

1

Mika Kuitunen

CROSS-PLATFORM MOBILE APPLICATION
DEVELOPMENT WITH REACT NATIVE

Faculty of Information Technology
and Communication Sciences

Bachelor’s Thesis
February 2019

i

ABSTRACT

MIKA KUITUNEN: Cross-Platform Mobile Application Development with React
Native
Tampere University of Technology
Bachelor’s Thesis, 26 pages, 3 Appendix pages
December 2018
Bachelor’s Degree Programme in Information Technology
Major: Software Engineering
Examiner: Tiina Schafeitel-Tähtinen
Keywords: cross-platform, multi-platform, mobile application, development framework,
React Native

Developing and maintaining mobile applications for multiple platforms at the same
time can be time consuming. Since the applications have to be developed with each
platform’s native development technologies, the software designers have to develop
and maintain multiple separate source codes for one application. This has pushed
many companies and communities to creating new development frameworks and
tools for mobile applications which allow the developers to write and maintain a
single codebase. The codebase is then compiled to native applications for each
platform, and the applications can be published through the platforms’ application
marketplaces.

This thesis focuses on cross-platform mobile development technologies, specifically
on the ones that utilize each platform’s native functionality to deliver a familiar
user experience to the end users, and React Native is then picked for a closer look.
The purpose of this research is to find out if cross-platform technologies are a viable
option for modern mobile application development in terms of both development
experience as well as user experience.

The primary finding of the research was that while React Native and other cross-
platform technologies may be a practical option for mobile application development,
it is unclear when cross-platform technologies have a significant advantage over
native development. In small applications the difference between the two is not
pronounced and in more complex applications cross-platform technologies do not
necessarily have many benefits compared to native technologies.

ii

TIIVISTELMÄ

MIKA KUITUNEN: Alustariippumaton mobiilisovellusten kehitys React Nativella
Tampereen teknillinen yliopisto
Kandidaatintyö, 26 sivua, 3 liitesivua
Joulukuu 2018
Tieto- ja sähkötekniikan TkK koulutusohjelma
Pääaine: Ohjelmistotekniikka
Tarkastaja: Tiina Schafeitel-Tähtinen
Avainsanat: cross-platform, alustariippumaton, mobiilisovellus, kehityskehys, React Na-
tive

Yhden mobiilisovelluksen kehittäminen ja ylläpitäminen usealle eri alustalle voi olla
hyvin aikaa vievää. Ohjelmistojen kehitys alustojen omilla kehitysteknologioilla pa-
kottaa ohjelmistosuunnittelijan kehittämään ja ylläpitämään useita täysin erillisiä
lähdekoodeja yhtä sovellusta varten. Tämä on saanut useat yhtiöt ja yhteisöt luo-
maan uusia kehitystyökaluja ja sovelluskehyksiä, jotka mahdollistavat sovelluksen
kehittämisen ja ylläpitämisen usealle alustalle samasta lähdekoodista. Lähdekoodis-
ta käännetään jokaiselle alustalle natiivi mobiilisovellus, jonka voi julkaista alustojen
omissa sovelluskaupoissa.

Tämä tutkimus keskittyy mobiilisovellusten kehitystä varten luotuihin alustariippu-
mattomiin sovelluskehyksiin. Työ rajataan erityisesti sovelluskehyksiin, jotka hyö-
dyntävät mahdollisimman paljon alustojen natiiveja ominaisuuksia käyttäjälle tu-
tun käyttäjäkokemuksen luomiseksi. React Native valitaan teknologioista tarkempaa
tutkimusta varten. Tutkimuksen tavoitteena on selvittää, onko alustariippumaton
mobiilisovellusten kehitys järkevä vaihtoehto alustakohtaisille teknologioille moder-
nissa sovelluskehityksessä.

Tutkimuksen tärkein löydös oli se, että React Native ja muut alustariippumattomat
kehitysteknologiat voivat olla käytännöllinen vaihtoehto natiiville sovelluskehityk-
selle. Ei ole kuitenkaan selvää, milloin alustariippumaton teknologia tarjoaisi mer-
kittävää etua natiiviin kehitykseen verrattuna. Yksinkertaisissa sovelluksissa näiden
kahden välinen ero ei ole suuri, ja monimutkaisissa sovelluksissa alustariippumaton
teknologia ei välttämättä tarjoa etua verrattuna natiiviin kehitykseen.

iii

CONTENTS

1. Introduction . 1

2. Mobile Application Development . 3

3. Mobile Development Using Native Technologies 5

4. Cross-Platform Mobile Development Technologies 7

4.1 Hybrid Development Frameworks . 8

4.2 Cross-Compiled Native Frameworks 8

4.3 Native Scripting Frameworks . 9

5. React Native . 11

5.1 Architecture . 11

5.2 Native Features . 13

6. Comparing React Native to Native Development 14

6.1 Designing and Developing the Test Application 14

6.2 Development Experience . 17

6.3 User Experience . 19

6.3.1 User Interface . 19

6.3.2 Performance . 21

7. Conclusions . 22

Bibliography . 24

Appendix 1. Navigation Flow of the Test Application

iv

LIST OF ABBREVIATIONS AND SYMBOLS

API Application Programming Interface, a specification and implemen-
tation used to interface new software with other existing software

APK Android Application Package, a package file used by Google to dis-
tribute Android applications

CSS Cascading Style Sheets, a language for describing the style of a
document written in HTML

GUI Graphical User Interface, a category of user interfaces though the
terms are sometimes used interchangeably

HTML HyperText Markup Language, a markup language for creating web-
sites and web applications

IPA iOS App Store Package, a package file used by Apple to distribute
iOS applications

JS JavaScript, an interpreted programming language commonly used
in web development

MVC Model-View-Controller software design architecture
MVP Minimum Viable Product, A product with the minimum amount of

features to satisfy the requirements
MVVM Model-View-ViewModel software design architecture
npm Node Package Manager, a service for managing JavaScript libraries
SDK Software Development Kit, a set of tools that allows the develop-

ment of applications for a certain platform
UI User Interface

1

1. INTRODUCTION

Mobile application market has become one of the largest branches of the software
industry since its inception. According to reports from We Are Social and Hootsuite,
in 2017, 3.7 billion unique users owned smartphones globally[1]. In 2017 52% of all
web traffic came from smartphones[1] and another report by App Annie states that
in 2017 the total number of mobile application downloads was over 175 billion[2].
The need for mobile application development continues to grow but, at the same
time, the unique use-case for these applications poses several problems to the devel-
opers because each smartphone operating system is its own platform, independent
from the others in terms of the application ecosystem, the intended user experience
and the development technologies used. Since the potential user-base for most mo-
bile applications covers multiple platforms, the developers have to develop separate
applications for each platform, following the platforms’ design guidelines and using
their development technologies.

This requirement for expertise in multiple native development technologies and ap-
plication architectures has created a need for development tools that simplify the
development process of mobile applications. Since the main hindrance is having
to develop a complete mobile application separately for each platform, new tech-
nologies have emerged that allow developers to share parts of the codebase between
platforms. These so-called cross-platform technologies promise to solve the issues of
developing native mobile applications, but currently there is no clear consensus on
whether they fulfil that promise.

The purpose of this research is to determine whether React Native, and cross-
platform mobile development frameworks in general, are a viable option for platform
native development technologies. The mobile platforms included in this research are
Google’s Android and Apple’s iOS. Other platforms do exist, but these two cover the
vast majority of end users today[3]. Different approaches to mobile development will
be introduced and compared through means of a literature review, and after that
a small mobile application will be designed and developed with React Native. The
development experience and the final application will be evaluated against similar
situations in native development to see if any significant differences arise.

1. Introduction 2

Prior research in this area has been done since 2011, but many past studies have
focused on technologies that have very little in common with modern cross-platform
development. More recent studies exist and are applicable to modern mobile de-
velopment, but the development frameworks themselves change at a fast rate, so
some of the results of past research have become outdated. Most notable studies
from the past few years include Niclas Hansson and Tomas Vidhall’s study on Re-
act Native[4], and Matias Martinez and Sylvain Lecomte’s study on the quality of
cross-platform applications[5].

Chapter 2 introduces mobile application development in general and Chapter 3 de-
scribes native mobile development in more detail. In Chapter 4 different options for
cross-platform mobile development are introduced and compared with each other.
Chapter 5 takes a closer look into React Native, a cross-platform framework, to
better understand how the framework attempts to achieve native user experience
regardless of the platform. In the following chapter React Native is first compared
directly against native mobile application development through means of a literary
review, and secondly through a small cross-platform application that will be devel-
oped. The comparison will be divided into two categories: development experience
and user experience. Finally, Chapter 7 will end the study with conclusions from
the development, the finished application and thoughts on the research question.

3

2. MOBILE APPLICATION DEVELOPMENT

Mobile development is a branch of software development that focuses on applications
created for mobile devices. The importance of some features is more pronounced
than in the desktop or web software development. Namely the power efficiency
and the ability to work within the smartphones’ hardware limitations, especially
the small screen size, are important, but most of all the user experience becomes
crucial.

Usability is, of course, important whenever developing software that interfaces with
a human in some way, but with mobile applications the "look and feel" of the app
is one of the biggest concerns in every project. Each platform has a design guide [6,
7] and mobile developers are encouraged to design the user experience of their apps
following these guides as closely as possible. This results in applications that the
user does not have to learn to use, but instead feel intuitive and familiar because
the user has already learned the design of the platform while using the operating
system and the pre-installed applications.

User experience is also one of the biggest differences between a mobile application
and a modern web application. With the evolution of responsive web applications
that fit into a screen of any size, the line between a mobile app and a web app has
become less clear. Sometimes it can be a better option to serve the end user a web
application than getting them to download an app from the platform’s application
marketplace. In some cases though, a mobile application has advantages over the
web counterpart, and if the application requires the usage of hardware features such
as camera or accelerometer, the support for those in web applications is not mature
enough at this point.

The similarity between web and mobile applications has also led to some misconcep-
tion about mobile development. Those not familiar with native mobile development
may think that a mobile app only needs to be written once, and can then be released
for all platforms. This is traditionally not true for mobile applications and even in
the case of cross-platform development, not everything can be shared.

2. Mobile Application Development 4

The spectrum of software, that you can use on a smartphone goes from fully custom-
built and polished native applications all the way to generic responsive web appli-
cations. Cross-platform technologies are not all the same but most fall somewhere
between the two extremes.

5

3. MOBILE DEVELOPMENT USING NATIVE

TECHNOLOGIES

Native mobile application development refers to the traditional way of developing
applications, using the platforms’ native programming languages and software ar-
chitectures to write codebases that are then compiled to truly native applications.
While this method has been used since the inception of smartphones, the tools and
technologies have evolved over the years. For Android the native programming lan-
guage used to be Java or C++[6] but since 2017 Android has also supported the
much younger Kotlin[8]. Objective-C was the only language for iOS development[7]
until 2014, when Apple introduced their programming language Swift to the pub-
lic[9].

Native app development forces developers not only to learn and use the native
programming languages, but it also steers the developers to use the recommended
software architecture of each platform. For iOS the recommended architecture is
Model-View-Controller (MVC), while Android applications generally use Model-
View-ViewModel (MVVM) architecture.[6, 7] As a consequence, the native code-
bases have very little in common with each other, and often knowing one codebase
offers very little help in understanding the other.

The strongest argument for the power of native mobile development is user expe-
rience. Since developers are writing native code, they can utilize the native APIs
(Application Programming Interfaces) and support libraries of the platforms, as well
as create their user interface (UI) layouts using the native UI components provided
by the platform. As a result, the sought-after native look and feel is relatively easy
to achieve when using native development technologies.

The biggest issue with native application development is, of course, the separate
codebases. Developing the same application for multiple platforms requires knowl-
edge of the platform-specific development methods, design guides and technologies.
Developing and maintaining native mobile applications for multiple platforms is
comparable to running multiple individual software projects at the same time, so
often more developers and other project personnel are required compared to a single

3. Mobile Development Using Native Technologies 6

application project. This increases both the cost of the development as well as the
maintenance as the number of supported platforms increases.

7

4. CROSS-PLATFORM MOBILE

DEVELOPMENT TECHNOLOGIES

Cross-platform development in general refers to the act of developing platform-
independent software. This kind of software can be run on multiple devices and
operating systems and should function the same way regardless of the environment
it is being run in.

Cross-platform development in a mobile context has existed for almost as long as
smartphones themselves. The original iPhone was released in 2007[10] and the
first cross-platform frameworks for mobile development were released in the early
2008[11]. However, most of the early cross-platform development technologies for
mobile applications were different kinds of wrappers for web applications, allowing
software that is written in HTML, CSS and JavaScript to be run as an individual
application.[11] This approach has many disadvantages which will be discussed in
more detail in Section 4.1.

Later on more modern development technologies started to emerge, allowing de-
velopers to create cross-platform mobile applications which resembled their native
counterparts much better. The need for a native user experience is just as strong
in cross-platform applications as native applications, so the developers still need to
be familiar with the platforms they are working with. An argument could be made
that cross-platform developers do not need such a deep knowledge of each platform
as native developers, but some platform-specific development has to be done if the
goal is to obtain a native user experience.

Cross-platform applications can be categorized in different ways based on how they
were developed. One study on the approaches of cross-platform development, pub-
lished in 2012, divides cross-platform mobile applications into four primary cate-
gories: mobile web applications, hybrid applications, cross-compiled applications,
and interpreted applications[12]. These categories were further refined in the thesis
by Niclas Hansson and Tomas Vidhall in 2016[4]. Mobile web applications were
already discussed in Chapter 2 and will not be included in this chapter. Developent
frameworks using the latter three approaches will be examined in more detail. It is

4.1. Hybrid Development Frameworks 8

worth noting that native scripting frameworks is the modern term for interpreted
frameworks as the term is more descriptive[4].

4.1 Hybrid Development Frameworks

Hybrid frameworks are a collection of web-based development technologies. The
major difference between a pure web application and a hybrid application is that
while a web application will always be used via a web browser, the hybrid frameworks
produce applications which are always installed on the smartphone.[12]

The features and user interface of a hybrid application are developed with HTML,
CSS and JavaScript, much like any web application. The hybrid framework then
wraps the web application into a container that creates an installable application for
the different mobile platforms. Some hybrid frameworks act as a very thin wrapper
for the web application, offering no access to hardware features such as camera or
geolocation. This was especially true for the earliest cross-platform frameworks[11]
but most of the modern options allow the developer to utilize the devices’ hardware
features as well.

Almost all hybrid frameworks, such as PhoneGap, Apache Cordova and Ionic, have
the same drawback: the user experience. A mobile application is supposed to look
and feel native to the platform but this goal is extremely difficult to achieve when
ultimately you are developing a web application. Separate user interfaces could
certainly be developed for different platforms but this completely defeats the purpose
of cross-platform development. Code reuse becomes marginal and the performance
of the application will always be worse than a native application.[12]

Hybrid frameworks have not changed much throughout the years and still suffer
from the same disadvantages as they did in 2012. Since the user experience of
the application does not match the expectation set by the distribution channel,
applications that are developed with hybrid frameworks are often considered inferior
to pure web applications or more native approaches.[12, 4]

4.2 Cross-Compiled Native Frameworks

Cross-compiled native frameworks allow developers to write source code in a common
programming language, which is then compiled to native binaries for each platform
using a cross-compiler. The cross-compiler’s responsibility is to depict which native
user interface components and native platform features need to be used.[12] An

4.3. Native Scripting Frameworks 9

application developed with a cross-compiled framework can be very close to a fully
native mobile application, but exceptions do exist.

The main advantages of cross-compiled frameworks are performance and user ex-
perience. The user interface is rendered on each device using native components,
so the application will look native as long as the developers take platform design
guides into account. While no cross-platform framework can quite match the per-
formance of fully native applications, performance tests show that cross-compiled
frameworks achieve adequate performance in most situations and the application
will feel responsive.[13, 14]

Examples of cross-compiled frameworks are Microsoft’s Xamarin and Xamarin.Forms
and Google’s Flutter[15, 16]. Xamarin and Xamarin.Forms applications are written
in C# and a combination of C# and XAML respectively. Flutter applications are
written in Dart. Flutter is also an exception to other cross-compiled frameworks in
terms of the implementation of the user interface.

Flutter is a relatively new cross-platform framework with its initial release in 2017,
and it has just reached the first stable release of Flutter 1.0[17, 18]. The notable
difference between it and other cross-compiled frameworks is that Flutter does not
use any native user interface components to render its views. Instead it has a library
of widgets implemented by the Flutter team[16]. This allows Flutter to abstract the
components in the same way regardless of the platform since it is not relying on
platform-specific implementation and architecture. However, the drawback to this
approach is that the developers have to rely on the maintainers of Flutter to keep
all of their UI widgets up to date with the native counterparts.

Cross-compiled frameworks have matured over the years and some of the issues
noted in the studies made around 2012 no longer exist or have been mitigated to a
sufficient degree. The level of user interface abstraction has increased, and as such,
code reuse in user interfaces has become easier. Some native platform features have
been abstracted enough to allow code reuse as well, but more intricate features still
require platform-specific implementation.

4.3 Native Scripting Frameworks

Native scripting frameworks utilize an interpreter to execute written code during
runtime. Any scripting language can be used but most commonly modern frame-
works use a variant of JavaScript, the most popular language for developing web
applications.[4] Some examples of modern native scripting frameworks are Native-

4.3. Native Scripting Frameworks 10

Script and Facebook’s React Native, which this study focuses on.

Native scripting applications use the scripting language for their business logic and
user interface design but utilize the native platform user interface components for
rendering the application, and call native platform APIs for all possible features.
The advantages of this approach are similar to the advantages of cross-compiled
frameworks: the user interface will look native to the platform if designed properly,
and the performance of the application is very close to a native application. This
results in a user experience very close to that of native applications without the need
for a deep understanding of the platforms themselves.

The biggest drawbacks of native scripting frameworks are the scripting language
used and the implementation of native features. JavaScript and many other scripting
languages are not ideally suited for all use-cases due to their inherent features as
scripting languages, namely the dynamic characteristics and weak type definitions.
This will often lead to mistakes in code only being noticed at runtime, though
some of these issues can be solved using additional support libraries created for the
languages.

11

5. REACT NATIVE

React Native is a native scripting framework for cross-platform mobile development.
The framework was originally developed by Facebook and released in 2015 for iOS
only, but an active community has since added Android support and done many
other contributions to the open source project.[19]

React Native applications are developed using JavaScript, more precisely EcmaScript
2015 (ES2015 or ES6)[20]. EcmaScript is a superset of JavaScript, adding numer-
ous features to JavaScript and fixing some of the mistakes originally made in the
JavaScript specification. EcmaScript has also replaced pure JavaScript in modern
web applications, and all modern browsers support some version of it.[21] In addi-
tion to ES2015, React Native implements parts of the next version of EcmaScript,
ES2016 or ES7[20].

5.1 Architecture

The React Native application architecture consists of a JavaScript virtual machine,
the React Native bridge and native modules. This architecture is visualized in
Figure 5.1. The application code runs on the JS virtual machine along with any
third party libraries used. The native module calls are routed through React Native’s
bridge to the native APIs and the third party libraries, and the results are passed
back through the bridge if needed. This allows the use of JavaScript to develop
the application while still utilizing the native UI components and features of the
platforms.[19]

5.1. Architecture 12

React Native Bridge

Application code

3rd party npm packages 3rd party native libraries

JS virtual machine
(JavaScriptCore)

Native modules

Android - Java/Kotlin
iOS - Objective-C/Swift

Figure 5.1 React Native application architecture

It is worth noting that React Native is undergoing an architecture change at the
time of writing this thesis since React Native’s new Fabric architecture is under
development and will likely be released in 2019.[22]

The JavaScript application architecture is based on Facebook’s React, a component-
based framework for building interfaces for web applications. The basic element of a
React application is a component, which is an individual JavaScript class that always
renders a part of the user interface. The component may also receive properties
(known as props in React) and have an internal state. Multiple components are
then composed to create more complex user interfaces and data can be passed down
the component chain as props, from parent to child.[19]

Mutating data in a React application can be quite challenging, as the data flow
is unidirectional and the data needs to be mutated only at the highest level state
where it exists. The updated data then needs to be passed down as props to children
components. In pure React applications this is achieved through passing callback
functions to the children component as props. Then the child component can call a
callback function to mutate the data. As the parent component that has the highest
level state receives the callback, it will mutate the data and the updated data is
passed down to the children components automatically.[23] Other solutions exist in
the form of Node Modules provided by the Node Package Manager (npm). One of
the most popular Node Modules for handling application state and data mutation
is Redux, which provides a centralized state that any component can access and call
mutating functions on[24].

Neither React or React Native offer any solution to navigating between different
views in the application. Again, multiple Node Modules exist to solve navigation in
different ways but one of the most common is React Navigation[25]. React Naviga-
tion offers different types of navigation, such as stack navigation or tab navigation,
for different situations.

5.2. Native Features 13

5.2 Native Features

Most of the common native features are already implemented in React Native and
can be called from the JavaScript code directly. Sometimes though the developers
need to implement a more complex feature than the React Native APIs can pro-
vide, such as accelerometer tracking in a background process. In these situations
React Native allows developers to implement their own native functionality in much
the same way as React Native’s own implementation. A module is created with a
JavaScript interface that can be called within the application code. Platform specific
code is written for the module in the native programming language of each platform,
and React Native bridges the calls from JavaScript to the native modules.

14

6. COMPARING REACT NATIVE TO NATIVE

DEVELOPMENT

Due to the limited scope of this thesis a fully fledged comparison between React
Native and native development could not be made. Instead a small mobile applica-
tion was designed and developed with React Native. The development experience of
React Native and possible issues that occurred during the development is compared
to how those situations would have been solved in a native mobile application, or
whether the same issues would have existed at all.

The user experience of a React Native application is assessed both through the test
application as well as prior studies. The test application developed for this thesis
is fairly simple so no dramatic differences in the usability or performance would be
found compared to a native application.

6.1 Designing and Developing the Test Application

The concept for the test application was an application that lets users scan barcodes
from books, searches an online database for information about the book, converts
the information to a formatted citation, and lets the user share the citation as text
through whatever channel they find most convenient.

The basic requirements for the application were simple. When a user opens the
application, on the first startup the user is asked for permission to use the device’s
camera. The user can then navigate to the scanning view where a barcode can
be placed in the camera’s view using the camera viewfinder. Upon scanning a
barcode, the application lets the user confirm that the barcode is correct. If it
is, the application navigates to a searching view and starts searching the online
database for results matching the barcode. The searching view shows the status of
the search and the eventual results, allowing the user to choose which of the results
was correct. Once the user chooses one of the results, the application navigates to
a sharing view where it creates a formatted citation and allows the user to share it
via the Share API of the platform. The full navigation flow of the application can

6.1. Designing and Developing the Test Application 15

be seen in Appendix 1.

Some restrictions were set for the application before its development:

• The citation is formatted in BibTeX format which is supported by most ref-
erence management applications.

• The user is not allowed to edit the citation in the application because either
a very complex editing form would have to be developed, or the application
would run the risk of letting the user break the citation formatting.

• The online database used is Google Books, used via the Google Books API, be-
cause it is the most comprehensive free book database that has, what appeared
to be, a suitable API.

The main technology used for developing the application is React Native, but most
often developers add multiple third party libraries and tools to compliment React
Native and make the development easier. In this application the technology stack
was as follows:

• React Native for most of the application

• Redux library for controlling the state and passing the data and actions as
props to the components

• React Navigation library for creating the navigation flow

• Expo barcode scanner library

• Expo development tools for testing in a development environment

• TypeScript language and compiler for adding static type checking to JavaScript
code

The source code developed with this technology stack is far from pure React Native
but is also more indicative of a real world example of development with React Native.
Especially once the data that the application handles becomes non-trivial, many of
these libraries become crucial to avoiding mistakes in development.

The application development itself was done using agile methodology: small mod-
ules of the application were developed one at a time, first to a Minimum Viable

6.1. Designing and Developing the Test Application 16

Product (MVP), and then expanded as other modules of the application required
more features from them. As React Native facilitates very fast development and
test iterations, the prototyping was continuous, but the development process can be
divided into five larger milestones, and into corresponding prototypes which build
on the previous versions, listed below:

1. The main view with camera permission checking, navigating to the scanner
view and scanning a barcode

2. Scanning a barcode and letting the user confirm it, searching the Google Books
API

3. Searching view and navigating to it from the scanner view, searching the
Google Books API for the barcode, letting the user choose which result to
use, and creating the citation

4. Citation view and navigating to it, implementing the Share API, styling the
user interface for Android, and the first release build for Android

5. Customizing some styles for iOS, adding some graphics and finalizing the ap-
plication as far as this thesis is concerned, and a second release build for
Android. Release 1.0.

Android versions of the application were tested on a device and APK (Android
Application Package) packages were built to install the application on multiple de-
vices. The iOS versions were tested in emulators but no test device was available.
No IPA (iOS App Store Package) package was built either because Apple requires
a paid subscription to their developer program to be able to build and sign IPA
packages[26].

The Google Books API turned out to be more difficult to work with than what it
initially seemed like. The major drawback of the API is that it does not guarantee
the existence of any of the information vital to the mobile application’s functionality.
For example, the author information of some books did not exist in the data returned
by the API even though the corresponding Google Books web page clearly showed
it.[27] This meant the information from the API could not be relied on for creating
the citations, and instead the citations had to be fetched from a separate API that
Google uses in their own Books service for exporting citations. All issues with
Google Books could have been avoided by switching to a more suitable API like the
one provided by ISBNdb[28], but unfortunately no freely available APIs seemed any
better.

6.2. Development Experience 17

The source code of the application is published as an open source GitHub repos-
itory[29] and the state of the code at the end of this thesis is marked by the 1.0
release tag[30].

6.2 Development Experience

It is very easy to set up the development environment using Expo’s tools, and it is
equally easy to get the development version of the application to a test device or an
emulator. Getting the initial "Hello world" application running is a quick process
but installing all of the supporting npm libraries and getting them to work in the
application takes much more effort.

Developing an application with React Native is characterized by fast prototyping.
It seems like many of the advantages of the framework are centered around making
the testing of an updated application easier and faster. One of the major selling
points of React Native and many other native scripting frameworks is live reloading,
also known as hot reloading. During the development of the application, a device or
an emulator is connected to a development server running the application. When-
ever one of the JavaScript source code files is changed, the development server will
rebundle the JavaScript code and send it to the device, and the device reloads the
application with the updated code immediately. This reduces the amount of time
spent on waiting for a build to complete in order to test a new change, but it also
encourages the developer towards using a trial-and-error development style where
the application is rebuilt after every small change. This can be a good or a bad
effect of the feature.

Facebook and many other cross-platform technology developers market their frame-
works with a slogan that can be summarized as "learn once, write everywhere".
This means the developer should only need the knowledge of one programming lan-
guage to write a mobile application. This claim seems to be true at least in the case
of the test application and other applications of similar complexity. Unless native
components need to be developed, React Native applications can be written purely
in JavaScript which may make this technology appealing to web developers who are
looking to get into mobile development.

Another major question, and one that has even more significance to the financial
viability of cross-platform mobile development, is code reuse. Facebook claims that
about 75% of React Native code can be shared across platforms even when devel-
oping mobile applications that are designed to perform as natively as possible[20].
In the test application the code reuse is excellent because the platform-specific code

6.2. Development Experience 18

had to be written for only one out of five UI components, and the business logic
of the application, essentially all logic and data processing, is fully shared. Niclas
Hansson and Tomas Vidhall found in their research that this claim can be considered
true or false depending on how we look at the phrasing. In their entire project 62%
of the code was shared but if we look at the Android and iOS versions as separate
applications, over 75% of the code used for each platform was shared across plat-
forms.[4] If a similar web application was to be developed using the Redux library
for state management, the business logic could be shared across projects since it is
in no way bound to the user interface layer, which can be regarded as a bonus

The most interesting part of the project and one that can tell much more about React
Native in general, was implementing the barcode scanner. Initially this was thought
to be the biggest challenge of the project but doing more research on the subject, it
seemed like Expo already has a working library that implements exactly what was
needed. The Expo library was used and in the end the barcode scanner turned out
to be one of the easiest features of the application in terms of implementation.

The barcode scanner also reveals what can be considered a strength or a flaw in React
Native’s design, namely the reliance third party libraries. The barcode scanner was
easy to implement because Expo had already developed a well-working library for
this purpose and published it as open source. If this was not the case, native modules
would have had to be developed for both iOS and Android to be able to use the native
features and as such the project would have required the knowledge of at least three
different programming languages: JavaScript for React Native, Swift or Objective-C
for iOS, and Java or Kotlin for Android. The difficulty is further increased because
knowledge of each platform’s preferred method for barcode scanning would also be
needed. Not only that, creating a module like this would also require knowledge
of React Native’s architecture. This would immediately negate one of the largest
strengths of the cross-platform technologies.

Other issues that come up when using third party libraries are maintainability and
lifespan. Apple and Google always keep their Source Development Kits (SDKs) up to
date with the latest operating system versions, and they release developer previews
before a major operating system update so that the native application developers
are able to keep their software up to date. With cross-platform technologies we do
not only expect Apple and Google to do this, but we also trust the cross-platform
authors to keep their frameworks up to date, and we trust the third parties to keep
their libraries up to date. Sometimes this does not happen, and when a major
update hits the consumers, the applications will stop working until somebody else
has fixed the issues within their library or framework. This happened with React

6.3. User Experience 19

Native and Android 8.0 (Oreo) in 2017 so it is not just a hypothetical threat[31].
Matias Martinez and Sylvain Lecomte also discovered these issues in their research
on the quality of cross-platform applications[5].

Third party libraries may also be using deprecated features to achieve what they
want, such as barcode scanning. Expo has done well in this regard, and their
BarCodeScanner library uses the newest Google Machine Vision API and Apple
AVFoundation to do their scanning[32], but developers can only hope that Expo
continues the maintenance and implementation of new APIs in the future, too.
Third party libraries using deprecated features can become a major issue during an
operating system update, since these features may be removed.

6.3 User Experience

It is not that difficult to achieve a native look and feel in a React Native application.
One important factor in this is that the JavaScript code usually only describes the
layout of the view, and React Native uses the native UI components to render
the application. It is also easy to add platform-specific styling when it is needed.
The largest potential difficulty comes from components where the platform-specific
implementations differ greatly, even with the abstraction provided by React Native.
The Picker and DatePicker are examples of such components which require the
parent component to use a different layout depending on the platform[20].

6.3.1 User Interface

The user experience of the test application is on par with natively developed ap-
plications. The user interface feels responsive and fits to the overall style of the
platform. The layouts of the views follow each platform’s design guides relatively
well and the smaller components of the application, such as buttons or lists, also
look and feel native.

6.3. User Experience 20

(a) (b)

Figure 6.1 The citation view of the test application for Android (a) and iOS (b)

In Figure 6.1 one can see the slight differences in the user interface for Android and
iOS. The biggest difference is the share-button, which does have platform-specific
styling, but it is internal to the custom button component. No other part of the
application needs to be aware of the platform in order for the button to render
properly.

Hansson and Vidhall also found that the React Native application and the native
applications which they developed for their study had very similar user experiences
and no significant differences were observed[4]. This is an expected result as long
as we pay sufficient attention to the user interface and platform style during the
development. As with the native development technologies, React Native does not
guarantee a good user experience and it is still up to the designers and developers
to create an application that feels like a natural part of the platform.

6.3. User Experience 21

6.3.2 Performance

From the user’s perspective the test application is slightly slow to start, but once the
application is running, all actions feel snappy and quick on a modern smartphone.
No noticeable dips in performance were observed during the testing but the test
application is not complex, and a larger application might reveal more issues with
the performance.

The final APK file was 20,4 megabytes which is fairly large for an application of
this scale. Initially this was thought to be caused by the added graphics but this
was not the case; earlier APK builds without the graphics were almost of the same
size. This is an area where the native application definitely surpasses all the others,
because React Native applications have to contain all of the used JavaScript code,
libraries included, as well as a JavaScript runtime.

More accurate testing needs to be done to determine how the performance of React
Native compares against native applications, but due to the limited scope of this
thesis, performance testing was not included. Hansson and Vidhall tested their
React Native application and identical native applications for performance, and the
findings of this study largely correlates with what they discovered. CPU usage is
consistently higher in the React Native application but memory usage and response
time are almost equal to the native applications, sometimes even slightly better.[4]

22

7. CONCLUSIONS

Overall the results of the study look promising for React Native. All of the main
goals for the developed application were achieved and, the final result had the look
and feel of a native application. However, is seems that further research still needs to
be done before solid conclusions can be drawn for cross-platform mobile development
as a whole. The development technologies continue to evolve at a rapid pace as well,
so much of the past research becomes outdated with time.

Many facets of application development were not discussed at all within this thesis
but they are still significant factors for successful development projects. These
include testing in the form of unit testing and automated UI testing, publishing
a cross-platform application, and automating the building, testing and publishing
processes.

Based on the results React Native, and cross-platform mobile technologies in general,
can be a viable option to developing native mobile applications. Certain require-
ments do not change, and it is still the designers’ and developers’ responsibility to
create the native user experience for each platform, and as such, mobile develop-
ment still requires knowledge of the specific user experience and design guidelines
for each platform. Developing the application by using cross-platform technologies
can make the development process easier and less time consuming in some ways,
and the maintainability of the application should also increase due to code reuse.

Even though cross-platform technologies may be a viable option for mobile develop-
ment, based on this study alone it is unclear when they have a clear advantage over
native development. In simple applications the differences in development time and
maintainability are not significant, and in more complex applications the increased
abstraction might not offer any benefits to the developers. In fact, in some cases,
when we need to implement a lot of platform native features to the application,
cross-platform technologies might only act as a hindrance to the progress of the
application.

Surprisingly it seems like the largest potential issue for React Native and similar

7. Conclusions 23

technologies comes from maintainability. In a React Native project one not only
relies on Google and Apple to keep their own SDKs up to date, one also relies on
the whole group of third party organizations and people to keep their frameworks,
libraries and tools up to date as well. This is not a problem when everything works,
and the open source community has definite strength in that regard. The real issues
appear when even one of the third party frameworks, libraries or tools is dropped
from the support and maintenance.

24

BIBLIOGRAPHY

[1] N. McDonald, We Are Social: Digital in 2018, Jan. 2018, Available (ac-
cessed 17.11.2018): https://wearesocial.com/us/blog/2018/01/global-
digital-report-2018.

[2] L. Sydow, S. Cheney, App Annie 2017 Retrospective, Jan. 2018, Available
(accessed 17.11.2018): https://www.appannie.com/en/insights/market-
data/app-annie-2017-retrospective/.

[3] IDC, Smartphone OS Market Share, 2018, Available (accessed 15.11.2018):
https://www.idc.com/promo/smartphone-market-share/os.

[4] N. Hansson, T. Vidhall, Effects on performance and usability for cross-platform
application development using React Native, PhD thesis, 2016.

[5] M. Martinez, S. Lecomte, Towards the Quality Improvement of Cross-Platform
Mobile Applications, 2017 IEEE/ACM 4th International Conference on Mobile
Software Engineering and Systems (MOBILESoft), May 2017, pp. 184–188.

[6] Google, Android Developer Documentation, Available (accessed 3.11.2018):
https://developer.android.com/index.html.

[7] Apple, iOS Developer Documentation, Available (accessed 3.11.2018): https:
//developer.apple.com/.

[8] J. Titus, Google I/O 2017: Empowering developers to build the best experi-
ences across platforms, May 2017, Available (accessed 4.11.2018): https:
//android- developers.googleblog.com/2017/05/google- io- 2017-
empowering-developers-to.html.

[9] Apple, Swift Has Reached 1.0, Sept. 2014, Available (accessed 4.11.2018):
https://developer.apple.com/swift/blog/?id=14.

[10] Apple, Apple Reinvents the Phone with iPhone, Jan. 2007, Available (ac-
cessed 16.11.2018): https://www.apple.com/newsroom/2007/01/09Apple-
Reinvents-the-Phone-with-iPhone/.

[11] G. Hartmann, G. Stead, A. DeGani, Cross-platform mobile development, Mo-
bile Learning Environment, Cambridge, Vol. 16, Iss. 9, Mar. 2011, pp. 158–
171.

[12] C. P. R. Raj, S. B. Tolety, A study on approaches to build cross-platform
mobile applications and criteria to select appropriate approach, 2012 Annual
IEEE India Conference (INDICON), ID: 1, 2012, pp. 625–629.

https://wearesocial.com/us/blog/2018/01/global-digital-report-2018
https://wearesocial.com/us/blog/2018/01/global-digital-report-2018
https://www.appannie.com/en/insights/market-data/app-annie-2017-retrospective/
https://www.appannie.com/en/insights/market-data/app-annie-2017-retrospective/
https://www.idc.com/promo/smartphone-market-share/os
https://developer.android.com/index.html
https://developer.apple.com/
https://developer.apple.com/
https://android-developers.googleblog.com/2017/05/google-io-2017-empowering-developers-to.html
https://android-developers.googleblog.com/2017/05/google-io-2017-empowering-developers-to.html
https://android-developers.googleblog.com/2017/05/google-io-2017-empowering-developers-to.html
https://developer.apple.com/swift/blog/?id=14
https://www.apple.com/newsroom/2007/01/09Apple-Reinvents-the-Phone-with-iPhone/
https://www.apple.com/newsroom/2007/01/09Apple-Reinvents-the-Phone-with-iPhone/

BIBLIOGRAPHY 25

[13] Altexsoft, Performance Comparison: Xamarin.Forms, Xamarin.iOS, Xamarin.Android
vs Android and iOS Native Applications, Aug. 2017, Available (accessed
18.11.2018): https://www.altexsoft.com/blog/engineering/performance-
comparison-xamarin-forms-xamarin-ios-xamarin-android-vs-android-
and-ios-native-applications/.

[14] K. Bircan, Cross-Platform Mobile App Development with Flutter — Xam-
arin — React Native: A Performance Focused Comparison, Nov. 2017, Avail-
able (accessed 18.11.2018): https://medium.com/@korhanbircan/cross-
platform - mobile - app - development - with - flutter - xamarin - react -
native-a-performance-focused-a4457bcbdacc.

[15] J. Peppers, G. Taskos, C. Bilgin, Xamarin: Cross-Platform Mobile Application
Development, Packt Publishing, Birmingham, UNITED KINGDOM, 2016.

[16] Google, Flutter documentation, Available (accessed 18.11.2018): https://
flutter.io/.

[17] S. Ladd, Announcing Flutter beta 1: Build beautiful native apps, Feb. 2018,
Available (accessed 18.11.2018): https : / / medium . com / flutter - io /
announcing-flutter-beta-1-build-beautiful-native-apps-dc142aea74c0.

[18] T. Sneath, Flutter 1.0: Google’s Portable UI Toolkit, Dec. 2018, Available
(accessed 21.12.2018): https://developers.googleblog.com/2018/12/
flutter-10-googles-portable-ui-toolkit.html.

[19] V. Novick, React Native - Building Mobile Apps with JavaScript, Packt Pub-
lishing, Birmingham, UK, 2017.

[20] Facebook, React Native Documentation, Available (accessed 3.11.2018): https:
//facebook.github.io/react-native/index.html.

[21] E. International, ECMAScript R© 2018 Language Specification, June 2018, Avail-
able (accessed 21.12.2018): https://www.ecma-international.org/ecma-
262/9.0/index.html.

[22] N. Parashuram, Chain React 2018 - React Native Fabric Architecture, Avail-
able (accessed 27.11.2018): http://blog.nparashuram.com/2018/07/
chain-react-2018-react-native-fabric.html.

[23] Facebook, React Documentation, Available (accessed 21.12.2018): https:
//reactjs.org/docs.

[24] Redux Documentation, Available (accessed 21.12.2018): https://redux.
js.org.

[25] React Navigation documentation, Available (accessed 23.11.2018): https:
//reactnavigation.org.

https://www.altexsoft.com/blog/engineering/performance-comparison-xamarin-forms-xamarin-ios-xamarin-android-vs-android-and-ios-native-applications/
https://www.altexsoft.com/blog/engineering/performance-comparison-xamarin-forms-xamarin-ios-xamarin-android-vs-android-and-ios-native-applications/
https://www.altexsoft.com/blog/engineering/performance-comparison-xamarin-forms-xamarin-ios-xamarin-android-vs-android-and-ios-native-applications/
https://medium.com/@korhanbircan/cross-platform-mobile-app-development-with-flutter-xamarin-react-native-a-performance-focused-a4457bcbdacc
https://medium.com/@korhanbircan/cross-platform-mobile-app-development-with-flutter-xamarin-react-native-a-performance-focused-a4457bcbdacc
https://medium.com/@korhanbircan/cross-platform-mobile-app-development-with-flutter-xamarin-react-native-a-performance-focused-a4457bcbdacc
https://flutter.io/
https://flutter.io/
https://medium.com/flutter-io/announcing-flutter-beta-1-build-beautiful-native-apps-dc142aea74c0
https://medium.com/flutter-io/announcing-flutter-beta-1-build-beautiful-native-apps-dc142aea74c0
https://developers.googleblog.com/2018/12/flutter-10-googles-portable-ui-toolkit.html
https://developers.googleblog.com/2018/12/flutter-10-googles-portable-ui-toolkit.html
https://facebook.github.io/react-native/index.html
https://facebook.github.io/react-native/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
http://blog.nparashuram.com/2018/07/chain-react-2018-react-native-fabric.html
http://blog.nparashuram.com/2018/07/chain-react-2018-react-native-fabric.html
https://reactjs.org/docs
https://reactjs.org/docs
https://redux.js.org
https://redux.js.org
https://reactnavigation.org
https://reactnavigation.org

BIBLIOGRAPHY 26

[26] Apple, Code Signing, Available (accessed 23.11.2018): https://developer.
apple.com/support/code-signing/.

[27] Google Books API documentation, Available (accessed 23.11.2018): https:
//developers.google.com/books/.

[28] ISBNdb API documentation, Available (accessed 21.12.2018): https://
isbndb.com/apidocs.

[29] M. Kuitunen, GitHub: refgen-app, Available (accessed 20.11.2018): https:
//github.com/kulmajaba/refgen-app.

[30] M. Kuitunen, GitHub: refgen-app release 1.0, Nov. 2018, Available (accessed
20.11.2018): https://github.com/kulmajaba/refgen-app/releases/tag/
1.0.

[31] A. Jack, React Native pull request #15601, Aug. 2017, Available (accessed
23.11.2018): https://github.com/facebook/react-native/pull/15601.

[32] Expo v30.0.0 documentation, Available (accessed 23.11.2018): https://
docs.expo.io/versions/v30.0.0/.

https://developer.apple.com/support/code-signing/
https://developer.apple.com/support/code-signing/
https://developers.google.com/books/
https://developers.google.com/books/
https://isbndb.com/apidocs
https://isbndb.com/apidocs
https://github.com/kulmajaba/refgen-app
https://github.com/kulmajaba/refgen-app
https://github.com/kulmajaba/refgen-app/releases/tag/1.0
https://github.com/kulmajaba/refgen-app/releases/tag/1.0
https://github.com/facebook/react-native/pull/15601
https://docs.expo.io/versions/v30.0.0/
https://docs.expo.io/versions/v30.0.0/

APPENDIX 1. NAVIGATION FLOW OF THE

TEST APPLICATION

(a) (b)

Figure 1 (a) Splash screen (b) Home view

Appendix 1. Navigation Flow of the Test Application

(a) (b)

Figure 2 (a) Scanning view, (b) Search view

Appendix 1. Navigation Flow of the Test Application

(a) (b)

Figure 3 (a) Citation view, (b) Share feature

	Introduction
	Mobile Application Development
	Mobile Development Using Native Technologies
	Cross-Platform Mobile Development Technologies
	Hybrid Development Frameworks
	Cross-Compiled Native Frameworks
	Native Scripting Frameworks

	React Native
	Architecture
	Native Features

	Comparing React Native to Native Development
	Designing and Developing the Test Application
	Development Experience
	User Experience
	User Interface
	Performance

	Conclusions
	Bibliography
	Appendix 1. Navigation Flow of the Test Application

