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In this thesis work, we present a highly-optimized numerical simulation framework for
performing transport calculations in a non-interacting equilibrium. The algorithm has
been designed in accordance with the Landauer-Biittiker approach to quantum transport.
We outline the algorithm and demonstrate its flexibility and versatility in three different
transport scenarios: a single state molecular junction, a two-state molecular junction and
a nanocavity with a potential barrier. We study transmission, conductance, and current
flowing through these systems. The behavior of the numerical results of the transport
simulations has been found to be in good agreement with the theory. We motivate the usage
of the algorithm implemented in the TINIE software package in the context of quantum
scarring phenomena and non-zero uniform magnetic fields.
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1. INTRODUCTION

The pursuit of empirical truth by means of scientific research and investigation has always
been one of the most fruitful and insightful endeavors of mankind. Advancements in science
lead to the creation of new technology. New technology facilitates everyday tasks and
routines, leading to societal changes. Most importantly, scientific knowledge reshapes the
way we think about the world and reality on both the largest and the smallest of scales. In
that respect, the past century has provided us with new revelations and paradigm shifts. For
instance, the twentieth-century developments in quantum theory shattered the deterministic
approach to physics that was dominant in the past. Quantum physics describes the universe
and its constituents in terms of wave functions: entities that give the probability of some
event happening, but never guarantee its measurable occurrence. Indeterminism is an
inherent feature of this theory.

Quantum mechanics allows for some effects that would otherwise be considered impossible
in classical physics. For example, there is a possibility of an electron funneling through a
barrier that it would normally be unable to surpass. The idea of quantum tunneling will be
crucial in this thesis. One of the main reasons why quantum effects have not been observed
until the preceding century was due to the fact that they only reveal themselves on the
nanometer scale and below. On the macroscale the world can be treated as approximately
classical.

Quantum theory is nowadays more crucial to advancements in various fields of technology
than ever before. Of particular interest to us is its contribution to the integrated circuit
industry. Computers are made of integrated circuits, which are in turn made of transistors
that act as the “tracks”, through which the electrons in the computer flow, carrying binary
data. The exponentially increasing computational power of the subsequent generations of
computing machines has been governed by Moore’s law ever since the 1960s. According
to Moore’s law, the amount of transistors in a dense integrated circuit doubles every two
years [1]. However, now there is a need for a revolution in the field of computing.

As the transistor sizes now approach only a few nanometers, the behavior of electrons in a
transistor can no longer be thought of as classical. Hence, we are tasked with incorporating
the quantum mechanical properties of the electron in the field of transistor manufacture.
Transistors are the fundamental building blocks of modern computers. Thus, the develop-
ment of the nanoscale transistor technology and its subsequent use in the integrated circuit
industry have led to the emergence of quantum computing.

As mentioned above, electrons confined to a small region of space, such as a nanoscale
transistor, have a probability to tunnel outside of the system. Our task in designing quantum
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transistors is to find a way to maximize the probability of an electron going from one system
to another and not tunneling in unwanted regions leading to loss of fidelity. We thus turn our
attention to the field of quantum transport that studies the formation of current in nanoscale
systems. Studies on the transport properties of nanoscale transistors or nanocavities in
general can provide us with insights into the ways the electron flow may be controlled at
the smallest scale. Such knowledge is crucial in the development of nanotechnology.

In this thesis we investigate electron transport in two-dimensional systems utilizing a
numerical transport simulation software package TINIE, that has been developed throughout
the course of this study. In particular, we intend to demonstrate TINIE’s functionality, as
well as the potential it has as a transport code to simulate quantum dynamics. Chapter 2
outlines the essential theory behind quantum transport phenomena, the typical structure of
a transport experiment, and the Landauer-Biittiker approach to quantum transport. Chapter
3 goes into the details of TINIE’s main algorithm and features, as well as the description
of the systems to be numerically simulated. Chapter 4 presents the results and analysis of
the performed numerical simulations. The thesis is then concluded in Chapter 5.



2. THEORETICAL BACKGROUND

We begin by making a distinction between transport phenomena in nanoscale systems
and transport in mesoscopic or microscopic systems. The fundamental difference is that
nanoscale transport is based on quantum physics [2]. Additionally, as we are concerned
entirely with the behavior of electrons in the nanocavity, we restrict the scope of our problem
to the study of electron transport. In quantum mechanics, electrons are described by wave
functions v (r, ). The current is mathematically described by means of an operator I that
acts on the wave function.

Wave functions have the property called phase. An interaction between waves with different
phases leads to a process of interference, which can be either constructive or destructive.
When studying transport systems with real-life applications, normally we are interested in
the coherent transport: transport processes that do not alter the phase of the charge carriers

[3].

The field of transport is rich in different theories describing transport phenomena from
various perspectives. However, they can be grouped into two main approaches:

1. The electrical current is a consequence of an applied electric field: the field is the
cause and the current is a response to this field. Drude conductivity model [4], Kubo
formalism [S5] and the Boltzmann equation [6] are the key theories in this approach.

2. The electric field is a consequence of the charge carrier pileup on the surface of the
conductor induced by the carrier flow through that surface: the current is the cause
and the field is a response to current. This approach is usually referred to as the
Landauer-Biittiker formalism [7].

In order to proceed in our investigation of transport phenomena, we must first choose
which of the two approaches to use, since both describe the same physical phenomena, but
from different standpoints. We will be using the Landauer-Biittiker approach for the rest
of this thesis work. Sec. 2.3 will discuss the theory behind it, as well as the underlying
assumptions.

To summarize, we have so far made the following assumptions regarding the transport
process to narrow the scope of our problem:

1. The charge carriers are electrons exclusively;

2. The transport system is on a nanoscopic scale;

3. The transport process in the system is coherent;

4. The transport process in the system is described by the Landauer-Biittiker formalism.
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2.1 Structure of a transport experiment

Lead o Lead

HLQ; {Z/JLa,i} Coupl'mg',; HLm {wLﬂ,i}
— —_— region o | © —_— B
Va €,w Va Vﬁ e,

Figure 2.1. Typical two lead transport system of temperature 'I' with chemical potential
p. Leads have different bias potentials V,, and Vi, leading to emergence of current 1. We
examine the behavior of current with varying energy w of the probe electrons. In the center
we see a typical probability density function corresponding to one of the central region
eigenstates.

A typical electronic transport experiment in a semiconductor system consists of a two-
dimensional electron gas (2DEG) confined to a small nanocavity region by an external
potential and two or more charge reservoir regions that can supply and receive an arbitrary
amount of carriers without changing its internal state.

We may interpret this as follows: the nanocavity is constantly supplied by a flux of electrons
through the reservoirs that act as leads connected (or coupled) to the ends of the cavity.
There are many various conventions regarding the naming of the nanocavity region e.g.,
quantum dot, device, central region. These terms are interchangeable, so for the sake of
convention, from now on we will refer to the nanocavity region as the central region or
center. Similarly, reservoir regions have many names e.g., leads or electrodes. In this thesis,
they are referred as the lead regions or leads.

The current can be generated by introducing a bias voltage into one of the leads. This
results in a non-zero potential energy difference between the two (or more) leads, leading
to the formation of current. Under specific assumptions that are outlined in Sec. 2.3, this
bias can be interpreted as the electrochemical potential difference . between the leads [2].
We can then experiment with this system by letting electrons with a specific probe energy
w flow through the center.

By varying the probe energy, we can examine the dependence of the transport properties
on the energy of incoming electrons. In particular, we are interested in transmission and
current. The transmission is defined as the probability of an electron with specific probe
energy to move from one lead, through the center, and into another lead. The current is
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defined as the rate of charge flow from one lead to another. Figure 2.1 illustrates a typical
set-up of a transport experiment with two reservoirs.

2.2 Quantum mechanical description

Before describing the Landauer-Biittiker approach, we shall first outline the mathematical
description of the central region, the lead regions and the region where they overlap, which
is called the coupling region. We start by considering closed systems that do not interact
with their surroundings. Any closed quantum mechanical system at any given point can be
described by the Schrodinger equation:

Hip,(r) = By (x), @.1)

where H is the Hamiltonian of the system and E; is the energy corresponding to the state
1, (r). An arbitrary state of the system can then be described in terms of this set:

Y(r) = cy(x), (2.2)

(2

where ¢, are arbitrary complex number coefficients such that |ci|2 corresponds to the
probability of the occurrence of state v, (r).

Each lead can be described by its Hamiltonian H 1, and the corresponding sets of eigen-
functions {1, ,(r)}, where the index L, corresponds to the lead c. Likewise, we describe
the central region by its Hamiltonian H_, and its set of eigenfunctions {te ;(r)}.

To complete our description of the transport system, we need to take into the account
the transition of the electron from the reservoir to the center and vice versa. This is
accomplished by means of computing the coupling matrices between the lead states and
the states of the central region. From now on we adopt the Hartee atomic unit convention.
We use the coupling of the form:

~ 1
Vol = / dr g (r) [—§V2 + Voor (1) 205(r), (23)
Q
where Va is the coupling matrix between the lead o and the central region, V,, (r) is the

potential operator describing the central region and (2 is the region where the lead and
center overlap.

As a summary, to fully describe a transport system, we need the following:

« Central region described by Hamiltonian H, and wave functions {te ()}
* Lead regions described by Hamiltonians H 1, and wave functions {¢; ,(r)};

* Coupling regions described by coupling matrices f/a.
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2.3 Landauer-Biittiker approach to quantum transport

As mentioned above, the Landauer-Biittiker formalism is based on the idea that the electric
field is a consequence of carrier flow. However, this is not the only assumption of the theory.
In the theoretical considerations below we follow Refs. [2, 3, 7]. Before we can proceed,
we shall outline all the other assumptions:

1. The transport system is an open quantum system, i.e., a system where electrons
coming into the lead are completely uncorrelated with electrons going out of it. In
such a system, the bias energy is the electrochemical potential difference between the
leads, as mentioned in Sec. 2.1.

2. The transport system possesses a unique stationary solution, i.e., an equilibrium that
it will attain after a sufficiently long period of time.

3. The electrons in the transport system obey scattering boundary conditions. They are
prepared into wave packets far from the quantum dot. These wave packets then move
towards the center through the lead regions, scatter in the center and then move far
away from it without further scattering.

4. The Hamiltonian of the system can be described by a single particle Hamiltonian of
the form H = —1V? + V().

5. The leads do not interact with each other. This means that the energy filling of a lead
is independent from energy filling of any other lead in the system. Hence, we can
describe the energy distribution in each lead using their local equilibrium Fermi-Dirac
distributions.

Finally, the Landauer-Biittiker formalism in its complete form describes time-dependent
non-equilibrium transport [2]. Before the current reaches a steady state (a point where the
time average of the current operator <f ) becomes constant), it undergoes a complex process
of fluctuation and change, governed by the time-evolution of a statistical operator p(t). We
will not examine this complex behaviour. Instead, we assume that we have already reached
the steady state after some long period of time, thus dealing with a time-independent
non-interacting equilibrium transport problem. Now we can describe the mathematics

underlying the formalism.

At the core of the Landauer-Biittiker approach is the process of electron scattering. Scatter-
ing can be defined as the change of the momentum of the electron due to its interaction
with the medium in which it propagates. The scattering properties of a transport system
can be elegantly described in terms of a scattering matrix, or S-matrix. Given a transport
system with a total number of states in all the leads equal to Ng, S-matrix S € CNs*Ns
is a matrix such that the electron transmission probability 7T, ; from state 7 to a state j is
Ti;= ‘S - j|2. Similarly, to calculate the electron transmission probability T, 5 from a lead

7

a to a lead (3, we sum over all the possible state transitions belonging to these leads [3]:

Tos =Y Ti (24)

i€ jep
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For the sake of convenience, the Latin indices correspond to individual states in the lead,
whereas the Greek indices are related to the entire lead. We see that the transmission matrix
T € RNe*Ne where N 1, 1s the total number of leads, is readily obtained from the S-matrix.
Furthermore, S is unitary due to the law of conservation of current, which in turn makes 7
symmetric [3].

In essence, the S-matrix describes a response in one lead due to an excitation in the other.
Naturally, for a more thorough analysis of the transport system we would want to know the
response at any point r due to an excitation at any other point r’. Such a generalization
of the S-matrix exists in the form of Green functions [3]. It is applied in many different
contexts in both physics and mathematics, but we will focus on its use in the context of
electron transport. We start by noting that Eq. (2.1) can be re-written as

[E — H] Y(r) =0, (2.5)

where H is the total Hamiltonian of the transport system. This Hamiltonian is a linear
differential operator due to the single-electron approximation [2]. By the general theory of
differential equations this implies that there exists a Green function G(r,r”) such that [3]

~

[E—H|G(r,x') =16(r—1), (2.6)

where §(r —1’) is the Dirac delta function and 1 is the identity operator. The Green function
in this time-independent case can then be physically interpreted as the wave function at r
due to an impulse excitation originating from r’ [3]. However, when moving towards more
abstract eigenfunction bases, this meaning of Green function may be obscure. Since we
investigate the transport system by letting probe electrons go through it, energy F will be
the energy w of the probe electron. Hence,

Gw) = [w — ﬁ] - 2.7)

The Green function is an inverse of a differential operator, so in order to specify it uniquely,
we must specify the boundary conditions [2]. To that end, it is customary to define advanced
and retarded Green functions G4 and GE. In the real space, the former corresponds
to incoming waves that disappear at r’, while the latter corresponds to outgoing waves
originating at r’:

~ A ~-1 ~ ~ ~-1

GRw)=[wl—H+inl]  and GAw)= |wl—H—inl] (2.8)
where 7 is a positive infinitesimal number that defines the boundary condition. Since wl
and H are Hermitian, G*(w) = [éA (w)] "

In all the equations above, H is the total Hamiltonian of the transport system. However, in
Sec. 2.2, we only mention the Hamiltonians of the individual non-interacting systems. Thus,
in order to construct the total Hamiltonian, we also need to account for their interaction.
This interaction is described by the (embedding) self-energy operator. Scattering from the
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lead to the center may occur in an infinite number of ways: electron may freely propagate
through the lead into the central region, or it may scatter once during propagation, or
twice, etc. All of those possible scattering events for a lead « interacting with the central
region can be combined into a quantity called the self-energy operator ZA‘O( (w), which in a
time-independent case is broken down into advanced and retarded components similarly to
the Green function [3]:

~

SE(W) = VIGR(w)V, and ZA(w)=VIGA(W)V,. (2.9)

« [0}

. . = = T
In a manner, analogous to the Green function, it can be shown that X% (w) = [E&“ (w)] :
Once we know the self-energies, we can write the total Hamiltonian of the system as

H=H.+> %, (2.10)

This Hamiltonian allows us to compute the Green functions of the system open to the
electron transfer from the leads to the center and vice versa. Hence, we have effectively
transformed our closed lead and center regions into an open system!

Eigenenergies of the total Hamiltonian of the system as per Eq. (2.10) may be complex if
self-eneries are complex. If the original set of eigenenergies of the center region ¢, has
been shifted by &; + i(;, the time dependence of the eigenstate 1; of H is now of the form

[3]
P, (t) ~ exp(—i(e; — & —i(;)t) = exp(—i(e; — §;)t) exp(—(;t). (2.11)

We can see that an additional decay term has been introduced into the eigenfunctions,
reflecting the idea that an electron does not stay in the central region forever, as at one
point it will tunnel through it into one of the leads. The lifetime of an electron in the center
before it escapes into the lead « is goverened by a rate operator I L (w) [3]:

~

T,(w) =12 (w) — 4 (w)]. (2.12)

o

We may now obtain the expression for the transmission T, ; from lead « to lead 5 as a
trace over Green functions and rate operators [2, 3, 7]:

T op(w) = Tr [T, (w)GR(w) Ty(w)GA(w)] - (2.13)

Finally, we are able to obtain the current flowing across the central region. According
to the assumptions of the Landauer-Biittiker approach, the population of electron energy
states in each lead is independent of any other lead and may be described by a Fermi-Dirac
distribution:

-1
fep(E; Ep, T) = {exp(Ek_fF) + 1} . (2.14)
B

The partial current 7, 5 induced in lead « due to the electron flow from lead 8 may then be
calculated as follows [7]:

1
lap = Q/dw% [fep(w = Vos 1, T) = fep(w — Vi 11, T)] T o5(w), (2.15)
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where /1 is the total chemical potential of the system and V,, 5 are the respective bias voltage
terms. The factor of two in front of this expression is due to the electron spin. We note
that according to Eq. (2.15), backscattering current ., = 0, as when a = [3, the Fermi
distributions in the two leads are identical. Thus, in order to compute backscattering current
we would need to utilize a different expression. The total current 7, through lead « is the
sum of partial currents that flow into that lead:

I, = i (2.16)
B#a

Conductance G, ERE defined as a convolution of transmission with the thermal broadening
function [3]:

2 , 1 o (W —w
Gop(w) = %/dw T ap(w )4kBTsech < QkBT) : (2.17)

If ‘ Mo, — I ,6" < kgT, the conductance will be nearly constant, as the thermal broadening

results in an integration over the entire energy space. Constant conductance means that
the system is in the linear response regime. Conversely, when |p, — ﬁ\ > kg T, thermal
broadening acts like a Dirac delta function. This leads to linear proportionality between
the conductance and the transmission:

lim G, 5(w) = Eﬂ'aﬁ(w). (2.18)

T—0 27

Hence, starting from the basic principles of the Landauer-Biittiker approach, we have
derived the expressions for transmission, current and conductance.
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3. TRANSPORT SOFTWARE AND SIMULATED
SYSTEMS

In the preceding section, we have outlined a powerful theoretical framework for electronic
transport in quantum systems. We note that the Landauer-Biittiker approach requires
the solution of the Schrodinger equation for the central region and the leads before any
transport properties may be computed. The Schrodinger equation can be solved analytically
only for some specific cases e.g., harmonic oscillator, potential barrier, Hydrogen atom.
Thus, we shift the emphasis in our study from analytically solvable systems to the ones
that are solved approximately by computational means. We thus introduce TINIE (stands
for Transport In Non-Interacting Equilibrium), a versatile numerical framework that has
been developed specifically to simulate transport phenomena in arbitrary two-dimensional
transport systems. In the following sections, we shall outline the core algorithm behind the
software and the key features. We will conclude this chapter by describing the transport
systems that we will be analyzing in the following chapter.

3.1 Core algorithm

TINIE is a transport software package that has been written mostly in Python (version
3.6), but some of the optimized numerical routines have been written in C++, and wrapped
into Python modules. Thus, we have combined the readability of a high-level language
such as Python with the high-performance computing features of the lower-level language
such as C++. TINIE is written with object-oriented programming, so all of the essential
components of the code have been separated into different classes that would interact with
each other throughout the simulation process. The algorithm is best described once there
is a clear understanding of the way these classes are related to each other. These relations
are summarized in Fig. 3.1.

First, we shall describe the object types and their essential functionality:

* Center object: represents the central region in the transport system. It is responsible
for computing/retrieving the central region Hamiltonian H ¢ and the set of eigen-
functions of the central region {1 ;}. These eigenfunctions are discretized and
represented by numpy two-dimensional arrays, as we compute the eigenfunctions
on a two-dimensional xy-grid with an adjustable grid spacing. The Hamiltonian is
represented by a diagonal matrix. We note that such a representation is only possible
if the eigenfunction set of the central region is orthonormal. Hence, orthonormality
is a required condition for the proper code execution.
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Figure 3.1. TINIE object relation scheme.
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* Lead object: represents a particular lead region in the transport system. It is respon-
sible for computing/retrieving the lead region Hamiltonian diagonal matrix H L, as
well as its set of eigenfunctions {1/, ,}, discretized on the xy-grid. Similarly to the
Center object, we assume orthonormality of the eigenstates.

Coupling object: represents a coupling region between a particular lead and the
central region. It is responsible for computing/retrieving the coupling V,, between the
central region and lead «, which is naturally represented by a numpy matrix array.

System object: an interface that records the Hamiltonians and the coupling matrices
in an hdf5-file via h5py module. As Hamiltonians and the coupling matrices do not
change when we change the transport system parameters (such as the chemical poten-
tial or temperature), these files may then be reused for multiple transport calculations.
Thus, System object also handles the retrieval of that data from an already existing
file.

SelfEnergy object: an interface that computes the self-energies SB/A and the
rate operators [, for the transport system for varying values of probe energy w.

GreenFunction object: an interface that computes the Green functions GR/4 for
the transport system for varying values of probe energy w.

Calculator object: interface that performs the main transport calculation of partial
currents ¢4, total currents /,, transmission 7, 5 and conductance G, 5.

Note that we have not described the functionality of those objects, mainly how the eigen-

functions, Hamiltonians or couplings are computed. The reason for that is simple: all of

the above-mentioned objects are abstract, meaning that we can implement our own types

of the central/lead/coupling region, specific to the transport system. This can be done

by introducing a new class that inherits from one of those base classes and defining the

respective methods for computation or retrieval of the system features.
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Now we can outline the essential steps of the code execution:

Step 1: System initialization step. Initializes the Center object and the Lead objects.

Step 2: Coupling step. Coupling objects are initialized and the coupling matrices be-
tween the regions are computed and stored in those objects.

Step 3: System finalization step. Center, Lead and Coupl ing objects are passed into
the Sy stem interface to store the transport system data. This completes the setup
of the transport system, preparing it for the subsequent transport calculations.

Step 4: Transport initialization step. System object is passed into the Calculator
object to retrieve the transport system data.

Step 5: Calculator initialization step. Within the Calculator, SelfEnergy object is
initialized. It is then passed into the GreenFunct ion object for its initialization.

Step 6: Transport calculation step. The system transmission, conductance, and currents
are evaluated at the user-defined values for chemical potential, temperature and
lead biases using the self-energies, rate operators and Green functions as described
in Sec. 2.3.

In essence, Steps 1-3 prepare the transport system for the calculation, while the transport
calculation itself is performed during Steps 4-6. These two stages are thus completely
independent from each other, as once the system is prepared and the system data stored in
an hdf5-file, the transport calculations with that file can be performed at any convenient
time with varying chemical potential values, temperatures, or lead biases. This completes
the outline of the algorithm behind TINIE.

3.2 Features

Some of the features in TINIE might already be deduced from the way the code has been
designed and the algorithm description of the previous section. Nonetheless, TINIE has
more attributes that are worthy of mention. In this section, we shall discuss some of the
core strengths that make TINIE a transport software with the potential to be developed
further into a state-of-the-art simulation framework.

First and foremost, TINIE is extremely versatile. The abstract class approach to program-
ming used in TINIE’s design makes the code modular, allowing us to easily create new types
of transport system objects and expand the code to be compatible with other software. For
instance, currently, TINIE has a compatibility interface that allows it to interact with ITP2D
[8], a numerical two-dimensional Schrodinger equation solver that uses an imaginary time
propagation method to solve systems defined by arbitrary potentials. The wave functions
and the Hamiltonian obtained through I'TP2D can then be used in the initialization of the
central region objects. Similarly, we can implement custom leads and custom coupling
types, based on the corresponding abstract classes.
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Secondly, TINIE performs its transport calculations from the first principles, that is, using
the Landauer-Biittiker approach in its exact form, without any approximations besides those
related to the wave function discretization and numerical differentiation/integration. One
of TINIE’s core strengths is its capability to perform calculations in a reasonable time
without the need to resort to approximate theoretical transport formalisms. However, TINIE
is also capable of utilizing some of the approximation regimes, such as the wide-band
approximation regime, as will be demonstrated in the following sections.

Thirdly, TINIE has also been parallelized using mpi4py module. A lot of computations
within the code are completely independent of each other. This has allowed us to parallelize
the most computationally expensive parts of the code. Furthermore, as far as it has been
tested, the performance speed increases linearly with the number of used processors. To
that end, TINIE has been equipped with a parser user interface that easily allows us to
perform numerical simulations in supercomputer clusters from the command line without
any additional scripts. In particular, TINIE has been tested in the CSC Taito supercluster.

Last but not least, at this stage of development TINIE is compatible with systems in uniform
and static magnetic fields perpendicular to the plane [9]. Other transport softwares e.g.,
KWANT [10], TRANSIESTA [11], SMEAGOL [12], OPENMX [13], NEXTNANO [14]
do not provide such functionality to the extent of authors’ knowledge. This feature of the
code allows us to investigate a wider range of systems than ever before.

3.3 Simulated systems

To demonstrate the power of TINIE, we shall use the code to simulate transport phenomena
in simple example systems. In the following subsections, we outline the physical description
of those systems.

3.3.1 One-state system

Lead o[ ™ _% KA Lead f

p, I’

Figure 3.2. Structure of a one-state transport system.

We start with one of the simplest possible transport systems: a single energy state connected
to two leads. Figure 3.2 shows the structure of such a system. In this system, we use the
wide-band approximation regime. In particular, we assume that there are a lot of energy
states below the Fermi energy. This assumption allows us to bypass the computation of the
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coupling matrices. Instead, the coupling strength between the leads is specified by the rate
operators. Thus, we need to know the following quantities to describe the transport system:

Energy of the center region ¢;

Rate operators of the leads « and 3: fa, fﬂ;

Bias voltages in the leads V,,, V;

Chemical potential ;

Temperature 7.

It can be shown that in the case when the temperature is zero and the potential difference
between the leads is small, we get the following expressions for the transmission and current

[2]:
2 r.r
P A L T
(M_60)2+ a4ﬂ

2[Vs =Vl *
We benchmark the numerical precision of TINIE in computing the current and transmission

(3.1)

[

for different values of the lead rate operators against these analytical results for zero
temperature systems. At non-zero temperature we cannot obtain analytical closed-form
expressions for neither the transmission nor the current. To test the performance of TINIE
at non-zero temperatures we thus utilize Wolfram Mathematica software [15] to provide us
with exact benchmark values.

3.3.2 Two-state system

Lead a| 1o I's |Lead p
K= (- A | -
p, I’

Figure 3.3. Structure of a two-state transport system.

We now move on to a more realistic two-state molecular junction connected to two leads.
Figure 3.3 shows the structure of such a system. We consider a center region that can
be interpreted as a molecule, e.g., benzene, where the lower energy state is the highest
occupied molecular orbital (HOMO), while the higher energy state is the lowest unoccupied
molecular orbital (LUMO). We construct the central region Hamiltonian of the form

€+ A 0

H =

Y
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where €, is the Fermi energy and A is the parameter that we use to tune the energy spacing.
Once again, we focus on the wide-band regime, where the rate operators of the leads are
represented as matrices of the form [12]

I' 0
0 |’

where ['is the coupling strength parameter to be adjusted.

(e

3.3.3 Potential barrier system

Lﬂ‘

A%

Figure 3.4. Two-dimensional potential barrier system potential.

We conclude with a conventional potential barrier system, which can be used to investigate
electron tunneling properties in nanoscale systems. For this system, we utilize the Landauer-
Biittiker approach. The potential of the central region can be written as

EB HAES [_%/7 %/] /\y € [_év %]

Voot (@,9) =90 z€ (=00, —¥)U (¥, 00) Ay € [-£, L] (3.2)

oo  elsewhere.

Here Ey is the barrier height, L is the length of the central region in the y-direction and

W is the width of the barrier in the x-direction. Figure 3.4 illustrates V__, with its key

pot
parameters. The eigenfunctions of the central region in this potential are solved using
ITP2D [8]. The central region is then connected to the system using the ITtp2dCenter

interface.
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Two leads are connected to the central region. Specifically, the electrons are confined
in the y-direction and are propagating in the z-direction. We use a harmonic oscillator
potential in the y-direction and a standard particle-in-a-box potential in the x-direction.
The eigenfunctions for the leads can be solved analytically, leading to [3]

Uk i(@,y) = N cos(k(e = ah) + 3 e Hy), (33)

where H,(x) is the Ith order Hermite polynomial and JV is the normalization factor for
the wave function. The indices [ and k are the quantum numbers describing the sys-
tem in x and y directions, respectively. The leads have been implemented in TINIE as
FiniteHarmonicLead object.

Finally, we use the coupling of the form of Eq. (2.3), with the respective numerical
integration routine implemented in TINIE as OverlapCoupling object. In particular,
we investigate the behavior of conductance with varying values of the barrier energy Ey;.
Our setup mimics the schematics shown in Fig. 2.1.
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4. RESULTS AND ANALYSIS

4.1 One-state system

For the one-state system introduced in Sec. 3.3.1, we set ¢, = 500, u = 250 in Egs. (3.1).
Additionally, we set the bias potentials of the two leads tobe V,, =0 and V3 = 1 X 1075,
As the potential difference between the two leads is small, we compare our numerical
results with the analytical result of Eq. (3.1). We set the lead rate operators fa = fﬁ =TI
and compute the transmission and current in the system evaluated at various values of
I'. We start with the zero temperature case. Tables 4.1 and 4.2 show the results with the
relative error estimates.

Table 4.1. Comparison of the transmission values running through a zero-temperature
one-state system computed using TINIE against the analytical values of Eq. (3.1). Relative
error tolerances are near zero due to limitations of finite-precision arithmetics.

r Analytical T, 5(1) TINIE T, 45(p1) Relative error
0.2 | 6.3999959040 x 10~ 6.3999959040 x 107 < 10715
0.4 | 25599934464 x 10° 2.5599934464 x 1076 <1071°
0.6 | 5.7599668225 x 10~° 5.7599668225 x 10° < 10715
0.8 | 1.0239895143 x 10~ 1.0239895143 x 107° <1071°
1.0 | 1.5999744004 x 10~° 1.5999744004 x 10~° <107

Table 4.2. Comparison of the current values running through a zero-temperature one-state
system computed using TINIE against the analytical values of Eq. (3.1). The energy spacing
for the numerical integration of Eq. (2.15) is set to dw = 1 x 107",

I ‘ Analytical I, TINIE I, Relative error
0.2 | 2.0371819677 x 102  2.0371819288 x 10 '2 1.910 x 108
0.4 | 8.1487122256 x 10~ 8.1487120699 x 102 1.910 x 10°®
0.6 | 1.8334543837 x 1071t 1.8334543486 x 10~ 1.910 x 10°®
0.8 | 3.2504598576 x 10~'!  3.2594597953 x 101! 1.910 x 10°®
1.0 | 5.0928766929 x 10~ 5.0928765956 x 10~ 1.910 x 1078

The results show that the values obtained numerically closely match the analytical values,
especially in case of transmission, where the comparison yielded relative error estimates
that were near zero due to the limitations of finite-precision arithmetics. For the current,
the relative errors measurements can be detected, but they are very small. The errors arise
from the numerical integration over transmission values in the region [Va, Vﬁ] .
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We note that both the transmission and the current increase with I In the wide-band
approximation regime, the value of I'corresponds to the strength of the coupling of the
lead to the central region. Hence, our results are plausible: the stronger the coupling, the
higher the transmission.

In addition to the zero-temperature case, we have also investigated a non-zero temperature
system with k7" = 100. We have changed bias potentials to V,, = 0 and V;; = 100. The
other system parameters are the same as before, and once again we let I 'vary. For such a
system, there is no simple analytical result that we can use for comparison. Instead, we have
used Wolfram Mathematica software to obtain numerically accurate benchmark results.
We expect the current values to be higher in the non-zero temperature transport system due
to the broader probe energy range, as well as the thermal broadening of the Fermi-Dirac
energy distribution. The results of the calculations are summarized below in Table 4.3.

Table 4.3. Comparison of the current values running through a non-zero temperature
one-state system computed using TINIE against the values computed using Wolfram Math-
ematica. The energy spacing for the numerical integration of the current over the probe
energies has been set to dw = 0.01.

r Mathematica I, TINIE I, Relative error
0.2 | 2.131426954 x 102 2.131426947 x 102 2.824 x 107
0.4 | 4.263008442 x 102 4.263008417 x 102 5.749 x 107
0.6 | 6.394736058 x 102 6.394736002 x 102 8.702 x 107
0.8 | 8.526601433 x 102 8.526601334 x 102 1.160 x 108
1.0 1.065859624 x 101 1.065859608 x 101 1.484 x 1078

We observe that indeed the current values are much higher in case the temperature is
non-zero, supporting our initial hypothesis.

4.2 Two-state system

To demonstrate how TINIE handles the two-state system described in Sec. 3.3.2, we
compute the transmission of such a system, setting ¢, = 0, A = 1, 4 = 0. Additionally,
we set the lead bias voltages to V,, = —2,V; = 2. We consider this system in a zero-
temperature environment. We then investigate the behavior of the system as we vary the

coupling strength parameter /.

We expect to observe peaks in transmission at the eigenenergies of the center (¢, + A =1
and ¢) — A = —1), and we are interested in how those peaks vary with changing I". Figure
4.1 contains the results of the simulations.

As expected, we note the peaks in the transmission of the system at the eigenenergies of
the central systems. When I = 0, the transmission is constantly zero, as in that case the
leads are not coupled to the center at all. We can see that with increasing /'the peaks get
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Figure 4.1. Transmission in a two-state transport system with varying rate operator
strengths.

broader and higher, and tend to merge together as I'goes to one. This result is plausible in
view of the physical interpretation of /'considered above. By increasing I, we increase
the energy bandwidth of the electrons that may pass through the central region, leading to
the widening of the transmission peaks around the eigenenergies. Hence, TINIE correctly
captures the essential physical characteristics of the two-state system.

4.3 Potential barrier system

We conclude our numerical investigation by tackling a much more involved multi-state
transport system using the full power of the Landauer-Biittiker approach. We consider
two leads connected to the central region with a potential energy barrier [Eq. (3.2)]. The
system has the following spatial confinements for the lead region and the center region:

* Center region: x,y € [—6, 6];

e Lead a: z € [—100,0] and y € [—5, 5];

* Overlap a: z € [—6,0] and y € [-5,5];
Lead 8: z € [0,100] and y € [—5, 5];
Overlap 5: « € [0,6] and y € [—5, 5].

We set the width of the potential barrier to be 10, that is, y € [—5,5]. Additionally, we
use the leads of the FiniteHarmonicLead variety (Sec. 3.3.3) and set the strength of
the harmonic oscillator w, to be one in both. We consider the behavior of conductance G
from lead « to lead 3, as we vary the barrier energy Fy. Furthermore, we investigate the
temperature effects on the conductance. Intuitively, we expect the conductance to be low
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when the probe electron energy is below the barrier energy. The conductance is expected
to start increasing once the electron energy goes above the barrier. Figure 4.2 shows the
results of the simulations.

In these numerical studies, we have considered the probe energy range w € [0, 15]. In this
energy range, each lead was found to contain 225000 eigenstates. As for the central region,
solving its Schrodinger equation with ITP2D yields approximately 250 eigenstates in the
same energy range. Consequently, this transport system is vastly more complicated than
the simple systems we have discussed above. Nonetheless, all the obtained results seem
physically plausible.

We note that in Fig. 4.2(a), the conductance only starts to grow and fluctuate when the
energy of the probe electron surpasses that of the potential barrier. We observe similar
behavior in Figs. 4.2(b) and 4.2(c). However, the picture is slightly more complex as
demonstrated by the presence of minor conductance peaks below the barrier energy. They
arise from the resonances in the system, as some of the central region eigenstates have
eigenenergies below the energy of the potential barrier. The resonances occur when an
eigenenergy of the lead closely matches one of the central region eigenenergies.

When the temperature of the system is close to zero, or small relative to the Fermi energy,
every resonance results in a Dirac delta function-like peak in the conductance. As the
temperature is increased to the scales comparable with the Fermi energy, these peaks become
broader and smaller due to the effects of the thermal broadening on the conductance [Eq.
(2.17)]. Thus, a single outlying conductance peak will get completely removed at high
temperatures, while the peaks in the areas dense with conductance resonances will become
more pronounced. This exact effect of temperature on conductance is observed in Fig. 4.2,
further reassuring us that TINIE is capable of handling transport systems of high orders of
complexity as well.
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Figure 4.2. Conductance in the potential barrier system at varying system temperatures
with pp = 0.0, = 0.02,V,, = 0.0, V3 = 15.0. The conductance at zero temperature has
been scaled by a factor of 50 to be visible on the figures.
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5. CONCLUSION

The field of quantum transport is rich with phenomena worthy of scientific investigation. In
this thesis, we have merely scratched the surface of the field. Utilizing the basic principles of
nanoscale transport that are encoded in the Landauer-Biittiker approach, we have developed
TINIE, a versatile computational framework for simulation of electron transport in non-
interacting equilibrium nanoscale systems.

In order to demonstrate functionality incorporated in TINIE, we have simulated three
different multiple-lead transport systems: a single state molecular junction, a two-state
molecular junction, and a potential barrier system. The numerical results obtained by
simulating the single state molecular junction are in excellent agreement with the analytical
results. We have found the behavior of transmission in the two-state molecular junction and
conductance in the potential barrier system to match our initial hypotheses. This further
reassures us of TINIE’s validity as a transport code.

The main purpose of the thesis was to show the potential of TINIE as a tool to study
transport in various systems. TINIE can be utilized to investigate systems in non-zero
uniform magnetic fields, which is a feature that other transport codes to the extent of our
knowledge do not possess. Under specific conditions, such transport systems exhibit some
interesting properties. For instance, it has been shown in the prior studies that the presence
of a magnetic field in the region confined to a potential that is randomly perturbed by
impurities leads to the emergence of quantum scars [16]. Quantum scars are the regions of
enhanced probability density in the quantum chaotic eigenstates, occurring around short
unstable periodic orbits [17].

Systems with scarred eigenstates have been a topic of rising interest within the scientific
community [18, 19, 20]. The implications scarring phenomena may have on the process
of transport in a scarred system can be and will be studied in the future using TINIE. It is
possible that scarred eigenstates lead to transmission peaks in the corresponding transport
systems. By learning how to control the emergence of scars, we could potentially find a
way to control the conductance properties of nanoscale devices. The study of scarring
phenomena using TINIE could thus lead to many exciting and potentially ground-breaking
discoveries.
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