocols. (Doglio, 2018). 

REST -style of system aims to improve distributed systems by e.g. performance improve-

ment, having simple and efficient communication style, adding scalability, portability, re-

liability and visibility. 

REST -style sets some constraints for the system, as it most conveys the following styles: 

• Client-Server -based architecture 

• Stateless system: each request sent by client must have all the information re-

quired. Server cannot use any previously saved data to interpret the request re-

ceived. 

• Cacheable: Server does not need to run database requests for every client re-

quest, but cached data can be used in the answer. 

• Uniform interface: All clients and servers should use uniform interfaces for com-

munication 

• Layered system: RESTful services’ components in the server should be sepa-

rated to layers, which communicate only layers below or above. 

• Code-on-demand: This optional constraint allows client to receive executable 

code from the server, such as JavaScript scripts etc. 

In RESTful system anything that can be conceptualized, can be thought as a resource, 

whether it be an image or a textual document. These resources can then have one or 

more representations of the same resource, such as different file formats. Resource 

identifiers used in RESTful systems are usually unique resources identifiers, or URIs, 

such as /mem/datalogger/config. RESTful system also defines that there can be actions 

which can be performed on these resources. As mentioned earlier, HTTP protocol is 

commonly used as a standing point to define the possible actions. Table 2 presents some 

of the common HTTP actions. It is usual that only some of the commands are applicable 

per specific resource, instead of all. 

Table 2 Some of the most common HTTP actions with explanations (Doglio, 2018). 

HTTP Command Action 

GET  Access a resource without altering it (read-only). 

POST  Create a new something (such as resource) in the server. 

PUT  Updates something in the server. 

DELETE  Removes a resource from the server. 
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As well as commonly using HTTP commands for communication between client and 

server, HTTP status codes are also used to return status values for the received HTTP 

commands. In HTTP these status codes are numbers which have pre-defined meanings, 

trying to cover most of the use cases in the internet. Table 3 presents five groups of 

HTTP status codes and some common example codes. (Doglio, 2018). 

Table 3 Five groups of HTTP status codes and some common  
example codes (Doglio, 2018). 

HTTP Status Code Explanation 

1xx Informational status 

2xx Request was completed successfully. Provides desired content for 
the client. 

200 OK. Request completed well and content returned to client. 

201 Created. Content was created e.g. after POST or PUT. 

204 No Content. This can be used e.g. after DELETE, when request was 
OK, but there is no content to be returned. 

3xx Resource in the server has been moved. 

301 Moved Permanently. If a resource in the server has moved, this returns 
the new URI for the resource. 

4xx The request of the client did something wrong 

400 Bad request. This is a common response if the request was malformed 
or was lacking something. 

403 Forbidden. Request tried to do something forbidden. 

404 Not found. Resource of the request was not found from the server. 

5xx Internal error within the server caused a crash of the server 

500 Internal server error. This generic code is received by the client if server 
crashes due to some internal bug or unexpected behaviour. 

 

As RESTful systems also most often need to send some data between client and server, 

an open-standard file format called JavaScript Object Notation (JSON) is commonly 

used. JSON encapsulates the data using a human-readable text format, where data ob-

jects consist of attribute-value pairs and array data types. The JSON format originates 

from JavaScript, but as such it is a language-independent data format. (Doglio, 2018). 
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An example of JSON -formatted HTTP GET response: 

{ 

  "response": 200, 

  "responsestring": "HTTP_CODE_OK", 

  "operation": "get", 

  "uri": "/net/184030000281/Meas/Acc/Info", 

  "content": { 

    "SampleRates": [ 

      13, 

      26, 

      52, 

      104, 

      208, 

      416, 

      833, 

      1666 

    ], 

    "Ranges": [ 

      2, 

      4, 

      8, 

      16 

    ] 

  }, 

  "querytimems": 37, 

  "querytimens": 37696937 

} 

  

YAML (YAML Ain't Markup Language) is a human-readable data serialization language 

or data storage format, which is a superset of JSON. YAML has a minimal syntax, and it 

uses indentation to indicate nesting, [] for lists and {} for maps. Both JSON and YAML 

were initially developed in the early 2000's. YAML is the data format, which has been 

adopted to a RESTful API specification called Swagger specification, or later OpenAPI 

Specification (since 2016).  

However, YAML is just a file format used by the OpenAPI specification. The actual Open-

API specification further standardizes how to actually write a desired machine-readable 

interface file for a RESTful API. These interface files are made to describe, produce, 

consume and visualize RESTful web services.  

An example of a Swagger 2.0 compliant YAML formatted file, defining a RESTful API for 

GET request on the resource path /Ui/Ind/Visual: 

Ui_resource.yaml 

  

swagger: '2.0' 

  

info: 

  version: NA 

  title: Indication - Movesense-API 

  description: | 

    API for creating different types of user indications. 
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  x-api-type: public 

  x-api-required: true 

   

paths: 

  /Ui/Ind/Visual: 

    get: 

      description: | 

        Get the state of the visual indication 

      responses: 

        200: 

          description: Current state of the visual indication 

          schema: 

            $ref: '#/definitions/VisualIndState' 

  

definitions: 

  VisualIndState: 

    required: 

      - state 

    properties: 

      state: 

        $ref: '#/definitions/VisualIndType' 

  VisualIndType: 

    type: integer 

    format: uint16 

    minimum: 0 

    maximum: 2 

    x-enumNames: 

      - NO_VISUAL_INDICATIONS 

      - CONTINUOUS_VISUAL_INDICATION 

      - SHORT_VISUAL_INDICATION 

  

  
In practice these yaml files need to be translated to another programming language, to 

correspond a specific environment requirement. OpenAPI specification or YAML as such 

do not provide means for any programmability, and therefore these yaml files are used 

to generate the actual source codes for the target language such as Java, PHP, Node.js, 

or Go. Currently the official OpenAPI specification version 3.0 does not have a supported 

implementation e.g. for C or C++. This is due to fact that usually web services and REST-

ful APIs are created with more high-level languages. These languages have been de-

signed primarily for the same internet environments where RESTful APIs are primarily 

being used. (OpenAPI Initiative, 2019) 

3.4 Introduction to Suunto Movesense platform 

Movesense sensor is a commercial product offered by Suunto. Movesense is being de-

scribed as an open development environment for motion sensing solutions. Its idea is to 

offer developers and 3rd party companies a possibility to prototype, develop and com-

mercialize their own product ideas and concepts with the Movesense platform, and then 

sell it as their own product. Movesense can be either re-branded as customer's own 

product (sold as a white-label product), or with the Movesense-branding itself. With 
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Movesense platform, users can bring their own products to markets without the need to 

design and manufacture their own hardware. Developing an own Bluetooth radio device 

can be a relatively costly operation for smaller companies, as Bluetooth SIG qualification 

fees start from of thousands of euros. In addition, development, testing, manufacturing 

and RF qualification for CE/FCC are all costly operations, especially if volumes are low 

(Bluetooth SIG, 2019). This makes Movesense a viable option for companies who want 

to focus on the actual application side of the product, also without caring too much about 

the underlying low-level architecture of the system. Figure 14 presents two Movesense 

sensors and a snap-button HR belt. (Suunto Movesense, 2019) 

 

Figure 14 Movesense sensor and a HR chest strap (Suunto Movesense, 2019). 

As a platform, Movesense development environment offers both hardware and software 

for developers. On hardware side the actual sensor device is being offered together with 

its programming jig, including SEGGER's J-Link Base debugging probe. On software 

side, both mobile libraries and interfacing libraries for the sensor device itself, are offered. 

These libraries accompanied with their documentations are openly provided in compa-

ny's Bitbucket Git-repository (Suunto Movesense, 2019). 

Movesense sensor intends to be a programmable multi-purpose device with Bluetooth 

connectivity, external memory and different sensors. Sensors included in the device are 

accelerometer, magnetometer, gyroscope, thermometer and an optional one-channel 

HR sensor. More detailed specifications are presented in Table 4. 
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Table 4 Technical specifications and features of Movesense sensor  
(Suunto Movesense, 2019). 

Component Description 

Sensor casing Diameter: 36,6mm, thickness: 10,6mm. Water resistant to 30m. 
Weight 10g with battery. 

MCU: NRF52832 
(Nordic Semicon-
ductor)  

A SoC comprising 32 –bit ARM® Cortex®-M4 with 64kB on-chip 
RAM and 512kB on-chip FLASH, Integrated Bluetooth Low En-
ergy 4.0 radio, 2,4GHz 

Additional memory 
for data logging 

3Mbit EEPROM (comprising of separate 1Mbit + 2Mbit chips) 

Accelerometer and 
gyroscope: 
LSM6DSL (STMicro-
electronics) 

- Accelerometer, range: ±2/±4/±8/±16g full scale, sam-
pling frequency: 12.5/26/52/104/208Hz 

- Gyroscope, range: ±125/±245/±500/±1000/±2000 dps 
full scale, sampling frequency: 12.5/26/52/104/208Hz 

Magnetometer: 
LIS3MDL (STMicro-
electronics) 

Magnetometer, range: ±4/±8/±12/±16 gauss full scale 

Temperature sen-
sor: TMP112 (Texas 
Instruments) 

Temperature, accuracy: ±0.5°C (max) from 0°C to +65°C and 
±1.0°C (max) from –40°C to +125°C 

Biopotential Analog 
Front-End (AFE): 
MAX30003 (Maxim 
Integrated) 

Ultra-Low Power, Single-Channel Integrated Biopotential (ECG, 
R to R Detection) AFE 

I/O - Led (red) on the front 
- 1 –wire interface master (accessible through Move-

sense connector) 
- Debug UART, debug I/F, power & ground (inside the 

battery slot) 

Energy Source CR 2025 3V lithium coin cell battery 

 

Software development tools offered by Movesense platform include the following:  

• MovesenseCoreLib library for the sensor device. Library abstracts away the low-

level handling of the embedded system, offering an asynchronous REST API 

platform and providing access to Bluetooth and device's sensors. The API spec-

ification is based on Swagger 2.0 syntax. 
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• MDS-library for mobile devices to interface with the sensor device over Bluetooth 

connection. Library is available for both iOS and Android devices. 

• PC Simulator for simulating some of the device's functionalities on a Windows 

environment. Simulator can be used for debugging and developing user's own 

applications without the requirement to access to a physical sensor device. 

• Wbcmd tool (whiteboard command tool) for computer, for communicating with 

the sensor device over USB-port, when developing and debugging the device on 

a programming jig. Wbcmd tool can also communicate locally with a PC Simu-

lated sensor device, running a simulation locally on the computer from an exe-

cutable file. 

3.5 NRF52832 MCU 

The Movesense sensor used in this project has a BLE SoC manufactured by Nordic 

Semiconductor. Nordic Semiconductor is a Norwegian company which is part of Blue-

tooth SIG. The company was first established in 1983. They have been developing so-

lutions for BLE for several years and are widely known for their wireless solutions. One 

of their famous products Is Nrf52832, which is also found inside Movesense. It is part of 

their Bluetooth 5 capable NRF52 series. Nrf52832 is a general-purpose multiprotocol 

SoC, which is built on ARM Cortex-M4 CPU running at 64 MHz. The SoC has 64kB on-

chip RAM and 512kB on-chip FLASH. Nrf52832 also has a very low power consumption, 

making it ideal for wearable devices with small batteries. (Wikipedia, 2019) (Nordic 

Semiconductor, 2019) (Akiba, et al., 2014) 

To accompany the products that Nordic offers, they provide something called SoftDe-

vices, which are precompiled and linked binary images implementing desired radio pro-

tocol stacks into Nordic's devices. The underlying problem which SoftDevices solve, is 

to abstract the access to the very complex processor's resources regarding to the use of 

radio interfaces included in the SoC. Providing SoftDevices as a binary image, also al-

lows Nordic Semiconductor to further continue the development of different radio proto-

cols and systems. SoftDevice is also separated from user application and can be 

changed independently without user needing to link to any external libraries. (Akiba, et 

al., 2014) 

Nordic has a variety of different SoftDevices available for multiple different protocols, 

such as BLE, Zigbee, Thread, ANT and 802.15.4. These are all different low power short-

range wireless protocols that are being used for different use cases. Nordic Semicon-

ductor's SoftDevices are also able to co-exist within same application, to allow multiple 
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communication protocols been used at the seemingly same time. Nevertheless, as BLE 

being the most popular of these, being found from most mobile consumer devices, it is 

also the choice being used in Movesense sensor, with no other protocols being used. 

(Akiba, et al., 2014) 

All the benefits of a SoftDevice solution considered, the downsides of it are also im-

portant to understand. SoftDevice requires system resources from the SoC, which will 

not be available for the user's own application. Depending on the SoftDevice, it can take 

e.g. 80KB of flash and 8KB of SRAM memory. Also, it naturally adds latency and archi-

tectural limitations, as user's own application will be running on top of SoftDevice's sys-

tem, using software interrupts on ARM core to communicate with the SoftDevice. Since 

a SoftDevice acts as a black box, it is impossible to debug its inner workings if something 

goes wrong. (Akiba, et al., 2014) 

The SoftDevice which has been included within Movesense sensor, is version S132 

SoftDevice. It implements a Bluetooth low energy central and peripheral protocol stack 

solution, supporting up to twenty connections with and additional observer and a broad-

caster role all running concurrently. S132 SoftDevice is Bluetooth 4.2 compliant, and it 

provides a Master Boor Record (MBR) for over-the-air (OTA) device firmware updates. 

With the SoftDevice, application and bootloader can be updated separately. The SoftDe-

vice runs a thread-safe supervisor-call based API, with asynchronous, event-driven be-

haviour. For the security and robustness, there is also a memory isolation between ap-

plication and the protocol stack. 

Figure 15 shows the architecture of the nRF52 software. The lowest-level HW is ac-

cessed by the ARM CMSIS interface and building on top of that there is a master boot 

record, profile and application code, application specific peripheral drivers, and firmware 

module identified as a SoftDevice. SoftDevice itself further consists of separate parts 

implementing the stack itself together with its Application Programming Interface (API) 

and managing the use of hardware and SoftDevices. The API gives access for the actual 

application development, being used by the SoftDevice to trigger interrupts as events to 

the application. The application then needs to respond to these events and make sure 

that e.g. events for BLE control procedure are serviced, to prevent the procedures from 

timing out resulting in link disconnection. The event-driven architecture therefore ensures 

that the time-critical Bluetooth radio stack is always being served first in the priorities. 

The lower priorities, such as the user's application, are then handled through on their 

own time. This should not, however limit the user application too much. (Nordic 

Semiconductor, 2017)  
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Figure 15 nRF52 series software architecture, when using SoftDevice  
(Nordic Semiconductor, 2017). 

From the point of view of developing a Movesense-application, the underlying architec-

tures have not been made very visible for the developers. Movesense software abstracts 

away most of its architecture. For example, setting up of SoftDevice, Nordic's SDK and 

FreeRTOS are mainly done within compiled binaries without too much documentation. 

However, understanding the underlying systems can be beneficial especially when trying 

to understand why something goes wrong. The SoftDevice API functions, which user 

application uses, return error codes which are used to verify the correctness of function-

ing of the SoftDevice and application. Unrecoverable failures (faults) detected by the 

SoftDevice are reported to the application and can be used for debugging errors. Two 

types of faults can be reported: SoftDevice assertions and attempts by the application to 

perform unallowed memory accesses. These so-called hard faults can also be accessed 

via MovesenseCoreLib together with the MovesenseCoreLib’s own assertion notifica-

tions. 

OTA-updates are an especially critical element of consumer devices, where the end-user 

cannot possibly have any other way to update the device, other than with their 

smartphone or equivalent. Considering the use case of Team Sports Monitoring system 
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under development in this thesis, having OTA-updates allows the company not only to 

fix possibly found issues with minimal intrusion, but also to add new features to the sen-

sors. These new features can be anything from real-time algorithms to features support-

ing better user experience. 

Power management is managed by SoftDevice’s POWER API. It is designed for opti-

mizing the power usage. When there are no application events from the user, the CPU 

will go to idle state to save power. User application will only be woken up by application 

events. SoftDevice interrupts will be handled by the SoftDevice directly. These features 

allow the SoC to be run for a very long time with being able to optimize the application’s 

power management, e.g. by using tick-less mode when using FreeRTOS. (Nordic 

Semiconductor, 2017, p. 16) 

By default, SoftDevice isolates its memory and peripherals from the application, both in 

program memory and in RAM. This ensures that the application won’t accidentally write 

over any of SoftDevice’s memory, or otherwise interfere the SoftDevice, making the sys-

tem’s performance more predictable and robust. This is called sandboxing and runtime 

protection. An attempt to write to SoftDevice’s protected memory regions will result in an 

unrecoverable error. (Nordic Semiconductor, 2017, pp. 16-17) 

 

 

Figure 16 Memory mapping of the SoftDevice S132  
(Nordic Semiconductor, 2017, p. 58). 
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Memory mapping of the resources of the SoftDevice are presented in Figure 16. The 

figure shows a general picture of where different parts reside in the program memory 

and RAM. MBR (Master Boot Record) is responsible for providing and interface which is 

used for in-system updates of the SoftDevice and bootloader firmware. When used, the 

optional bootloader is placed within the application region of the program memory. Note 

that a more detailed program memory map of the MovesenseCoreLib will be presented 

in Chapter 3.9, as this is rather a general view of the SoftDevice’s memory mapping. 

3.6 Developing for Movesense platform 

As it has been said already, developing your own software for Movesense platform has 

been aimed to make as easy as possible. This should allow user to focus on developing 

their own application without need to specify or even understand the embedded software 

architecture running below the surface. Therefore, developer relies heavily on the re-

sources which have been provided in MovesenseCoreLib, and there is not much lower 

level control over the hardware. Some of the things managed in the background include:  

1. Interfacing the hardware components, such as EEPROM memory, IMU-sen-

sors and analogue front end (AFE) / HR sensor 

2. Bluetooth protocols, data serialization and transferring, connectivity, bonding 

3. Setting up and managing of a SoftDevice, which runs the Bluetooth stack 

4. Setting up of system's real-time operating system (RTOS) and managing all 

the threads, priorities and other system calls 

5. Setting up of an event based proprietary Whiteboard platform to offer the 

REST APIs for developers 

Although it has been made easy for a developer to ignore what happens in the back-

ground of MovesenseCoreLib, some system components will still be briefly presented in 

the following sections. This will be done at the level of necessity to understand the basics, 

but also no more information can be given about the system other than what Suunto has 

provided with its documentations. As most of the Suunto Movesense library components 

provided with MovesenseCoreLib, are pre-compiled object files, with only headers pro-

vided, it is impossible to understand how some parts of the system work, or why they 

exist. Also, it must be noted, that the version of MovesenseCoreLib which is under in-

spection in this thesis, is the newest version available at this current time, version 1.8.1. 

As the outcome of the project, which this thesis presents, was mainly the software appli-

cation developed onto the Movesense sensor, the following sections will focus on the 
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matters relating to the sensor development. Therefore, the mobile MDS-library will not 

be discussed within this thesis. 

3.7 Architecture of MovesenseCoreLib 

The architecture of complete Movesense application running in the sensor, comprises of 

several different parts. The main blocks of this architecture are presented in Figure 17. 

These blocks include the underlying hardware and SoftDevice, FreeRTOS, Suunto’s 

Whiteboard, Movesense-specific libraries and the user’s own application code. White-

board is Suunto’s proprietary communication library. Whiteboard sets up the environ-

ment for defining and managing of REST APIs. These APIs are the core of everything in 

the Movesense. Through these APIs it is possible to handle information between the 

Whiteboard system itself, and Movesense sensor specific library modules available. 

Whilst detailed handling of hardware, SoftDevice, FreeRTOS and Whiteboard are mainly 

hidden behind the scenes, there exists some APIs which provide means of communica-

tion between these parts of the system. 1-Wire chip (DS24L65) and HR sensor 

(MAX30003) can for example be accessed at a register level. The level of access varies 

between resources, and therefore one must find for their own application what is needed 

and what is available. At the top of the architecture lays the user’s own application, which 

will be built on top of the Whiteboard’s libraries, together with Movesense specific re-

source libraries.  

 
Figure 17 System architecture of Movesense sensor software. 
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3.8 Build process and flashing of an application 

 

Movesense application building is managed by a cross-platform build process manage-

ment system Cmake. It has compiler independent configuration files, allowing targeting 

different native compilers if wanted or needed. The default build system for Movesense 

is Ninja. It has been designed to be fast in running builds, but also to have its Ninja build 

files to be generated by a higher-level build system, such as Cmake. When creating an 

own application for Movesense, developer must have a CMakeLists.txt file within their 

application folder, just as all the sample applications have. This file can be easily modi-

fied to e.g. link external binary libraries to the project. The CMakeLists.txt doesn’t other-

wise have much inside, as most of the build has been managed in other cmake-files 

found within MovesenseCoreLib. The main flow of build is described in MovesenseFrom-

StaticLib.cmake file, including and defining the rest of the build related files. This cmake 

file e.g. searches for the pre-built binaries such as wbo-files (whiteboard objects). 

(Wikipedia, 2019) (CMake, 2019) (Ninja, 2019) 

Other important build related tools are Movesense’s SBEM-generator and general 

YAML-to-C++ -generator. The latter is included within the pre-built binaries, and thus 

cannot be viewed. It is however responsible for generating all the C++ code (app-re-

sources/resources.h), based on user’s YAML-resource APIs (wbresources/example-

File.yaml). The SBEM-code-generator is a more specific python tool (sbemCodeGen.py) 

used to convert subscriptable resources into compact serialized data formats for more 

efficient and convenient data handling and saving. The generated results (sbem_defini-

tions.cpp) can be inspected to ensure that subscriptions are working as intended. These 

sbem-definitions are used by mem/datalogger and mem/logbook services to save and 

retrieve logged data to and from Movesense’s EEPROM memory. Also, the MDS-library 

uses the generated data descriptors to decode the saved entries. 

As mentioned, building a Movesense project is simply done with two tools. First Cmake 

is run to create the Ninja configuration file build.ninja, after which ninja tool itself is run. 

Additional utility commands, such as “dfupkg” or “flash” have been also provided to make 

a zip-file for OTA-update and for flashing a sensor in programming jig. Movesense’s 

documentation presents a typical flow of building and flashing an application (Suunto 

Movesense, 2019): 

cmake -G Ninja -DMOVESENSE_CORE_LIBRARY=../MovesenseCoreLib/  

-DCMAKE_TOOLCHAIN_FILE=../MovesenseCoreLib/toolchain/gcc-nrf52.cmake  

-DCMAKE_BUILD_TYPE=Release ../samples/hello_world_app   
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ninja 

ninja dfupkg 

ninja flash 

3.9 Memory mapping and resource usage 

When designing an application for a small wearable embedded device, extra care needs 

to be taken to be aware of the constraints and capabilities of the system. To ensure that 

we know and understand the limitations of the system, at least following aspects should 

be considered: MCU’s processing power, RAM and flash memory, external memories 

(e.g. EEPROM) and real-time timing requirements of different components of the system. 

In addition to hardware limitations we need to consider the constraints and overheads 

which come from chosen software technologies or libraries. In case of Movesense, much 

of the choices have been made for the user, which can speed up the development of a 

new product or a proof-of-concept. MovesenseCoreLib builds on top of Nordic’s SoftDe-

vice and SDK, FreeRTOS and Suunto’s proprietary libraries. As a result, there is of 

course some overhead of RAM and flash memory present in the system already. The 

memory mapping of compiled application, together with other available memory re-

sources is listed below (MovesenseCoreLib 1.8.1): 

▪ Memory mapping of FLASH memory 

▪ 0x00000 - 0x1f000: MBR (Master Boot Record) + SoftDevice 

▪ 0x1f000 - 0x74000: Application 

▪ 0x74000: Manufacturing / Product data 

▪ 0x75000 - 7E000: Bootloader 

▪ 0x7E000: System settings 

▪ 0x7F000: Bootloader settings 

All the listed memory addresses can be found after building an application, by inspecting 

a resulted target.map file. However, this summary was received from Suunto. Under-

standing how the memory is mapped can be a great help when debugging the resulted 

hex file of an application. Here it must be noted that the application space (348 160 bytes) 

listed above includes also the rest of the MovesenseCoreLib. To see how much space 

there is left for a user application, we can build a sample application called plain_app, 

which has no implementation of any specific application. We can also get the available 

heap and stack of an application by using REST APIs. These APIs will be listed later.  
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Summary of the available memory resources for plain_app is listed below:  

▪ FLASH: available application memory (plain_app) 

▪ Release build 98 992 bytes 

▪ Debug build 46 488 bytes 

▪ RAM: available volatile memory (plain_app) 

▪ RTOS's Heap: 11 120 bytes 

▪ RTOS's application-thread's stack: 4 096 bytes (1 024 words) 

▪ EEPROM: available non-volatile memory 

▪ 347k bytes 

If there is a need to increase or decrease the size of the stack, it naturally also changes 

the size of the heap. Heap is reserved from the memory which has been left after all the 

system’s stacks have been reserved. MovesenseCoreLib provides various different 

REST APIs which have been optimised for the Movesense sensor. Most of these APIs 

have example sample applications provided within the repository. When beginning to 

develop a new application, it can be useful to first review a similar sample application for 

reference. Building a sample application can also give a view of how large one’s own 

developed application size would be. By building all the sample applications, it was found 

that the custom_gattsvc_app takes the most memory of them all. Knowing the available 

application memory space (348 160 bytes) it was calculated that building on top of cus-

tom_gattsvc_app leaves us about 38 kB left for our own application in debug build, and 

about 90 kB in release build. Estimating the result size of different combinations of sam-

ple apps is not, however, as simple as summing up the app sizes, as some of them share 

the same libraries and optional modules.  

As mentioned in Chapter 3.2, FreeRTOS has some profiling options available in it. How-

ever, these options have not been enabled for the user in Movesense. Therefore, further 

profiling and estimation of runtime overheads for different REST API calls has not been 

done. The same chapter also briefly mentions that there are different memory schemes 

available for configuring threads or contexts in FreeRTOS. In Movesense all the stacks 

of contexts are reserved at the very beginning of setting up the Whiteboard. During the 

lifetime of the software, those context stacks are never freed. This is the simplest and 

thread safest of the memory schemes of FreeRTOS, making the OS very stable.  

Altogether Movesense has several threads or contexts running in the background. Most 

of these threads are reserved for Whiteboard, and two of the threads are available for 
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user applications. These are application and meas threads. The meas thread is meant 

for only real-time operations and processing. For example, /meas/ecg and /mem/data-

logger are run in meas thread. Application thread is therefore left for everything else, and 

especially for long lasting heavy operations. The configurations of these two threads are 

available in app_root.yaml, though the application context’s stack size can also be over-

driven with a macro MOVESENSE_APPLICATION_STACKSIZE(1024) in App.cpp, 

where the parameter’s datatype is a four byte long word. 

3.10 Whiteboard and REST API in MovesenseCoreLib 

Whiteboard is Suunto's proprietary communication and resource management library. It 

is the same library which is run in Suunto's other products, such as smart watches. Each 

individual product needs to have its own port or modification of the whiteboard, to meet 

the specific requirements of the product and hardware. Therefore, Movesense sensor 

also has its own modification of the Whiteboard, which comes with the MovesenseCore-

Lib. As a proprietary library, little is documented about the whiteboard system itself, but 

it does offer some useful public REST APIs. Purpose of this section is not to give a full 

documentation about all the APIs and how to use them, but to give general level infor-

mation which might be useful to the reader, when at first coming across the Move-

senseCoreLib. The REST APIs defined by MovesenseCoreLib follow the same idea of 

tradition HTTP methods, as was discussed in Chapter 3.3. Further documentation can 

be found online on the Movesense's Bitbucket. 

Some of the most notable REST APIs (application programming interfaces) provided by 

whiteboard:  

• /Whiteboard/Info/Subscriptions - Returns information about subscribers of a spe-

cific resource. 

• /Net - information about connected whiteboard clients. Allows the device to know 

when someone has a connection to it e.g. from a mobile device.  

• /Whiteboard/Metrics/Threads - Information about the threads running on the sys-

tem, their states, priorities etc. Especially freeStack property is useful, as it gives 

the miminum amount of stack space that has been unused in bytes. 

• /Whiteboard/Metrics/Events - Returns information about Whiteboard execution 

contexts' event queues and their usage. Provides helpful metrics, such as high-

WaterMark, and verySlow, to tell e.g. if contexts have been blocked by some slow 

operations.  
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Whiteboard provides a system for defining own modules, which can function as Clients 

and/or Resources. This means that according to the roles of these modules, they can 

provide resources and/or access other modules' resources. For example, a Client can 

only ask information from other modules, but cannot be asked anything. Resources of 

modules are called REST APIs, or just APIs. Movesense APIs have two interfaces which 

are used to access the resources: REST APIs following the Swagger 2.0 format (saved 

as yaml -file format), and C++ files generated from the yaml-files. MovesenseCoreLib 

also comes with its own Movesense-sensor -specific APIs.  

REST interface allows definition of different resource paths, such as /movesense/Info. 

These resources can provide different resources, which in MovesenseCoreLib include 

the following: 

 - GET 

 - PUT 

 - POST 

 - DELETE 

 - SUBSCRIPTION 

Subscriptions in yaml-files are defined as POST to path /someResource/Subscription, 

but it was included here as in the C++ code and wbcmd.exe -tool it is implemented as its 

own separate subscription -command. In yaml-file the user can declare HTTP-re-

sponses, such as 200 (OK), or 400 (BAD REQUEST), which the resource will execute 

when user wants to. These resources can also take in parameters, and they can return 

values, such as integers, vectors, strings, or some other user defined values. The format 

of the parameters and return values passed is JSON format, according to the Swagger 

2.0 specification. These paths and JSON parameters are used when communicating 

externally with other whiteboard-compatible tools, such as mobile MDS-library, or PC-

tool wbcmd.exe.  

Here is an example of an API subscription defined in applications yaml-file: 

paths: 

  /ExampleResource/Subscription: 

    post: 

      description: | 

        Subscribe to RR values. 

      responses: 

        200: 

          description: Operation completed successfully 

        x-std-errors: 

          description: See common error codes http://devel-

oper.suunto.com/api/std-errors#subscribe 

        x-notification: 

          description: New value 

          schema: 
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            $ref: '#/definitions/LastRRValue' 

    delete: 

      description: | 

        USubscribe from RR values. 

      responses: 

        200: 

          description: Operation completed successfully 

        x-std-errors: 

          description: See common error codes http://devel-

oper.suunto.com/api/std-errors#unsubscribe 

definitions: 

  LastRRValue: 

    required: 

      - lastRR 

    properties: 

      lastRR: 

        description: RR 

        type: integer 

        format: uint16 

        x-unit: ms 

        minimum: 240    # equals in HR 250 bpm 

        maximum: 60000  # equals in HR 1 bpm 

 

After adding this resource to a list of providers in the Movesense provider application, a 

corresponding C++ resources.h file will be generated at the time of building the project. 

The generator file itself is included within the pre-compiled binary and is therefore not 

possible to be inspected. Regarding to subscriptions though, there is also another gen-

erator used, of which's Python script file is available within the MovesenseCoreLib. In-

specting this script's outputs might sometimes give some additional insight into debug-

ging. Generated serializations are called sbem-definitions. They are used by the white-

board when someone subscribes to that specific resource, or when /mem/datalogger API 

is called to save subscriptable resource's notifications into EEPROM. Subscribing to the 

defined resource can be done e.g. with wbcmd-tool on PC, with the following command: 

wbcmd --port COM3 --path /ExampleResource/Subscription --op subscribe 

 

If fully implemented, this would result in a JSON answer in wbcmd-tool, like this (here 

instead an example of GET request): 

 wbcmd --port COM5 --path /fb/mem/configuration 

WbCmd Movesense: 

{ 

  "response": 200, 

  "responsestring": "HTTP_CODE_OK", 

  "operation": "get", 

  "uri": "/net/184030000281/fb/mem/configuration", 

  "content": { 

    "movementLevel": 3 

  }, 

  "querytimems": 48, 

  "querytimens": 48895614 

} 

 



48 
 

From within the C++ code, a module can subscribe to a resource, such as /ExampleRe-

source/Subscription e.g. with the following method: 

whiteboard::Result subscription_result = asyncSubscribe(WB_RES:: 

LOCAL::EXAMPLERESOURCE(), AsyncRequestOptions::Empty); 

 

This asyncSubscribe() -method will call onSubscribe() method of the module implement-

ing the resource. Response to asyncSubscribe() will be given with a method returnRe-

sult(). Eventually returning from onSubscribe() causes a callback into listening modules 

onSubscribeResult(). This is where we know that the original call has finally finished. 

Subscriptions themselves are to allow a provider to continuously send values to a client 

which has subscribed to that resource. The actual notifications of subscription are sent 

to subscribed clients with method updateResource(), and clients then receive these no-

tifications into onNotify() method. 

When calling resources with async-call, it needs to be also noted that by default those 

calls will be synchronic (if the resource is in the same context as the caller), if not other-

wise defined as asynchronic with AsyncRequestOptions. 

3.11 Movesense challenges with modularity 

Whiteboard system in Movesense relies heavily on modularity, where most of the APIs 

offered by MovesenseCoreLib are optional modules which can be included or excluded 

from the project. This is true also when developing a user application - it is implemented 

as an inherited class and included into the whiteboard through macros in a file App.cpp. 

The system abstracts away the actual instantiation of the modules. If user needs to have 

multiple modules or classes, this might lead to challenges if information would need to 

be shared between these modules or class instances. Whiteboard's own system's APIs 

can be used to exchange data between classes internally, but it also adds an extra layer 

of need to define each datatype or struct as its own yaml-resource path. Therefore, other 

possible design patterns might be needed to manage communications between multiple 

classes, if defining separate REST APIs for transferrable data is not feasible. Possible 

design patterns could include e.g. singleton-classes or injecting some code within the 

MOVESENSE_PROVIDERS_BEGIN() section, to get the instance pointers of desired 

classes. 
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3.12 Application development for team sports 

As it has been discussed before, the project needs for a new team sports sensor came 

from the business of Firstbeat Technologies Oy, to meet the new requirements of cus-

tomers. There was a need for a new sensor system, where analytics could be run within 

the sensor and broadcasted in real-time to a coach’s client device. The new system 

should also have internal memory for offline training and BLE to get rid of a separate 

transceiver unit.   

Prior to starting this thesis work, Suunto Movesense sensor was chosen as the main 

candidate for the new product. The choice had been made based on prior evaluation of 

suitability of BLE for team sports monitoring systems (Portaankorva, 2018) and because 

the sensor seemed to meet all the requirements and targets set by the customers and 

business. As part of this thesis, further evaluation of the Movesense sensor was per-

formed. As the evaluation and development of the system evolved, the Movesense sen-

sor was finally chosen as the choice of technology for the next generation team sports 

sensor. 

In the following sections the most important use cases for a new team sports monitoring 

system are provided. These requirements came from the business and product owner 

and were further discussed and refined in the development team. Based on the use 

cases, more technical requirements such as REST APIs, BLE adv packet formats, state 

logic and data savings were specified. A brief description of the final system has been 

provided. Debugging and development processes have also been briefly discussed in 

their own section. 

3.12.1 Specification and implementation 
 

Use cases are often told in a form of a story describing a real-life situation and conditions 

where a device will be used. The following story presents one of the most typical use 

cases: 

“Football team has a practice at 10 am. Coach arrives to the field 15 minutes earlier to 

prepare for the training session, including preparation of the monitoring system. As ath-

letes arrive, they’ll pick up their own sensor belt and put it on. Most of the players moisten 

the belt and adjust it appropriately. As the belts are put on, coach sees the broadcasted 

data on the client application, such as iPad. During the training coach keeps the iPad 

with him to follow the training metrics of individuals and whole team. Part of the time he 

leaves the iPad to a side, to take part of the practice. After the exercise athletes leave 

their belts to a bag next to the field. Coach initiated uploading of data from sensors to 
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the cloud via the client application and goes to collect training equipment from the field. 

After upload is done, coach and each athlete receive their individual report of the training. 

Coach can now start analysing the whole team’s data.” – Typical use case 

As this was only an idealistic typical use case, various exceptions need to be considered, 

e.g. the following: 

“Some players arrive 15 minutes late, pickup their belt, put it on and participate in the 

training. The belt should then appear in the client application.” – Late coming 

“Some players need to leaver 30 minutes earlier. They want to also record some training 

at home, so they need to take their belts with them. Before leaving, coach uploads their 

training data to the client device. At the next time when coach loads the data from the 

sensors, the home trainings are uploaded at the same time with team trainings.” – Early 

leaving and training at home 

“During training, an individual player is given a permission from coach to connect the HR 

sensor to his smart watch. This prevents the sensor from broadcasting the data to the 

client device but allows the athlete to focus on specific parts of the training himself by 

checking his watch.” – Smart watch connectivity 

 “Coach is not attending the beginning of the training, but athletes begin the training ses-

sion by themselves. They put their belts on and start training as they normally would. As 

coach arrives to the side of the field with his iPad, he sees the real-time training metrics 

of the individual athletes and team as if he’d been there the whole time.” – Unsupervised 

training or coach attending late 

“Training went too long, and coach has no time to upload the training data from the belts. 

Coach will load the data from the sensors later in the evening.” – Uploading done later 

While this was not by any means a comprehensive listing of all the use-cases possible 

and specified, it works as an introduction to further present and justify the technical re-

quirements which were set for the final team sports sensor product. The following re-

quirements and specification were set already knowing that Movesense sensor would be 

utilized. 

 

A brief listing of the logical and technical requirements for the product: 

- Idle mode and measurement state logic 

o When sensor is not used, it should stay in an idle mode to save battery 
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o Sensor needs to automatically detect when it is on the skin. When skin 

contact or impedance change in electrode leads is detected, sensor 

should power on. 

o When sensor is powered on, it should validate ECG signal to start record-

ing RRI signal and run training analytics.  

o Recorded RRI signal and appropriate metadata should be saved into the 

internal memory of the sensor. 

o Sensor needs to detect when it is taken off the skin after training and stop 

recording. 

o Sensor should not stop recording during training, even if it is momentarily 

misplaced. 

o Sensor should not start recording if not on skin, e.g. in bag. 

o After recording has stopped, sensor should allow enough time for the cli-

ent to connect and load the data before returning to idle state. 

- Broadcasting logic 

o When sensor is not in an idle mode or after skin contact is detected, it 

should always broadcast BLE advertising packets with some specified in-

formation. 

o During measurement the advertisement packets should include all the 

necessary and optional training metrics such as training duration, HR, 

EPOC, HR zones and TRIMP, etc. 

o Each advertisement packet should include all the required information for 

client to decode it, without prior knowledge of the previous packets re-

ceived or the state of the training. 

o When sensor is turned on, but no skin contact is detected, optional infor-

mation about the device such as the number of measurements recorded 

should be broadcasted. This shouldn’t however be a requirement for any 

use cases. 

o Sensor should provide standard Bluetooth HR service connectivity for 

smart watches. 
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- Connectivity logic 

o Client application should be able to pair or connect with any sensor at any 

time, whilst they are broadcasting advertisement packets. 

o Possible on-going recording shouldn’t be interfered by a connection with 

a client device. 

o Appropriate REST APIs should provide additional information, allow con-

trolling measurement states, loading of data and configuring the sensor. 

o If no new recordings are to be made after disconnection, sensor should 

go to idle state soon after. 

- Power consumption 

o Battery of the sensor should endure for 4 months minimum, with 10 hours 

of training per week. 

- Upgrading firmware should be possible with OTA-updates. 

 

Though the typical use cases of the product remained the same since the beginning of 

the project, quite a few adjustments and details were added later, and not all the final 

requirements are included here. However, Figure 18 presents the underlying state ma-

chine, by which the finalized sensor software works. The typical use case follows the 

following flow: HR strap is put on, sensor detects the leads and goes to a startup-mode, 

signal is validated, and sensor starts recording RRI during the training. After sensor stops 

receiving RR-intervals, it will go to a waiting mode to wait until the recorded data is down-

loaded. Finally, sensor returns to idle state. Other use cases were also considered, and 

the state machine was fine tuned to be suitable for them as well. Additionally, a wet belt 

detection had to be added as a check when going to idle mode. This was due to tests 

showing that Maxim30003 AFE chip responsible for leads-on detection, recognises an 

extremely wet or sweaty belt to be in a leads-on state (i.e. attached to body), even when 

it is not. This is due to reduced impedance between electrodes in the textile heart rate 

belt. As a workaround for detected wet belt condition, a low frequency movement detec-

tion is used instead to return from idle state. 
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Figure 18 State machine of developed sensor application. 

Results of evaluation included later in chapter 4, present another HW issue which had to 

be resolved during the development – rare HW resets. These were concluded to occur 

from battery connector wearing and loosening, or possibly from the use of jig, which 

might press the sensor too hard when used, mechanically deforming the sensor. What-

ever the source of issue, a resolution had to be made. Therefore, a system recovery was 

designed to be performed whenever a reset would occur during measuring state. This 

allows continuation of measurement and ETE analytics as they were before the reset. 

This is done by frequently updating required recovery data to EEPROM, and then recov-

ering that data back from EEPROM in case of a rare HW reset. These steps are, how-

ever, not presented in Figure 18. 

Overall, the state machine was designed to be simple, customizable and to meet the 

needs of the use cases listed. Most importantly the state changes committed by meas-

urement validation logic needed to be robust in detecting when to record. In unclear 

cases the validation should also be biased to rather recording too easily, than to leave 

out any training data. This was one of the greatest challenges and its implementation will 

be discussed further in the next section. 
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3.12.2 Measurement validation logic 
 

Measurement mode validation plays a crucial role in any wearable HR measurement 

system, where we simply cannot record all the time due to memory and battery limita-

tions.  

Suunto Movesense sensor offers three possible ways to measure RR-intervals:  

1. an API for pre-processed HR and RR-interval (/meas/hr) 

2. A licensable proprietary ECGRR-module  

3. A REST API /meas/ecg for measuring the ECG yourself, to run your own R-peak 
detection algorithm.  

The easiest and cheapest way is to use the readily available /meas/hr API, which is 

enough for most use cases. In this case the RR-intervals come from the Maxim30003 

AFE chip itself, with a detection resolution of 8 ms. As this is not accurate enough for 

recovery tests (such as QRT by Firstbeat), it could not be used in this product. Instead 

the ECGRR-module was used and modified in collaboration with Suunto. 

ECGRR-module provides a modified version of the generally well known PanTompkins 

algorithm for R-peak detection. Some modifications have been made to adjust the algo-

rithm for sports use cases, as the original algorithm makes some assumptions of the HR 

due to its clinical origin. In addition to providing RRI-values, the module can also be tuned 

to provide once-per-second SNR (signal-to-noise-ratio) values. The SNR estimates cal-

culated by the module are derived from the signal by using some assumptions about the 

noise, standard deviation and signal amplitude, using one second time window. Final 

sensor application uses SNR and MVA (moving average) of RRI in its measurement 

validation logic, to detect when the sensor should start and stop measuring. 

Multiple versions of start and stop logic were trialled and tested during the development 

of the sensor application. Table 5 briefly presents the main tested versions of validation 

algorithms. 
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Table 5 Pros and cons of different RRI measurement validation algorithms. 

Algorithm Pros Cons / issues 

MVA of RRI 

from Maxim 

AFE 

(24.9.2018) 

Robust and simple. If there 

are no RRI values, there is no 

point in recording anything. 

Maxim AFE has low resolution. 

Maxim AFE does not provide any sig-

nal quality metrics, such as SNR. 

MVA of RRI 

from 

ECGRR-

module 

(19.11.2018) 

Sufficient level of accuracy.  Tuning of the ECGRR-module took 

time. Initialisation of module was 

slow, and the module was too sensi-

tive (detect RRI when there's no sig-

nal e.g. on table) 

SNR from 

ECGRR-

module 

(4.3.2019) 

SNR is a good measure of 

general quality of the signal. 

Clear distinction in most 

cases of belt-off can be seen. 

SNR estimate can drop low if there is 

much movement artefact in the signal  

- even if the ECGRR would still detect 

correct R-peaks. 

SNR + MVA 

of RRI from 

ECGRR-

module 

(10.4.2019) 

This combines the pros of 

both SNR and RRI MVA -> we 

can evaluate the snr quality, 

but also know to stop if there 

is no RRI coming 

No issues have been found. 

 

3.12.3 ETE-library integration 
 

The possibility of integrating the physiological analysis library ETE directly within the 

Movesense sensor, was one of the most important reasons for choosing the Movesense 

platform. Integration of the ETE binary was a straightforward process due to easiness of 

CMake’s capabilities in adding a new compiled library into the build. The developed ap-

plication with ETE inside allows running advanced analytics directly within the sensor, 

as athletes are training in the field. Lost BLE packets are not an issue, as each BLE 

packet has all the information needed for the client to decode the data, to provide real-

time analytics of each athlete’s training. 

 

 



56 
 

The included ETE analytics in the final application are: 

• EPOC 

• TRIMP 

• TRIMP/min (TRIMP accumulation rate per minute) 

• Aerobic and anaerobic training effect 

• Lowest, average and highest corrected HR of training 

• Times in HR zones 

• Cumulative energy expenditure 

The developed sensor with the new TRIMP/min, is first of its kind as no other competitor 

in the markets provide TRIMP/min for real-time analytics during a training. With the fea-

ture, coaches can more easily recognise and track the fast changes in athlete’s internal 

loads. (Firstbeat Technologies Ltd., 2019) 

3.12.4 Development and offline testing 
 

Testing and debugging tools and capabilities are an essential part of any software de-

velopment process to ensure a correct functioning of an embedded device. In the case 

of Movesense sensor, there are several different options: flashing and debugging jig, PC 

simulator for offline testing of an application, using REST APIs over BLE (Android and 

iOS), and a separate REST API System/Debug/Log for logging of debug-messages into 

the non-volatile EEPROM memory. During the development of this new team sports ap-

plication, all these options were explored and used. Due to the nature of the application 

under development, an additional testing tool, an ECG-signal simulator, was also devel-

oped. In this chapter, a brief coverage of these will be provided.  

Movesense jig comes with Segger’s J-Link base model debugger probe, which can be 

used for both flashing and debugging. Segger’s proprietary RTT-debugging feature has 

been included within MovesenseCoreLib (SEGGER Microcontroller GmbH, 2019). This 

allows an invasive, but fast output of debug prints via JTAG. In the background, each 

time when debug prints are printed via RTT, memcpy() function is called to copy the 

message to RTT’s buffer. This buffer is then non-invasively emptied via JTAG to PC with 

e.g. RTT viewer. MovesenseCoreLib’s debugging print methods such as DEBUGLOG() 

macro or DebugLogger::error() have been provided to enable the use of RTT for debug-

ging. Traditional halting of CPU and stepping through application is also possible, but 

this will often cause the application to eventually assert, as this will break SoftDevice’s 

real-time requirements. (Nordic Semiconductor, 2015)  
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In addition to using debugging tools provided with the Movesense system, hardware-in-

loop (HIL) simulation platform was designed to test and validate the final application. The 

designed platform includes a Movesense sensor connected to PC via jig, and an RRI-

signal-generator for generating R-peak signals directly to the sensor. This enables re-

peating and testing of various situations, such as belt on and off conditions, as well as 

running of long real-time training sessions. Connecting the same generated signal 

source to multiple Movesense sensors simultaneously, also allows simulating a same 

training with e.g. a whole team. A block diagram of the developed generator is presented 

in Figure 19, together with a resulted ECG-looking signal. The idea of the generator was 

not to generate real ECG, but only the R-peaks to make the sensor record RRI values. 

 

 

Figure 19 Block diagram of RRI-signal-generator (left) and resulted signal as visual-
ised with Android Movesense Showcase App (real-time ECG streaming) (right). 

In the future development it has been planned to automate building and testing of the 

sensor software by implementing a continuous integration (CI) pipeline. The current 

Suunto’s bitbucket uses version control software Git. In Git, when doing a commit into a 

development branch an automatic building and testing could be triggered in another lab-

PC. There automated scripts would be run to test and validate different use-cases to-

gether with the HIL simulation. Test reports could be automatically generated. This CI 

pipeline will enable more efficient and accurate testing. Therefore, the RRI-signal-gen-

erator is the first step towards this more advanced testing and development environment. 
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4. SYSTEM EVALUATION 

Software development is most often in deep connection with testing of the software. In 

modern agile development methods, the project evolves in an iterative manner, small 

continuous progress and improvements being done all the time, corresponding to the 

results of testing and changing product requirements. (Larman & Basili, 2003) Through-

out the development of the sensor software, multiple iterations have been gone through. 

Testing has included e.g. manual testing on jig, manual testing with iPad, unit testing on 

PC simulator, testing with hardware-in-loop simulation on jig, and several field tests. 

Testing has been done by several people in the development team.  

One of the main focuses of the product development has been the robustness of the 

measurement validation algorithm, to never miss recording a training, whilst at the same 

time trying not to consume too much extra power or memory. Another important focus 

has been to define and provide all the needed REST APIs for controlling the sensor and 

measurements, as to cover all the use cases.  

This chapter here comprises the most important and significant results of the test reports. 

The following evaluation reports will be presented in a chronological order, to give insight 

into the development process and challenges that arose. Therefore, field test results will 

be presented first as they have been an on-going aid to the development process. They 

are also used to evaluate the fulfilling of use cases and set requirements. Following that, 

one controlled field test will be presented, which was used to evaluate Movesense’s R-

peak detection. Finally, power consumption and memory usage of the latest version of 

the developed application will be presented. 

4.1 Supervised team field test results 

Throughout the development project of the new sensor product, continuous and frequent 

field testing has been performed to aid the development process, test the sensor against 

real use cases and evaluate the product overall. The results of these on-going tests have 

been fruitful and very much useful, as they have revealed issues which might not have 

been found otherwise in plain software testing. A physical sensor is more than just a 

software inside, and therefore a thorough testing needs to be performed to test also the 

mechanical, physiological, electrical and usability issues in addition to software issues.  
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Figure 20 Bar graph presenting total number of devices in each test, with number of 
issues indicated. Background colour separates different versions of RRI validator. 

All the field tests reported in this chapter were run with amateur or semi-professional 

sport teams as part of their normal training, with ranging number of participants at each 

field test. Figure 20 summarises the results of field tests, which were done during 2019. 

The figure presents successful measurements together with those which had issues. The 

issues have been divided into three main categories: HW resets, signal quality issues 

and SW bugs. HW reset means that a sensor reset itself due to mechanical connection 

issue in sensor battery’s enclosing. SW bugs of the application originated either from 

MovesenseCoreLib, or from an application bug. Signal quality issues originate from a 

sensor receiving poor signal, which caused measurement validation logic of the 

application to e.g. stop recording early, or start late. However, as discussed in chapter 
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3.6.2, many of these issues were tackled by improving the measurement validation logic.  

Based on the field test reports, the measurement validation logic was developed to be 

robust and less sensitive to occasionally occuring bad quality signal, as much as 

possible. Success rates of the measurement validation logic, without taking into account 

other issues, have been presented in Figure 21. These results present how many 

percentages of devices measured the whole training without stopping or restarting in the 

middle of the training. As can be seen, the final version has improved a lot since earlier 

versions, and can be esteemed to be working well. In these field tests with the final 

measurement validation logic, mean success rate of 95% was achieved. 

 

Figure 21 Success rate of measurement validation logic in field tests. Background col-
our indicates different versions of RRI validator. 

To understand why 100% success rate is not always achieved, we need to understand 

the real-life use cases where the measurements are done. In these field tests, athletes’ 

level of experience using HR belts varied. Also some of the athletes wet their belts as 

instructed, and some did not, also affecting the results. Other issues include e.g. belt 
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worn upside down, too loose belt, or wrong placement of belt. Therefore, the results 

presented here are not only affected by the movesense sensor and its application, but 

also by these unkown variables. If we only consider the cases without user errors or 

issues with signal quality, we can conclude the success rate of the final measurement 

validation logic to be 100%. This is because the source of the falsely ended 

measurements is generated from the lack of RRI provided by the ECGRR-module, and 

by definition if there are no RRI values to be recorded, there is no need to keep recording. 

 

Figure 22 Average measurement errors of RRI by field test dates. Changing from 
using of Maxim AFE RRI, to ECGRR-module’s RRI is indicated with a green line. 

As discussed in chapter 3, the native RRI signal from Maxim AFE chip within Movesense 

sensor were not accurate enough for the product which was developed. For this reason 

a proprietary ECGRR-module was used and tuned for this application. The supreriority 

of the ECGRR-module’s accuracy regarding to RRI quality can be seen in Figure 22. It 

shows a significant drop in error rate after changing to use the module. The error rate 

has been calculated by the properiatery ETE algorithm library. 



62 
 

 
Figure 23 Impact of different locations to advertisement packet loss ratio. 

As the teams sports monitoring system can be used both for real-time monitoring of 

teams and for offline training (data being loaded from the sensor later), it is important to 

also benchmark the performance of “how real-time the data is?” For this purpose, 

different use case locations were compared. Figure 23 presents averages of different 

advertisement packet loss ratios by location. The loss ratio was defined as how many 

non-duplicate packets were lost (the content of packets change once per second). As 

the field tests were not run within controlled environment, the radio environments could 

vary as well, even if the place would be the same. Also the number of devices changed 

between field tests, making the field tests not directly comparable. Therefore, the 

averages presented in the figure are derived from the means of each field tests by 

location. 

Number of field tests per location are 13 (indoors, football), 12 (outdoors, football) and 2 

(indoors, ice hockey. From the results we can see that there is a massive difference in 

packet loss ratios in ice hockey and football. This can be explained by the game field 

size in these two sports. The longer distances in football result in weaker RSSI of the 

signal, and higher rate of packet losses. Comparing the two indoors locations (ice hockey 

versus football), we can see that merely having reflective walls and roof around the field 

do not have that much of an effect as the size of the field. Of course it needs to be noted 

Indoors (football) Outdoors (football) Indoors (ice hockey)

Avg 32,87% 42,85% 1,82%
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that the number of field tests between ice hockey and football are not directly compara-

ble. However, as the lowest packet loss ratios of football were 20,14% (inside) and 23,02 

% (outside), and the highest loss ratio of ice hockey was only 3,09%, we can safely 

assume that the differences of packet loss ratios are quite significant between these two 

sports. 

Overall, considering the results from both football locations, we can derive the conclusion 

that playing indoors in comparison to playing outdoors, can actually improve the packet 

loss ratios – in this case by around 10%. 

 

Figure 24 Download times of training data per device in all field tests, by duration of 
logged measurement data. 

In typical use cases, the coach uses the client device to download all the measurements 

from the sensors. The time that it takes to connect to each sensor and perform the 

downloading depends on different matters: how much data is being downloaded, how 

many devices the client can connect to in parallel, radio traffic and other interfering 

signals. For estimating probable download time of a measurement with certain length, 

the download times were taken from the field test reports, and are presented in Figure 

24. The variance between different field tests can be easily seen, as with the same 
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measurement duration the download time has been varying by about 15 seconds at 

worst. However there is a clear trend, which predicts average download times of  

𝒚 =  𝟎, 𝟎𝟎𝟐𝒙 − 𝟐, 𝟎𝟏𝟒𝟗,         (2) 

where y is the expected download time in seconds per device and x is the average du-

ration of a training. For example, an average total download time of a two-hour training 

for 9 devices would be 111 seconds. Nine devices were used here as an example, as it 

was the maximum number of downloads done at once in the field tests, due to a limitation 

of a field test iPad software. 

4.2 Controlled field test results 

The supervised field tests were originally initiated more as a general use-case testing 

setup or as an asset to help the software development, rather than a controlled perfor-

mance bench marker. From the results of the previous chapter we saw that these field 

tests could not provide reliable enough performance evaluation in all cases, as there 

were too many unknown variables that played a role. These unknowns included e.g. mis-

attached belts, not following directions in wetting the belt, and having too loose belts. 

Also, the same belts had been used for quite a while, which might have added some 

noise to the signal in latter measurements. Therefore, one more controlled company in-

ternal test was performed, to better evaluate the performance of the measurement vali-

dation logic.  

Quality analysis of the RRI signal was also done as part of the controlled test. This was 

done by having the participants wear a reference RRI recorder at the same time with 

Movesense sensor. The reference sensor was a wearable high-quality ECG/RRI re-

corder Bodyguard 2 (BG2), which was presented in chapter 2.3.1. It has been also used 

in scientific studies prior, due to its easiness of use and high accuracy (Parak & 

Korhonen, n.d.). However, BG2 has not been designed with the focus of sports use 

cases only, but rather for recording overall everyday activities of an individual. It has two 

leads which are attached to the body with medical grade wet gel electrodes. 
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Figure 25 Occurrences of issues present at the controlled field test with BG2 and 
Movesense sensor. 

Success rate, issues found during training, and measurement errors for both Movesense 

and BG2 in controlled field test are presented in Figure 25. Altogether there were 22 

players, with 21 of them participating in the study. Unfortunately, 3 of the reference de-

vices were unfunctional, recording no data. Also, one player only wore Movesense sen-

sor. Therefore, 17 reference devices, and 21 Movesense sensors have been considered 

in these comparisons. Measurement error (%) was constrained to one hour, if a meas-

urement stayed on after the training ended, or to the duration of the measurement if 

sensor fell off or stopped recording earlier. The field test begun by distributing the devices 

and guiding the players to wear them properly. All the HR straps’ electrodes were sprin-

kled with water before the game. The training lasted for approximately an hour and had 

a 3-minute quick recovery test (QRT) before and after the game, were players laid still 

on the ground. During the whole test, advertised BLE packets were monitored. One 

Movesense device had a hardware reset. During the training one player changed BG2’s 

electrodes due to loosened attachment due to sweating and another player took their 

sensor off for the same reason. Some players also took the sensors off before the QRT, 

due to bad holding of wet gel electrodes.  
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After the training and QRT, all the devices were collected into a bag, without taking 

Movesense sensors off from the belts. This is against directions of Movesense’s manu-

facturer Suunto, as it can lead to false measurements. However, this was tested to see 

how many of the devices would have this issue. Both Movesense and BG2 had these 

issues, with Movesense having 38% and BG2 having 23% of the devices turning on after 

the exercise. It must be noted though, that as BG2 has been designed for 24-hour meas-

uring, it is very desired that it should rather be always-on than miss any recordings. As 

discussed earlier, false positive measurements are not that much of an issue for Move-

sense sensor either. They only result in short recordings, which don’t take much memory. 

They can also be automatically separated from the real measurements in the client de-

vice. A slight impact on the additional power consumption could be expected though, if 

these false positive measurements were to happen regularly.  

Overall success of the measurements as presented in Figure 25 has been calculated 

from the devices, which didn’t have any major gaps in the middle of the training, or which 

did not end the measurement too early. The one device with HW reset was counted as 

non-successful. We can see that Movesense sensor was more reliable in this test than 

BG2. Movesense also had better measurement error rate (7,1%) than the reference de-

vice (13,1%). Excluding the Movesense device with HW reset, there was only one Move-

sense which did not record the whole game without gaps. With this device and player 

possible reasons for the recording restarting during the game were inspected immedi-

ately as the recording stopped. It was concluded that the stopping of the recording was 

caused by sensor not detecting any R-peaks due to poor ECG signal. Worsening of the 

SNR was most likely a result of heavy sweating of the player combined with wearing a 

very tight synthetic looking shirt. Most likely this formed a slightly conductive path be-

tween the belt’s electrodes, resulting in short-circuiting the electrodes at some level. This 

was suspected, as in some cases the belt has been reported not to have an absolute 

insulation between the belt’s textile and the electrodes. This leads to some current flow-

ing through a wet belt. Therefore, the recorded ECG is weaker as the signal degrades. 

This seems to be a rare occasion and a combination of some unknown factors which 

would need some further investigation. Also, this might be an explanation to some of the 

restarting and stopping of recordings in other field tests as well. 

One objective of the controlled field test was to measure and analyse the accuracy of 

Movesense sensor’s R-peak-detection. This was performed as part of a Quick recovery 

test (QRT), which is one of the recovery features of ETE-library, by Firstbeat. QRT is 

performed by laying down and staying still for approximately three minutes. In this con-

trolled field test, QRT was done before and after the game. These recordings from both 
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reference device BG2 and Movesense sensor were then synced and compared with dif-

ferent statistical error metrics. These results are presented in Table 6. 

Table 6 Mean values of error metrics for all valid QRT measurements. 

Measurement  
(approx. 3 min) 

ME 
(ms) 

STD 
(ms) 

MAE 
(ms) 

MAPE 
(%) 

MAD 
(ms) 

Num. of  
measurements 

QRT before game  0,008 0,596 0,413 0,056 0,302 11 

QRT after game -0,005 0,833 0,491 0,076 0,301 7 

Total 0,003 0,688 0,443 0,063 0,302 18 
 

Purpose of this analysis was to evaluate the accuracy of Movesense’s R-peak-detection, 

rather than evaluation of the whole system’s total measurement error. Therefore, all the 

measurements with clearly visible artefacts or gaps were removed from this study. Figure 

26 shows an example of a typical error signal between BG2’s and Movesense’s record-

ings, as well as a disqualified measurement with visible artefacts. Altogether 18 QRT 

measurements were analysed as part of this study. 

 

Figure 26 A typical error signal from QRT measurements with Movesense (orange) 
and a disqualified measurement with artefacts (blue). 

The total results in Table 6 indicate very low error rates for the Movesense R-peak-de-

tection. Mean error (ME) and mean absolute error (MAE) are well below 1 ms and me-

dian absolute percentage error (MAPE) is only 0,063 %. Also, the median absolute de-

viation (MAD) is only 0,302 ms and the standard deviation (STD) 0,688 ms. These results 

indicate that when there are no major artefacts present, R-peak detection of Movesense 
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is well comparable with R-peak detection of reference device BG2. It needs be reminded 

that in the developed application the R-peak detection comes from the Suunto’s licensed 

ECGRR-module instead of the native /meas/hr service. 

A prior hypothesis before doing the QRT measurements was such, that the signal quality 

of the Movesense electrodes would improve during training, as the electrodes would 

warm and get sweaty. However, as it was discussed earlier in this chapter, high sweating 

and wetting of belt might instead degrade the signal quality. To examine this subject 

further, Table 7 includes only those sensors which were successful and without any vis-

ible artefact in both QRT measurements before and after the game. Therefore, the sen-

sors and participants in the table are the same before and after. This minimizes the af-

fection of environmental matters and individual differences and should give better esti-

mate of whether the signal quality was better prior to game or after.  

Table 7 Mean values of error metrics for same devices between before and after -tests. 

Measurement 
(approx. 3 min) 

ME  
(ms) 

STD 
(ms) 

MAE  
(ms) 

MAPE  
(%) 

MAD 
(ms) 

Num. of  
measurements 

QRT before game -0,008 0,564 0,412 0,052 0,331 5 
QRT after game -0,007 0,604 0,385 0,059 0,238 5 

 

In the table there is very little difference between the error metrics when the same subset 

of sensor measurements is being investigated. Also, as the number of measurements in 

the subset is so small, that the significance of these differences is debatable, and more 

measurements would be needed to conclude whether prior or after training would give 

better signal. 

Considering all results of the test which have been discussed, indication is that the Move-

sense HR belt performs better than the reference device in most areas of the controlled 

field test. The reasons for this are many but can be summed up into one understanding: 

BG2 is not optimized for high intensity sports, being not the best reference for this use 

case. Intensive movement causes extensive stress and artefact to its hanging lead, when 

not properly taped onto the skin. In this test, only some of the players taped the device 

on their skin. Sweating can further loosen the electrodes’ attachment, eventually also 

worsening the signal quality and possibly making the electrodes fall off from the skin. It 

is important to understand though, that the actual accuracy of the RRI detection is much 

higher and more reliable outside of sports use case, and that is why it was chosen as a 

reference device. This is due to BG2 having much higher sampling rate compared to 

Movesense. If Movesense was worn outside of sports activity, the signal would eventu-

ally degrade as the electrodes would dry without sweat. However, as was proven, in 
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sports case where intensive movement and sweating is involved, HR belt is more reliable 

than bare electrode attachment. In addition, the R-peak-detection of Movesense sensor 

was proven to be highly accurate when compared to BG2, with less than 1 ms mean 

absolute error in a close-to-optimal signal. 

4.3 Endnotes of evaluation of measurement validation logic 

Overall, at this stage of development and with the data recorded, it can be said that the 

measurement validation logic is as good as it can be for this application. If there are no 

valid RR-intervals detected from the ECG signal, there is little reason to keep recording 

a training, and therefore future improvements should rather focus on other perspectives 

of use cases, such as instructing the athletes to use HR belts correctly or improving of 

the ECG signal by improving the HR belts themselves. 

4.4 Power consumption 

When setting requirements for a new HR sensor, battery life expectancy was one of the 

most important aspects. Movesense has a replaceable primary battery, which means 

that for a large team with 30+ players it will take some minutes to switch all the batteries 

to new ones. Therefore, the requirement of battery life expectancy for a sensor was 

specified to be at least four months. However, the design of the software was done func-

tionality first, as the battery optimizations have been some of the last changes done to 

the software. Optimizing the power consumption is similar to optimizing the measure-

ment validation: we cannot miss to power on when the training is on, but we should also 

avoid turning or being on when there is no need to. Therefore, all these things go hand 

in hand and had to be designed together. 

For providing accurate estimates of the battery life expectancy of the sensor, Otii power 

meter (Qoitech, 2019) was used to measure the current consumptions of different soft-

ware states of the software. The measurement results are provided in Table 8. These 

are the most significant states from the point of view of power consumption. In the cal-

culations each training was considered to be a 2-hour session with an average HR of 

150 bpm. 

Table 8 Measured averaged current consumptions of different states of the sensor. 

State Idle Startup Measuring Waiting 
Downloading 

event 

Measured current con-
sumption (mA) 0,019 0,272 0,31 0,25 1,92 
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With the measured current consumptions, power estimations and battery life expectancy 

estimates were made. These can be found in Table 9. The calculations were done for 10 

and 20 hours of training per week, having five sessions per week. With most batteries, 

the actual capacity of a battery can be quite far from the informed capacity. This is gen-

erally a resultant of the battery’s voltage dropping due to increase in the inner resistance 

of a battery. Correction factor of 0,7 was used to simulate battery wearing. The results 

show that even with the correction factor, the designed sensor can well reach over 4 

months of battery life expectancy in the most typical use case of 10h of training per week. 

With better quality batteries, using better correction factor, even longer times can be 

expected. Also, it is notable, that although power consumption during a download event 

is as high as 1,92mA, its contribution to the calculated life expectancies was quite insig-

nificant, as the event duration is so short compared to the other states. For example, it 

was calculated that for the use case of 10h/week with the correction factor 0,7, the bat-

tery life estimate is only 0,3 weeks less when considering downloading events. 

Table 9 Estimated power consumptions and battery life expectancies for use cases 
with 10h and 20h training per week. 

Training 10h/week 20h/week 

Average power consumption per week (mAh) 6,6 9,3 

Estimated battery life (weeks): “Perfect” battery (165mAh)  25,1 17,8 

Estimated battery life (weeks): Correction factor 0,7 (115,5mAh) 17,6 12,5 
 
 

At the time of finalizing this thesis, not all the minor power optimizations had been fin-

ished, leaving some room for further optimization. Also, in MovesenseCoreLib 1.8.1 there 

is a bug which increases the power consumption to be slightly higher than it should be. 

Therefore, the next MovesenseCoreLib update can be expected to further decrease the 

power consumption. 

4.5 Memory usage 

As it was already discussed in chapter 3.9, resource usage in embedded devices can be 

very limited. Therefore, optimizations need to be often done to accomplish desired re-

sults. Even during development, there might be a need to e.g. reduce the amount of 

debugging and testing prints, such as RTT-messages. This happened also during this 

project with debug release. In the development of this project, all the unnecessary bytes 

and libraries (such as C++ standard libraries) were stripped off to minimize the used 

resources. To answer some of the questions of sensor’s performance, and for documen-

tation and evaluation purposes, some details of the resource usage of the final applica-

tion are presented in Table 10. 
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Table 10 Resource usage of the final application. 

Application memory used of the 46 kB space (Debug) 88% 

Application memory used of the 99 kB space (Release) 53% 

Worst case free stack left 1,9 kB 

Heap left after application instance 7,3 kB 

EEPROM space available for logbook's datalogging 392 kB 

How many RRI values fit into the logbook's memory? 162 000 

How many hours of training can you record with an average train-

ing HR of 150 bpm? 

18h 

 

As the table presents, we see that the resources used by the application have been 

appropriate. After implementing the current application, there remains still some space 

for further development and new features. Especially release build has still much space 

left for further application code. However, limited resources in debug build might prevent 

proper testing of the software, if release build grows too large. The result of available 

hours of training to be saved into the EEPROM depends on both the implementation of 

MovesenseCoreLib’s logbook resource, as well as on what is being saved. Here the 18 

hours reached is well sufficient for most teams’ weekly training data. However, it must 

be noted that if many training recordings are left to the sensor and downloaded at once, 

it will consequentially increase the download times as well. Therefore, it is recommended 

that the training data should be downloaded each time after training, if possible. 
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5. DISCUSSION 

This thesis presents a work that was done to specify, develop and evaluate a novel team 

sports monitoring HR sensor application Firstbeat Sports, which is using Suunto Move-

sense technology as a sensor solution. The developed system is capable of measuring 

and analysing an athlete’s ECG to derive advanced features from an exercise, such as 

TRIMP, EPOC and training effect. This data can be saved to internal memory in addition 

to broadcasting the data over BLE. This provides means for a coach to monitor their 

team and individual athlete’s performance in real-time, or offline after the training. 

First objectives of the thesis were to develop and evaluate an application for team sports 

monitoring using Movesense, as well as to evaluate the Movesense platform’s suitability 

for the same use case. The development was driven by set requirements from the busi-

ness. Use cases and technical specifications were written. Continuous evaluation of the 

system (both Movesense sensor and the application) under development was run, to 

ensure reaching of desired features of the new product. As part of this thesis, supervised 

field test results were parsed and analysed to evaluate the performance of the developed 

sensor application. A controlled field test was also performed to validate the accuracy of 

R-peak detection of ECGRR-module. In addition, power consumptions and memory us-

ages of the application were measured and optimized. 

Another objective was to explore ways to perform debugging and offline testing more 

efficiently. During the development, an RRI-signal-generator was designed and devel-

oped for these purposes. This made it possible to chain multiple sensors to the same 

RRI-signal-generator, to simulate real field tests in a repeatable manner. In the future 

this will allow developing a more fully automated continuous integration (CI) -pipeline 

with hardware-in-loop simulated testing. 

The original deadline of a product release was aimed to be during the first quarter of 

2019. The project involved much collaboration both externally with Suunto and internally 

within Firstbeat. During the project there were some challenges which hindered the work 

from reaching original time estimates of product release. These challenges included e.g. 

late deliveries (ETE, MovesenseCoreLib, ECGRR-module, iPad client application), pro-

ject management issues (not definitive deadlines, lack of resources in code reviewing, 

changing requirements), MovesenseCoreLib SW issues and Movesense sensor HW is-

sues (several bugs in SW and HW, lack of documentation). Also, lack of documentation 
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and inexperience with a similar system from the past, added with the lack of code re-

viewing or second opinion, made the application development challenging and slower 

than what it could have been. To finally reach the target of releasing a market-ready 

product, some changes in the project management were done and some code reviews 

were performed. However, most importantly collaboration between Suunto was deep-

ened, to find and fix issues both in MovesenseCoreLib and in developed application. 

Close connection and co-working on the project with Suunto, including a week spent at 

their premises, were needed to get things progressing and done. Considering all these 

challenges, a lot has been learned on collaboration and project managing of a project 

like this, and overall it has been a successful journey. The final product Firstbeat Sports 

sensor was released during the second quarter of 2019, 13th of May at Firstbeat HRV 

Summit in Helsinki. 

In the future, there are many possible directions where the development of the sensor 

application could be taken. It is possible to not only improve and optimise the current 

application code (i.e. power consumption or resource usage optimisation), but new fea-

tures can also be added. These features could e.g. benefit from accelerometer data. 

Also, adding some already existing features from ETE-library, such as QRT, might be 

desired. In addition to changes into the application code, updates on MovesenseCoreLib 

can also be expected.  
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6. CONCLUSIONS 

In this thesis, a novel team sports monitoring HR sensor application was developed and 

evaluated. The results of the evaluation show that both Movesense and the developed 

Firstbeat Sports sensor application are well suited for team sports monitoring with 

Firstbeat Sports solution. The final measurement validation logic was concluded to reach 

100% success rate in measuring all the team trainings, whenever Suunto Movesense 

ECGRR-module would detect sufficiently good ECG signal. However, in the presence of 

user error or signal quality issues, a 95% success rate was received. To minimise these 

issues, HR belts should have better insulations and athletes should be well instructed on 

how to properly use HR belts. Also, the controlled field test results show that the mean 

measurement error between ECGRR-module RRI and Bodyguard 2 was only 0,003 ms 

with 0,688 ms standard deviation. Therefore, the Movesense sensor is well comparable 

with Bodyguard 2, proving Movesense an accurate RRI measurement sensor for team 

sports monitoring. The results of the system evaluation show that all the objectives, 

which were set to the thesis and the project, were reached. 

To provide better usability, power consumption was measured and optimised. The re-

sults predict the battery of the sensor to last well over 4 months with 10 hours of training 

being measured each week. Also, the final application was measured to allow approxi-

mately at least 18 hours of training to be logged into the internal memory of the sensor, 

which is well sufficient for most of the use cases of team sports.  

Integration of the physiological algorithm library was well accomplished, the new product 

providing advanced real-time analytics of ETE library to run within the sensor. Also, the 

developed Firstbeat Sports sensor is the first in the markets to provide real-time 

TRIMP/min analytics of training for momentary internal load tracking. 

Final product was publicly released on 13th of May 2019. 
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