TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

ALEKSI TERVO

OPTIMIZING TRANSPORT-TRIGGERED ARCHITECTURES FOR
FIELD-PROGRAMMABLE GATE ARRAYS

Master’s thesis

Examiner: D.Sc. Pekka Jaaskelai-
nen

The examiner and topic of the thesis
were approved on 15 August 2018

ABSTRACT

ALEKSI TERVO: Optimizing Transport-Triggered Architectures for Field-Programmable
Gate Arrays

Tampere University of Technology

Master of Science Thesis, 53 pages

Major: Embedded Systems

Examiner: D.Sc. Pekka Jaaskeléinen

Keywords: transport triggered architectures, field programmable gate arrays,
parallelism

With the growing importance of energy efficiency, heterogeneous computing has become
more popular in recent years. Field-programmable gate array (FPGA) devices are no
exception: offering highly parallel execution at low power, they are an option worth
considering for many tasks, and increasingly more available for users through cloud
computing services.

While FPGA devices offer a lower barrier to entry to logic design than integrated circuit
design, they are still difficult to design for compared with instruction set processors. While
tools exist for translating a high-level language description of an algorithm into an FPGA
design, they still require expertise most software designers do not have.

One way around this problem is building soft processors onto the programmable logic as a
programmability layer for sofware designers. Transport-triggered architectures (TTAs) are
a promising avenue of research in this area for their simple implementation and inherently
parallel programming model.

This thesis presents FPGA-centric optimizations for transport-triggered architectures and
evaluation of these optimizations through synthesis. Together, these optimizations yielded
between 20 and 30 percent reduction in logic utilization in the tested architectures while
having little effect on the clock frequency. Additionally, the scalability of TTAs for more
parallel workloads is evaluated with various configurations of a TTA vector processor as
well as a convolutional neural network processor case study.

i

TIVISTELMA

ALEKSI TERVO: Siirtoliipaistujen prosessorien optimointi ohjelmoitavalle logiikalle
Tampereen teknillinen yliopisto

Diplomity®, 53 sivua

Sahkotekniikan diplomi-insinddrin tutkinto-ohjelma

P&aaaine: Sulautetut jarjestelmat

Tarkastaja: TkT Pekka Jaaskelainen

Avainsanat: siirtoliipaistut prosessoriarkkitehtuurit, ohjelmoitava logiikka, rinnakkai-
suus

Energiatehokkuuden tirkeyden kasvaessa heterogeeniset laskenta-alustat ovat kasvattaneet
suosiotaan. Ohjelmoitavat logiikkapiirit eivét ole tdstd poikkeus: erittdin rinnakkainen suo-
ritus matalalla energiakulutuksella tekee ohjelmoitavista logiikkapiireisti varteenotettavan
vaihtoehdon moniin kéyttotarkoituksiin, ja kayttédjille koko ajan helpommin saatavissa
pilvipalveluiden kautta.

Vaikka niille laitteille suunnittelu on helpompaa kuin perinteisille sulautetuille logiikka-
piireille, suunnitteluprosessi vaatii erikoistietimysti verratuuna kédskykantasuorittimien
ohjelmointiin. Tyokalut, joilla voidaan kiéntdad korkean tason ohjelmointikielelld kuvattu
algoritmi ohjelmoitavalle logiikkapiirille, kiyttdvit samoja kielid kuin kiskykantasuorit-
timille ohjelmointi, mutta ndmékin vaativat suunnittelijalta syvallistd ymmirrysté siitd,
miten algoritmi kuvautuu logiikkapiiritoteutukseksi.

Yksi tapa kiertdd timé ongelma on rakentaa ohjelmoitavalle logiikalle kidskykantasuoritin,
jota ohjelmoijat voivat kiyttdd toteuttaakseen halutun algoritmin. Siirtoliipaisut suoriti-
narkkitehtuurit ovat lupaava tutkimussuunta télléd alalla niiden yksinkertaisen toteutuksen
ja rinnakkaisen ohjelmointimallin takia.

Tassd diplomityodssi esitellddn siirtoliipaistujen suorittimien toteutusta ohjelmoitaville
logiikkapiireille parantavia muutoksia, seki ndiden muutosten arviointeja synteesitulosten
kautta. Nididen muutosten yhteisvaikutus nikyy pédasiallisesti prosessorien koossa: eri
arkkitehtuurien koko pieneni 20-30 prosenttia, ilman suurta muutosta kellotaajuudessa.
Tamaén lisdksi siirtoliipaistujen suorittimien skaalautuvuutta rinnakkaisille algoritmeille tut-
kitaan siirtoliipaistujen vektorisuorittimien seki syviooppimiseen suunnitellun suorittimen
nikokulmasta.

1l

PREFACE

The work for this thesis was done at the laboratory of Pervasive Computing at Tampere
University of Technolgy with funding from the HSA Foundation, as well as the ALMARVI
and FitOptiVis projects.

I would like to thank Dr. Pekka Jadskeldinen for giving me a chance to work on interesting
projects and the valuable learning opportunities that have come with that work, as well as
his guidance and support regarding this thesis. I would also like to thank my coworkers,
present and former, for a positive work environment and a helpful attitude. Finally, I would
like to thank my friends and family for supporting me throughout my life and studies and
during the writing of this thesis.

In Tampere, Finland, on 15 November 2018

Aleksi Tervo

v

CONTENTS
1. INTRODUCTION ...ttt ettt ettt st ettt sbeesatessbeebeens 1
2. PROCESSOR ARCHITECTURES ...ttt 3
2.1 Instruction SChedulingccoooueiiiiiiiiiiiiie e 3
2.2 Parallel Organizationsceeeeuueeeeriiieeeniiieeeeiieeessieeeessieeeesenreeeseseeeesnns 4
2.3 Memory OrganiZationccceeeueeueerieenieeieeieenieeeieeereesieesieesre e esieesane e 7
2.4 Application-Specific Tailloring..........coccveeeriiiriiieinieeiieeieeeee e 7
3. TRANSPORT-TRIGGERED ARCHITECTURESccceeiiiiiiiiieieeieeeee e 9
3.1 From VLIW t0 TTA ..ot 9
3.2 From Scalar OTA t0 TTAooo oottt e e e e eaaee e 12
3.3 TTA-Based Co-Design Environment.........ccocceeevueeriiieinieeniieenieenieenieens 15
33,1 TTA TeMPIALe ...oeeeeiieiieeiieeeeee e e 16
3.3.2 Hardware Generation..........coceevueerierieeneenienieenieenieenee e eneenenes 16
4. FIELD PROGRAMMABLE GATE ARRAYSoooiiiiiieeeeeteeeeeeeee e 19
4.1 ATCHITECTUTE. ..c.ueiiiiieiieeiieeite ettt sttt ettt et ene e 19
4.1.1 Logic and ArithmetiC.......cccceeruiriiirrienieeiieieeseeeeeee e 19
4.1.2 Routing RESOUICESccccutiiiiiiiiiiiiiieiitc et 21
4.1.3 Storage EIEmMEntsc.ceeeiviiiiiiniiiiiiiieeeeiiee et 22
.14 RESCL ettt e e 22
4.2 Designing fOor FPGAS......cccoooviiiiiiiiieeeeceneeeeeeeee e 23
4.3 Comparison t0 ASIC........oooriiiiieiie e 24
5. IMPLEMENTED OPTIMIZATIONSoooiiiiiiieieeie ettt 25
5.1 Instruction Fetch and Decodeccccveveeiiiiiieiiiiiieiieecee e 25
5.2 Interconnection NEtWOTKcccveeiiieriieeiiienieeerieeeiee e e eiee e e eeee e 25
5.3 Memory OrganiZationc..eeeueerrueeerieeerireenieeenieeesieeenreesseeessseessseesssens 26
5.4 Arithmetic Logic UNItSoceeriiiiiiiiiiiiiiiieeeeceeeeceese e 27
6. EVALUATION.. ..ottt ettt ettt et e ettt estae e st e enbaeesnseeens 29
6.1 Multiplexers on FPGAccccoiiiiiiiii e 29
6.2 TTA SubOPtMIZATIONScoouieeiiiieiieeiiee ettt ettt 30
6.2.1 RESEL REZIME ..ccoouiiiiiiiiiiiieiieeeee e 30
6.2.2 Interconnection NetWorkccocceeeviiiniiiiniiieiiieieeceeeee e 32
6.3 Total Effect of OptimiZations.........cccceevveeierneenienienieeieenie e 33
6.4 Parallel Execution 0n TTAScoooiiiiiiiiieeeieeeee e 34
6.5 Convolutional Neural Network Case Studyccccevevveeriieniieenieeeieeeen. 36
7. RELATED WORK ..ottt s s 40
8. FUTURE WORKottt sttt 42
0. CONCLUSIONS ..ttt ettt e 44

REFERENCES ...ttt ettt 45

LIST OF FIGURES

Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4.
Figure 3.5.

Figure 3.6.

Figure 3.7.

Figure 3.8.
Figure 3.9.

Figure 4.1.

Figure 5.1.

Figure 6.1.

A simplified VLIW architecture and possible operation encoding. 10
Exposed-datapath VLIW.ccoooueeicuiieiiieeiieeiieeeieeesiieeevee e 11
VLIW-connected TTA and possible instruction encoding. 12
An example of @ TTA deSign.coocueeeiiiiviiiiiiiiiiiieieeeee e 12

A scalar OTA design with a four-stage pipeline and data forward-
ing [73], with the critical path through multiplexers’ datapath marked
with a red arrow. Most control signals have been omitted for clarity. .. 13
Modified four-stage scalar OTA pipeline, with the critical path through
multiplexers marked with a red Qrrow.cccceeveeeeeiecceeeeniieeennne, 14
A TTA architecture with the connectivity of a four-stage scalar OTA

pipeline With DYPASSING.ccccveeeeecrieeeeeiieeeeeieee e e eree e e eaaee e e eaaee s 14
And-or iNtercONNECct NEIWOTK.ccc.veeeeeciieeeeiiieeeeieeeeeiee e eeee e 17
A possible implementation of semi virtual-time latching. 18

A high-level description of the routing resources in Intel Stratix 10

AEVICES [3O0] ...t a e 21
Multiplexer-based interconnection NEtWOrk.cccccccveeeeeeecveeeceneenne. 26
Total runtimes of the vector ArCRIteCIUTeS.ueeeeeveeeeeciieeeecreaeens 36

vi

LIST OF ABBREVIATIONS

ALU
ASIC
CNN
FF
FPGA
FU
CU
HLS
IC

IP
LSU
LUT
NRE
PC

PE
RAM
RF
RISC
RTL
SIMD
SRAM
SVTL
TTA
VLIW

Arithmetic-Logic Unit
Application-Specific Integrated Circuit
Convolutional Neural Network
Flip-Flop

Field Programmable Gate Array
Function Unit

Control Unit

High-Level Synthesis
Interconnection Network
Intellectual Property

Load-Store Unit

Look-Up Table

Non-Recurring Engineering
Program Counter

Processing Element

Random Access Memory
Register File

Reduced Instruction Set Computer
Register-Transfer Level

Single Instruction Multiple Data
Static Random Access Memory
Semi Virtual-Time Latching
Transport Triggered Architecture
Very Long Instruction Word

1. INTRODUCTION

Field-programmable gate array (FPGA) devices offer a low barrier to entry to logic design
compared with application-specific integrated circuit (ASIC) design. They are more
suitable for low volume production and prototyping, since they have lower non-recurring
engineering (NRE) costs and can be updated in order to fix erroneous behavior in the
design [81]. Cloud service providers, such as Amazon Web Services [3] and Huawei [23],
have recently added servers with FPGA devices to their offering, further aiding the wider
adoption of FPGAs.

FPGAs, however, do not remove the engineering difficulty of developing the logic circuit in
the first place. While register-transfer level (RTL) design entry is done with a programming
language, the paradigm of traditional hardware description languages is likely to be
unfamiliar to software developers. Furthermore, the RTL approach is low-level and
requires the designer to understand what kind of logic is inferred from the code they have
written, and how this affects the performance and resource consumption of the synthesis
result [74, pp. 5-11]. This is even more important in FPGA designs, as the routing
resources and logic primitives are less flexible than their ASIC counterparts. The required
skills are a rarity: According to a 2017 survey, software engineers outnumber computer
hardware engineers 17 to 1 in the United States [69].

High-level synthesis (HLS) is one approach to improve the accessibility of hardware
design for software engineers. Here, design entry is done in a high-level language such
as C or C++ that is familiar to software programmers and operates at a higher level of
abstraction than RTL design. However, HLS tools do not eliminate the need for hardware
expertise: Better results can be achieved with an understanding how the algorithms map to
the low-level implementation. [44]

Processors are another way to shift design effort from hardware engineers to software
designers. They can be used either to manage the control logic for fixed-function hardware,
or as primary processing elements in and of themselves. However, a programmability
layer introduces inefficiencies in power, performance and utilization compared with fixed-
function logic. This overhead can be reduced by tailoring the processor for the application
at hand [25], but the high NRE costs of ASIC production mean processors implemented
with these technologies have to be more flexible. Soft processors, i.e., processors im-
plemented on FPGA fabric, can be customized more aggressively, as the device can be
reprogrammed with a different processor if the application changes. Programming these
processors will be more similar to the software programmer’s existing experience, and they
will not only use familiar languages, but use them in a familiar manner.

1. Introduction 2

Transport-triggered architectures (TTA) have shown promise in the field of soft processors.
Compared with a traditional operation-triggered architecture, TTA has a simpler imple-
mentation, leading to lower logic requirements and higher frequency. Furthermore, the
instruction encoding describes explicit parallelism without requiring complex decoding
logic. [37]

This thesis describes FPGA-specific optimizations for TTAs and extends previous work
by exploring the TTA design space, focusing on different parallel programming models
and their scalability on FPGAs. Chapter 2 presents an overview of common processor
architectures and their approaches for high performance are reviewed. This is followed by
an in-depth examination of the TTA paradigm in Chapter 3 followed by an overview of the
toolset used in this thesis to aid the architectural exploration of TTAs. Chapter 4 begins
with a description of the structure of modern FPGA devices, followed by an overview of the
design methods targeting FPGAs and a comparison to ASIC technologies. In Chapter 5, the
details of TTA soft processor implementations are discussed. Different implementations of
the components of TTAs and guidelines for high-performance FPGA designs are presented
here. These implementations are evaluated in Chapter 6. In addition to a comparison of the
individual component implementations, parallel function unit configurations are examined,
and a case study involving a TTA optimized for convolutional neural network execution
is presented. Chapter 7 presents related work and compares the existing approaches to
the work presented in this thesis. The thesis finishes with a discussion of what has been
achieved in it and an examination of possible future research avenues in Chapter 9.

2. PROCESSOR ARCHITECTURES

There are a wide variety of processor architectures, with different use cases and different
approaches on fulfilling their design goals. Understanding popular processor design ideas is
clearly beneficial when designing similar processors, and while the processor architecture
approaches presented here have originated from and seen most use in traditional operation-
triggered architectures, many of these approaches can be applied to TTA design as well.

This chapter presents the basics of processor architectures and common ways to to achiev-
ing high performance. This is divided into instruction scheduling, ways to parallelize
computation at a processor architecture level, and memory hierarchies. Finally, we cover
the principles of application-specific processor design.

2.1 Instruction Scheduling

Dynamic instruction scheduling can be used to mask long instruction latencies, and increase
the performance particularly with heavily branching code. It is used extensively in modern
general-purpose processors, and allows for speculative execution of conditional branches,
executing multiple instructions from one thread in parallel, and managing high-latency
instructions by executing the following instructions while it completes, as long as the data
dependencies between operations are satisfied. However, the required scheduling logic
can be very costly. Indeed, this is the main disadvantage of a hardware-heavy scheduling
approach [26, p. 222].

Even without dynamic scheduling, pipelined processor architectures require hazard de-
tection and resolution logic to detect and avoid pipeline hazards, such as an instruction
reading a value from the register file (RF) before the correct value has been written there by
the previous instruction. Exposed datapath architectures alleviate the logic requirements by
moving the work of resolving pipeline hazards to the compiler. By allowing direct control
of the datapath and requiring the compiler to resolve some or all of the control logic for it,
the hardware implementation can be simplified.

In addition to TTAs, which will be covered more thoroughly in this chapter, various exposed
datapath architectures have been proposed, with a large variance in organization and scale.
Some architectures use one-dimensional [82] or two-dimensional [7, 9, 54, 79, 80] arrays
of small processing elements (PEs) with a software-controlled interconnect between
them, while others have an organization resembling very long instruction word (VLIW)
processors, with multiple PEs controlled by one instruction [80].

There are drawbacks to exposing the datapath at the architectural level. Most directly, since
more of the implementation is described by the architecture, it cannot be changed radically

2. Processor Architectures 4

to accommodate e.g. out-of-order execution. New versions of exposed datapath processors
are more likely to break compatibility with their predecessors. This is undesirable in
systems where a longer lifespan is a key concern, especially those with closed-source
software developed for them.

Relying on static scheduling by the compiler limits the optimizations to the opportunities
the compiler can guarantee. For example, if a function accesses two pointers simultane-
ously, reading from one and writing to the other, the compiler cannot necessarily resolve
if the two pointers are equivalent. In this case, the two memory accesses have to be kept
in the same order as they are specified in the program. It is possible for the compiler
to produce code that checks during execution whether the accesses overlap, and choose
between two versions of the code based on that, but this increases the resulting code size.
A hardware-based dynamic scheduler can look at the two accesses when they are ready to
be scheduled, and issue them accordingly based on whether or not they conflict.

Dynamic latencies can also be an issue. In order to resolve data dependencies between
operations, the compiler needs to make some assumptions on how many clock cycles
it takes for an operation to produce a result. However, certain operations, most com-
monly cached memory accesses, may take a nondeterministic amount of time. Some of
this can be hidden by the architectural description of the processor, by assigning these
operations a latency equal to the maximum latency of the operation. This negates the
performance gain of a potentially shorter operation, such as a cache hit, and may introduce
no-operation instructions into the instruction stream, thus raising the instruction memory
size requirements.

Alternatively, the execution of other PEs can be halted while the operation result is being
produced, either when the PE should produce the result, or when the result would be read
by another instruction. This approach can improve performance when the longer latency
executions happen less often and does not require inserting nonfunctional operations into
the instruction stream, but requires more communication between PEs.

2.2 Parallel Organizations

A simple approach to improving performance is to connect multiple processors together,
usually by sharing some or all of the memory space between individual processors. Each
processor executes independently and communicates through the shared memory space.
While multiprocessor systems give a theoretically linear increase in performance and logic
utilization, communication between processors limits their performance in practice.

Another way to parallelize an application is to run multiple threads simultaneously on
one processor. Even without additional resources for the execution of operations, switch-
ing between threads can mask long operation latencies. Barrel threading is a specific
multithreading approach where the active thread is switched every cycle in a constant
order. This is simple to implement in hardware, and can be used to reduce data forwarding

2. Processor Architectures 5

between processor pipeline stages. For example, in a four-thread barrel threaded processor,
each thread is only active every four cycles, so there is no need to pass data from one
pipeline stage to the three pipeline stages preceding it, as they are executing different
threads. Furthermore, the RF can be split into four parts, one for each thread. These RFs
can be further simplified, as it might be possible to use the same port for two or more
accesses in different pipeline stages through time multiplexing.

Exposing parallelism explicitly in the instruction encoding can be a more resource-efficient
way to increase performance. This is especially popular for application-specific processors,
where binary compatibility between processors is not as important. Like traditional super-
scalar processors, VLIW processors have multiple PEs in parallel, capable of executing
different sets of instructions. Instead of the instruction scheduler extracting parallelism
from an inherently serial instruction stream, VLIW machines have an instruction that
specifies operations separately for each PE. In order to simplify the control logic between
many PEs even further, VLIW processors are statically scheduled, with architecturally
visible fixed latencies for all operations. As a result, the burden of resolving the hazard
falls on the compiler instead of the hardware, simplifying the logic implementation. [26, p.
194]

A VLIW processor usually has a very complex RF. Traditionally, PEs have two operand
ports and one result port. In order to execute, for example, a four-lane VLIW instruction
in parallel, the PEs will read eight operands from the RF and store four results to it. Any
memory structure with eight read ports and four write ports is very complex, but there are
approaches to reduce the port count of the RF blocks. Most commonly, a complex RF can
be partitioned into multiple simpler ones, e.g. an RF with four write and eight read ports
can be split into two RFs with two write and four read ports each. While the register files
still have the same number of total read and write ports and can therefore be used with four
PEs with full utilization, this creates additional constraints for the compiler. For example,
it cannot schedule an instruction that tells all four PEs to write to the same RF partition.
The performance impact can be reduced with a register allocation scheme that takes the
partitioning into account.

Single Instruction Multiple Data (SIMD) is another way to expose parallelism to the
programmer. They processors execute the same instruction across multiple elements,
similar to vector arithmetic. This execution model allows the PEs to perform work largely
decoupled from each other. Communication between PEs is still necessary, but this is
often done through memory rather than the register file, or by specialized instructions that
transfer data between vector elements. However, programming SIMD processors can be
more difficult: Even when the algorithm can be executed in vector operations, assembly
level programming may be needed to utilize it [91]. On the other hand, compilers attempt
to vectorize programs automatically when the processor can use those operations, and
libraries with vectorized implementations of common algorithms are available.

Another way to increase the flexibility of parallel processing is the Single Instruction

2. Processor Architectures 6

Multiple Thread (SIMT) execution model, most often seen in graphics processing units [26,
p. 288]. Here, multiple threads are executed simultaneously as a warp, usually in parallel
on multiple PEs. The execution is more restricted than a multicore processor, however, as
traditionally only one instruction can be issued at once. This means that when threads in a
warp take different paths from a branch instruction, i.e., diverge, the SIMT processor will
execute both paths serially, allowing execution on some of the threads while keeping the
other threads idle. Lower divergence means more active threads on average and a greater
performance.

The two main challenges with SIMT architectures are memory accesses and warp schedul-
ing. When executing a memory operation during completely convergent execution, all
threads issue one load. Handling many memory accesses serially is very slow, so paral-
lelizing the accesses is preferred. However, multiport memory structures are expensive to
implement, so this is usually done by a series of wide memory accesses.

Because the processing elements run different threads, simultaneous memory accesses
do not necessarily have any relation to each other. In the worst case scenario, all active
threads issue a load to addresses so far apart from each other that any wide memory access
can only hit at most one of the requested memory locations. Some of these difficulties can
be alleviated by a combination of caches and thread- or warp-local scratchpad memory,
and by switching execution to another set of active threads or to another warp entirely
while the memory accesses are done in the background. However, the best performance
can only be reached by using an algorithm where simultaneous memory accesses to land
next to each other.

The traditional approach to keeping track of warp execution is stack-based. Whenever
warp execution diverges, the scheduler pushes a divergence token onto the stack. This
contains information about which threads did not take the branch, and the program counter
(PC) from where to continue executing those threads. This information will be used to
return active status to those threads once threads that took the branch reach an instruction
with a bit that signifies the end of the branch, i.e., the point where the originally diverged
execution should resynchronize. Once the newly active threads reach the same instruction,
the warp resynchronizes and continues execution. [18].

This method of warp scheduling is incompatible with the way mutexes are used to syn-
chronize between threads in general purpose processors. If a thread tries to acquire a lock
that is held by a different thread, it cannot progress forward until the thread unlock the
mutex. If the thread holding the lock is in the same warp, it will not progress until the
active threads reach a synchronization point. This results in a deadlock.

One way to handle warp scheduling that avoids this problem is to have each thread hold
its own state, 1.e., program counter and stack [68, p. 27]. The scheduler chooses one of
the program counters to issue an instruction, and threads that have a program counter that
matches what has been issued activate. Some logic is still needed to choose a PC such that

2. Processor Architectures 7

divergent threads converge as soon as possible in order to reach a good performance. At
its simplest, this method can be the thread that has the smallest stack pointer, or in the case
of a tie, the smallest program counter [17]. This approach can also be used in a system
where the scheduler can issue more than one instruction at a time [16].

It should be noted that the different approaches to parallelization do not necessarily exclude
one another, and many combinations are complementary to the strengths of individual
approaches. For example, it is possible to design a processor with a VLIW programming
model that also has SIMD instructions, or a SIMT processor that uses a combination of
parallel PEs and barrel threading to execute a warp.

2.3 Memory Organization

Memory organization is an important part of a processor system. In terms of performance,
larger memories are slower to access than smaller ones. The main memory is often on a
separate integrated circuit from the processor, introducing additional latency in the driving
circuitry, and through the increased capacitance of the longer wires. In terms of power
consumption, faster memories are more power-hungry, which encourages reducing the size
of fast memories places an upper limit on how fast you can make the main memory.

Cache hierarchies are often used in general purpose processors in order to have tiers of
small but fast memories close to the processors, backed up by a large but slow memory
off-chip. When a cache receives a memory access request for the first time, it will forward
it to the next level in the hierarchy. The response can be stored in the cache, possibly
replacing an old value, so that an access to the same memory address can be fulfilled
without accessing the higher levels in the hierarchy.

Another option is to have a non-uniform memory structure, where a portion of the memory
is faster to access from a particular processor, or by having a separate address space for a
local scratchpad. Unlike caches, this requires explicit software control and may as a result
increase programmer effort.

2.4 Application-Specific Tailoring

When a processor is designed with a particular application in mind, rather than as a
general-purpose processor, the design should take that into account in all of its parts.
The approaches presented above may suit one application better than another, and it is
important to understand the application, for example, in terms of how well it can utilize
a SIMD organization, or how much memory is needed to contain the working data set at
any time. For example, many image processing algorithms can be parallelized easily, as
they essentially perform one operation on every pixel of an image, while some encryption
algorithms may depend on the value of the previous iteration, leading to serial execution.

The instruction set provides another way of tailoring the processor. Most simply, the
designer can start with a general-purpose instruction set and remove the operations that

2. Processor Architectures 8

are not being used by the application. Alternatively, instructions can be added depending
on the needs of the application. These can be constrained versions of general-purpose
instructions, a common combination of instructions, or a custom instruction that is simple
to implement in hardware but does not map well to software, such as specific bit-level
transformations that may require many bitwise shift and logic operations in software, but
only need a handful of logic gates and wires for the hardware implementation.

3. TRANSPORT-TRIGGERED ARCHITECTURES

Transport-triggered architectures are a mostly unexplored avenue in soft processor ar-
chitectures. However, they have many features that make for a simple and efficient
implementation on FPGAs, and initial work [37] has shown them to be competitive with
vendor-supplied soft processor templates.

This chapter first presents the TTA paradigm, along with transformations from two common
processor architectures into an equivalent TTA and comparisons between the approaches.
Lastly, this chapter will cover the TTA-Based Co-Design Environment (TCE), specifically
the configuration parameters of its TTA template and the default implementation of the
TTAs that can be described by this template.

3.1 From VLIW to TTA

The TTA paradigm is often seen as an extension of VLIW architectures, and there are a
number of similarities: Both are statically-scheduled processors which typically feature
explicit parallelism by dividing the instruction word into independent partitions. Indeed,
Corporaal [19, pp. 81-102] demonstrated how to transform a generic VLIW machine into
a TTA, a process which will be revisited here.

The VLIW machine in Figure 3.1 exemplifies VLIW design. The instruction word is
divided into multiple smaller instructions which execute independently on separate function
units (FU). Operations have architecturally-visible latencies and some of the work of
resolving hazards is moved to the compiler. The main downside of VLIW implementations,
especially on FPGAs, is the register file, which is needed for the FUs to communicate with
each other. Assuming a typical FU with two inputs and one output, the RF requires three
ports for each FU.

There is a large degree of redundancy in the RF ports. Reaching a state where the FUs, and
therefore also RF ports, are fully utilized requires a degree of instruction-level parallelism
rarely seen in any program. Even then, there are many opportunities to eliminate RF
accesses. Value bypassing is one form of this: If a value can be read directly from the
result port producing it, a read access can be eliminated. While the bypassing itself is
traditionally done in hardware, the programming model rarely restricts the programmer
to a specific number of individual reads. The implementation must then either provide
enough RF ports to satisfy worst case access patterns, or add costly dynamic scheduling
logic for them.

It is possible to expose the bypass network to the compiler. Since the program can now
directly specify which values are bypassed and which are read from the RF, the architecture

3. Transport-Triggered Architectures 10

Register file

Immediate

\ |

3
3N

J
Y Vg |
N 7 N N
NN 7 NN M

I N N _/_/_T_ﬁ/_/

S
il

DFF DFF DFF DFF

FU 1 FU 2

DFF DFF

' |
FU1 FU2
| opcode | src 1 | src2 | dst | opcode | src 1 | src 2 | dst |

Figure 3.1. A simplified VLIW architecture and possible operation encoding.

can limit the number of direct RF accessess, enabling the removal of the RF port. A
representation of this intermediate stage can be seen in Figure 3.2. The source field of each
suboperation specifies explicitly where the operand should be sourced from, and the RF is
given register indices separately from the FU suboperations. This gives rise to the main
drawback of TTAs: The resulting operation is very verbose, and as such, the instruction
word is even longer than with a similar VLIW architecture.

As can be seen by comparing Figure 3.1 and Figure 3.2, the exposed datapath version of
the same VLIW machine has one extra multiplexer, located before the register file. This
multiplexer is due to the smaller number of RF ports, and the resulting need to feed one
RF write port with values from both function units. In the common case where read ports
are more numerous than write ports, the multiplexer and RF together are strictly cheaper
than the equivalent multiport REF, if it is built out of single write port memory primitives
using the live value table method [42]. Such a RF would contain an equivalent multiplexer
at each of the read ports to select the most recent value from the register banks, and would
use more memory primitives than the register file with fewer ports.

While this architecture supports almost all of the cases presented by Corporaal where RF
accesses can be eliminated, its scheduling is very limited. As the operands of an operation
are specified all at once, they are constrained to be read simultaneously, reducing the
opportunities to bypass values from the results of previous cycles.

For further scheduling freedom, the data transports to operand ports can be presented
separately, and operations are started when a transport is issued to a predefined trigger port.

3. Transport-Triggered Architectures 11

Immediate

7 7 7 N
Il Il
1 1 1 1
FU 1 FU 2 Register file
' |

FU1 FU 2 RU
‘ opcode ‘ src 1 ‘ src 2 ‘ opcode ‘ src 1 ‘ src 2 ‘ SIC ‘

Figure 3.2. Exposed-datapath VLIW.

This is where the TTA paradigm gets its name, and its primary difference from traditional
operation-triggered architectures (OTA). Since the values of the operands have to be stored
while waiting for the operations to start, the architecture needs registers in the operand as
well as the result ports. By decoupling the data transfers of an operations operands and
result values, this design allows for the final optimization presented by Corporaal, where
successive operations in the same FU can reuse one of the operands. The resulting TTA
with VLIW-like connectivity can be seen in Figure 3.3.

This interconnection network (IC) design is impractical for large designs, as the number of
buses and thus multiplexer inputs and instruction width grows linearly with the number
of FUs. While adding buses allows the programmer to schedule more instructions in
parallel, there is a limit to the amount of instruction-level parallelism in any given program.
Optimizing the IC by merging buses that are rarely used together and removing rarely used
connections both simplifies the hardware implementation and reduces the width of the
instruction word.

Figure 3.4 shows an example of a practical TTA design. While most of the output ports are
connected to all of the buses, the connectivity of the IC has been significantly reduced from
a fully-connected or a VLIW-like IC, and e.g. moves loading an operand to the load-store
unit (LSU) and triggering a jump cannot be issued at the same time, as they would use the
same bus. However, the operand and trigger ports of the LSU and the ALU can be used
independently of each other.

The above TTA has two general-purpose register files, as an example of RF partitioning,
used for the same purposes as with VLIW architectures. In addition to the general-purpose
RFs, the processor has a boolean register file. The values are used as predicates for
conditional execution, used either for masking unwanted branch moves or for a series
of conditionally-executed moves, e.g. representing both sides of an if-else structure. As

3. Transport-Triggered Architectures 12

FU FU RF

I o d L d

Bus 0
Bus 1
Bus 2

Bus 3
Bus 4

BUS 0 BUS 1 BUS 2 BUS 3 BUS 4
\ opcode \ src \ src \ opcode \ src \ src \ opcode \ src \

Figure 3.3. VLIW-connected TTA and possible instruction encoding.

Bus 0
Bus 1
Bus 2
Bus 3

Figure 3.4. An example of a TTA design.

branching is expensive on TTAs due to being statically scheduled architectures, the latter
can be significantly faster.

While the primitives are less flexible, the lower NRE costs of FPGAs allow for a more
targeted design than ASIC. This enables more aggressive tailoring of a soft processor to
be more aggressively tailored for the application at hand. TTAs benefit from this, as they
have a larger design space than e.g. VLIW machines, due to the highly customizable
interconnect network. In particular, pruning the IC of less frequently used connections is
of particular benefit, as this has a direct impact on the inferred multiplexer size.

3.2 From Scalar OTAto TTA

While this example started from a VLIW architecture, it should be noted that the TTA
paradigm is sufficiently flexible to transform e.g. RISC or SIMD processors similarly,
and VLIW was chosen for the similarities in its programming model, and to highlight the
scalability advantages of TTAs in a multi-issue case. For example, the above transformation

3. Transport-Triggered Architectures 13

. \
Instruction

|
memory Data memory
[
[] 1]

‘Write Addresd Read
data | data

e

E

Branch

|

|

|

|

|

7&(1(11.&5&—(]; I

| Program N |

counter L‘ |

|

’Instruc‘cion Instruction Immediate ‘

b decode Ambﬁ ;

iR

|

|

D)
|

|

|

|

- - |
Address Data i
|

|

|
|
|
i |
! yuu g ALU [— |
Instruction | J il . J B i
fetch logic ! P " LU !
! g 5 = ik !
\ ; RF .%J £D [L J[\
| = e ~| LU_p MUL ‘
===y SR |
| - > |
: D A \

: B

| |
| } |
| | }
| | |
Fetch | Decode ' Execute | Writeback

Figure 3.5. A scalar OTA design with a four-stage pipeline and data forwarding [73], with
the critical path through multiplexers’ datapath marked with a red arrow. Most control
signals have been omitted for clarity.

to TTA can be repeated starting with the real-world 4-stage single-issue scalar RISC design
developed for the PULP platform [73]. The pipeline and its forwarding paths can be seen
in Figure 3.5.

There are a couple of reductions we can make to the connectivity of this pipeline when
translating it to a TTA processor without losing any functionality. First, we can eliminate
the return path from the operand C pipeline register. It is only used for conditional branches
as a delayed version of the immediate branch address signal, which is the other signal at
the multiplexer E input. In a statically scheduled processor, we can simply load the address
when the ALU is ready to provide the guard value for the branch.

Furthermore, bypass multiplexers (marked as D) can be merged with the operand multi-
plexers (marked as A) by connecting the signals from the execution and writeback stages
to the decode stage to each of the operand multiplexers (A). The transformation to TTA
also removes the bypass control logic, as the compiler will decide between a bypass or a
register read statically. Especially for architectures with many RF ports, this can save a
significant amount of logic: Even at its simplest, bypassing requires a comparison between
each read port address and each write port address in order to select between the value
from the RF and the values of the writeback connections. Lastly, moving multiplexer B
to the decode stage and connecting the ALU and multiplier outputs independently to the
multiplexers will make the transformation to a TTA interconnection network simpler.

The resulting pipeline can be seen in Figure 3.6. From here, the transformation to a TTA is
straightforward. The multiplexers in the decode stage can easily be made to correspond

3. Transport-Triggered Architectures 14

Instruction |

|
memory Data meimory

I
]
Write | Read

A SS
data d(‘h%b\ data

|

|

|

|

|

i

1 _ICQ

|
:’[1 ALU —

|

;i

|
|
|
‘ ‘ |
Address Data I
|

Branch
—address

| Program N
counter L
Immediate
—]

i Instruction values
FInstruction “
N decode

Instruction
fetch logic

j=s]
g5
Read ports

Write ports

ﬁ;j—ﬂ MUL
aay i

A

Fetch

Decode Writeback

I
I
I
I
I
I
I
!
I
I
I
I
I
I
I
!
1
Execute

Figure 3.6. Modified four-stage scalar OTA pipeline, with the critical path through multi-
plexers marked with a red arrow.

to four buses, whereas the multiplexer in the execute stage can be described by an input
socket connected to one of the buses and another bus with one connection to the ALU. The
other LSU operands, memory data input, and the ALU and multiplier operands can be
sourced directly from the busses describing the decode stage multiplexers. The two direct
connections, from the LSU to the RF and from the instruction decoder to the instruction
fetch logic, can be simple two-connection buses. The TTA with equivalent connectivity to
the modified OTA pipeline can be seen in Figure 3.7.

Operand 1
Operand 2
Operand 3
ALU Writeback
LSU Writeback
Branch address
LSU address

Figure 3.7. A TTA architecture with the connectivity of a four-stage scalar OTA pipeline
with bypassing.

Modeling each multiplexer as being built out of tiers of two-input multiplexers, we can get
an approximation of the logic utilization of the multiplexers in each processor design. For

3. Transport-Triggered Architectures 15

example, a four-input multiplexer has two tiers of simple, two-input multiplexers, one with
two multiplexers cascaded with the next layer with a single simple multiplexer, for three
multiplexers total. Every time a signal is added, one of the input signals can be replaced by
the output of a multiplexer, connected to the original input and the added signal. Therefore,
a multiplexer with N inputs requires N — 1 simple multiplexers to build, and has [log, N|
levels of multiplexers along its critical path.

The original pipeline datapath has nine multiplexers: three with two inputs, four with three
inputs, one four-input and another five-input multiplexer. These multiplexers can be built
out of 18 simple multiplexers. If only the multiplexers are considered, the critical path
goes through one bypassing multiplexer and the widest operand multiplexer, with a total
of five levels of simple multiplexers. The TTA conversion has five multiplexers, two of
which have two inputs, and the three remaining ones have five, seven and eight inputs.
This corresponds to 19 simple multiplexers. Because they are not cascaded, the critical
path of the multiplexers is simply the critical path of the largest multiplexer, with three
tiers. Both of these critical paths have been marked in Figures 3.5 and 3.6, respectively.

From this model, we can assume that the translation from an OTA to a TTA does not
increase the logic utilization for the multiplexer components. However, in the absence
of dynamic operation latencies, or when the dynamic latencies can be treated as static,
the TTA implementation does not require additional logic to resolve pipeline hazards, as
these can be resolved by the compiler. Furthermore, the instruction decoding is simpler
for TTAs, as the instruction word maps more directly to the multiplexer control signals.
The eliminated logic contributes alongside the removed multiplexer cascading to a higher
maximum frequency, and better performance.

This suggests that TTAs are also suitable as small soft processors, a hypothesis backed
by previous work [37], where a small TTA architecture improved the performance of
minimally configured Microblaze soft processors by over 100 % on average while only
increasing LUT utilization by under 25 %. These small, simple processors could be used on
their own as faster control-oriented cores or as processing elements in a SIMT architecture.

3.3 TTA-Based Co-Design Environment

TTA-Based Co-Design Environment [38] is a toolset for hardware-software co-design
of TTA processors. While it also features a graphical interface for processor design, a
retargetable compiler based on the LLVM project [52] and an instruction set simulator,
among other tools, this section will only cover the tools relevant to this thesis. Specifically,
it will cover the TTA template used by TCE and the RTL implementation produced from
architectural descriptions using the template. In the following chapters, this thesis will
propose modifications to this implementation. These modifications have been integrated in
TCE and TCE is used in the experimental portion of this thesis.

3. Transport-Triggered Architectures 16

3.3.1 TTA Template

As the TTA architecture represented in Figure 3.4 was designed with TCE tools, it is also
an example of the TTA template [15] used by TCE. In this template, a TTA processor
consists of one or more FUs and RFs connected together by an IC. A FU has one or more
input port and can have any number of output ports. One of the input ports acts as a trigger
port for all operations of the FU. The operands and results can be bound to any of the
available input and output ports, respectively. While the operand writes and result reads
can be assigned at any point of the operation execution, most operations read all operands
on the first cycle and produce all results on the last cycle, which defines an unambiguous
static latency for the operation.

Each machine may have one control unit (CU), which controls the instruction fetch logic
through branching and subroutine call instructions. While the pipelining details of the
instruction fetch and decode stages are implementation-defined, the CU defines branching
latency, and therefore the number of delay slots.

The IC is composed of one or more buses, each of which corresponds to one move in
the instruction word. On any bus, a move can be issued between any two source and
destination sockets connected to that bus. Any socket can be connected to any combination
of buses and to any number of ports although most designs have each socket connected to
only one port.

Each bus may have a short immediate value of arbitrary width with either zero or sign
extension to the width of the bus. For conditional transfers, each bus may have a set of
guard registers they can use to conditionally execute any move, with optional support for
inverting the value of the guard register.

3.3.2 Hardware Generation

There are a number of parameters that can be given to the processor generator that would
change the RTL description. Likewise, the CU has a variety of optional features, such as a
loop buffer and support for variable-length instructions. These configurations are outside
the scope of this thesis; instead, the following description will focus on the result of the
default parameters.

The instruction fetch stage is straightforward. The next instruction address, either incre-
mented from the current one or sourced from the operand of an active control operation,
is issued to the instruction memory. Unless the busy signal of the memory interface is
asserted, the instruction word is available in the next instruction cycle, and is forwarded to
the decode stage through a register, which can be bypassed according to a CU parameter.
The instruction decode stage drives the control signals of the interconnect and the load
and opcode signals of the function units through an optional register. The instruction fetch

3. Transport-Triggered Architectures 17

Input sockets Output sockets
To FU inputs From FU outputs
—
— —

Value of Bus 0

o

L] To Bus 1
[]
° To Bus 3

/ LXX)

Value of Bus N

Short immediate

Instruction decoder

Figure 3.8. And-or interconnect network.

and decode registers as well as the instruction memory latency determine the architectural
latency of the branch instructions and, by extension, the number of delay slots.

Prior to the work described in this thesis, the IC has been implemented as an and-or
network, shown in Figure 3.8. The instruction decoder drives a control signal for every
input socket decoded from the source field of each transport in the instruction word. This
selects which outputs the input socket data is forwarded to, and which are kept as an
all-zero signal. For each bus, the input socket outputs for that bus and the short immediate
from the instruction decoder are combined with an OR port. As only one of these signals
may be active at a time, that signal is driven to the output of the OR port. These signals are
connected to the output sockets of each bus, which selects the appropriate signal with a
multiplexer, controlled by the instruction decoder.

Function unit and register file implementations are picked from a hardware database.
Function units can also be constructed from VHDL or Verilog snippets describing each
operation. In order to handle dynamic latencies, e.g., when connecting an LSU to a cache,
function units can raise a global lock, stalling execution until the value is available.

The TTA template requires the function units to implement semi virtual-time latching

3. Transport-Triggered Architectures 18

trigger I D Q
enable
opcode —D Q
enable
tl_data —1D Q
02 load enable
- D Q result
1 enable
enable 0 D Q
02 data D Q
Operation logic

Figure 3.9. A possible implementation of semi virtual-time latching.

(SVTL), which is one of the approaches presented by Corporaal [19, 335-345]. While the
implementation details are left to the designer of the FU, one possible implementation can
be seen in Figure 3.9. The operand ports can store a value for any number of cycles, while
only exposing it to the operation logic once an operation is triggered. As such, the result
of the operation will not change due to a changed operand and the value of the previous
result can be used for longer.

19

4. FIELD PROGRAMMABLE GATE ARRAYS

Field-programmable gate arrays are a widely-used component in high performance application-
specific processing. The reconfigurability of FPGA devices allows for thorough customiza-
tion of the executed logic, which can reduce the power consumption dramatically. However,
compared with traditional processors, they are more difficult to design for, and usually
require experience in hardware design that a software engineer does not have.

This chapter first presents an examination of modern FPGA architectures with a focus
on the components most important for a processing system: fine-grained programmable
logic and coarse-grained random access memory (RAM) and arithmetic blocks. This is
followed by an overview of the methods used to design for FPGAs, and a comparison to
ASIC implementations, focusing on soft processors.

4.1 Architecture

Soft processor design requires a detailed understanding of FPGA technology. Modern
FPGA devices offer a variety of resources to implement the desired functionality, an
overview of which can be seen in Table 4.1. The four presented vendors make up the
overwhelming majority of the FPGA market [20].

4.1.1 Logic and Arithmetic

In the presented device families, look-up tables (LUTs) comprise the numerical majority
of the logic components. These are the main components used to implement arbitrary
logic functions. All device families also offer some amount of fixed logic connected to
the LUTSs; at a minimum, the carry logic for a ripple-carry adder is present to speed up
addition.

In most device families, LUTs feature four inputs and one output. As Intel and Xilinx have
moved on to larger LUT sizes, they have adopted LUT architectures that can be used as
multiple smaller LUTS, in order to avoid spending all of a large LUT on a smaller logic
function. For example, modern Xilinx devices feature LUTs capable of implementing a
6-input, single output logic function, or any 5-input, 2-output logic function, which allows
the LUT to implement two smaller, e.g. 3-input and 2-input independent logic functions.

While LUTs are the most versatile component in FPGAs, they are an inefficient way of
implementing complex arithmetic. Multiplication followed by addition or accumulation
is very common in digital signal processing (DSP) algorithms, such as convolutional

20

4. Field Programmable Gate Arrays

uod Ay suo A[uQ ¢

SYDdA SLI_G £ XUI[IX Ul q[X{9 0} dn suonem3yuod ur d[qe[reae K[uo st Wy [+ Y ¢ “§-0 “0zis Arowow pajuswfdwr uo spuadsp Junod 3o |,
mdino a3uis e im0 INdUI-g & 0JUT PAUIQUIOD oG UL ¢

Ioppe [euI2)Xa ue saxmbar onawyiLie uorsard s[qnop ‘swardnnu prey £q A[mus pajudwo[duwr oq ued dnswpLe jutod Suneoy uorsoard-o3urs
syndut g [[e uo puadsp jouued Jndino suo Lue se ‘)] ndur-g (LIS € JON

arx91 MT+HEI SEARS ¢ 0] qprs + 481 X q9¢ [9¥] ¢dOdA
4rx91 MT+AI q46X¥C01 QUON [0S] COXUORIN
SUON q46x¥c0l1 SUON QUON I b [S¥] qurysso1)
q91%¥96c M IT+d1 ¢A9TX¥8E91 qce + 991 X q91 [Ly] snidenin 0vdO!
q91%¥96c M IT+d 1 QUON qce + 991 x 991 [Ly] BDIN O¥ED!
991x96¢ M T+H1 SUON SUON [8¥] A Tenin OvAD! 9omeT]
qcIxgel MT+HUTC qcIx8v0c ary + 981 X 481 [19] ¥OLd
ag1xy9 MT+HET a81xycol QUON ary + 981 X 481 I % [29]1 TOOT1OI
qcIxy9 MT+HHT 90Tx¥C0l 981 + 981 X 481 [09] S1yre[0d TWISOITIN
yAIXCIS M T+ L | 9CLX9601 10 99¢xyC01 SUON a8y + 481 X qLT z ¢ [06—88] areosen|n
y41%¥96C M T+HYUE 99¢xy201 a8y + 981 X qsT ¢ ¢ [98—18] souIag L Xurrx
[s€l o1 xneng
q0cxCe MIT+HEI 90Xy ol SPA a9 +4LT X qLT 4 18 [8T] 01 eIy

[62] XD 01 suoph)

[0€] 4T 01 SuoPA)

Juo X Juo X
N q46X¥C0l N q81 X q81 ! 4 [z€]1 01 XVIN g

ZIS $3104 ZIS NV IS jurod Suneorq J33auy sindjng syndur
VY BP0 yod-fenq Jordynu prey LNT Aqrurey 3143 J10pPUdA

“NUM-PD2L = MY PUD 91U = A ‘ppa4 = Y Kunf YO J] £q §224n0524 21Jouiyiip puv LIOWdy “['f 3190

4. Field Programmable Gate Arrays 21

and finite impulse response filters. For these tasks, multipliers implemented as fixed-
function logic or with reduced configurability, i.e., hard multipliers, are very common in
FPGA devices. Only the very low end iCE40 UltraLite family and the bridging-focused
CrossLink and MachXO3 families from Lattice completely omit hard integer multipliers.
The multipliers usually feature built-in adders for accumulation of the multiplication result.
High-end Intel devices additionally offer floating point arithmetic support in their hard
multipliers.

4.1.2 Routing Resources

Q/G/¢4 Q6 Row Interconnects of

Variable Speed and Length
R24 é B | | 3
|| > v et i
RIORUR. < [
<4 <
T — . AMs
| T Direct-Link
Interconnect from
Direct-Link — — Adjacent Block
Interconnect from L |
Adjacent Block —p
— 1 [T] D
Direct-Link «¢ . [P Direct-Link
Interconnect to L L Interconnect to
Adjacent Block Adjacent Block
Local 148 s
Interconnect Local Interconnect is Driven (olumn Interconnects of

from Either Side by Column Interconnects and LABs, Variable Speed and length

and from Above by Row Interconnects

Figure 4.1. A high-level description of the routing resources in Intel Stratix 10 devices [36]

In order to connect these elements together, FPGAs use a routing network composed of
wires connected by switches, which can be configured to the desired state when the FPGA
device is programmed. An example of this can be seen in Figure 4.1. While the exact
details of the implementation of the routing networks, such as the number of wires and the
connectivity of the switch circuitry, differ between vendors and device families and are
not always available to the public, there are some general rules that most devices seem to
follow.

Much like the logic resources, the most numerous of the routing resources are the general-
purpose ones, with a high degree of connectivity through the switches. However, there are
also fixed connections between the logic elements. One example of this is the carry path

4. Field Programmable Gate Arrays 22

that can be used to implement wide addition. Similar signals for cascading can often be
found in the hardened arithmetic blocks.

4.1.3 Storage Elements

The smallest and most flexible storage components are one-bit sequential components
connected to LUT outputs. Usually, these elements are flip-flops (FF) although they can
also be configured as latches in Xilinx devices and the Lattice MachXO3 family. The
hardened arithmetic blocks also have registers that can be used for pipelining the arithmetic
operations or bypassed, available at a few fixed positions in the arithmetic operation
pipeline.

On-chip memory is an important part of a processor-based system. A memory hierarchy
with multiple levels is an integral part of modern computers, and the gap between com-
putational resources and memory bandwidth keeps growing [26, pp. 72-74]. While these
memories can be built out of individual registers in the FPGA fabric, this is inefficient
except for the smallest register files (RF).

Most device families have memory primitives to build small memories, suitable for RFs.
These smaller memories are less flexible than individual registers, but are faster and more
resource-efficient while still providing multiple read ports, especially in Xilinx devices.
Their greatest limitation is that even the high-end UltraScale LUT-based RAM is restricted
to a single write port.

For larger memories, such as caches or local scratchpad memories, most device families
supply SRAM (static RAM) blocks with two bidirectional ports. The depths and word
sizes of these memory blocks vary between vendors and device families. The word widths
of the memory blocks are rarely a power of two, as would be conventional in computer
systems, but tend to have widths slightly over the nearest power of two for storing e.g.
checksums.

Since the placement of the logic is more restricted than ASIC, especially for hardened
blocks, and the routing is less flexible, the path of a signal through the routing network can
contribute a significant portion of its delay between registers. In addition to the registers
next to the LUTs, Intel Stratix 10 devices also contain registers in the routing network,
which gives the synthesis tool more freedom in register placement [31].

4.1.4 Reset

Reset is an important part of a synchronous system. FPGAs offer a wider variety of reset
options compared with ASIC technologies. In particular, registers and memory can be
set to a known state when the device is programmed [11, 34, 51]. This is a resource-light
approach, as it does not require general routing or logic resources, but is only applied
once. Similarly, a global reset driven by internal logic or an external signal uses dedicated

4. Field Programmable Gate Arrays 23

routing, but it is inflexible and as such unsuitable on its own for designs which require a
partial reset.

Reset functionality for LUT FFs and hardened component pipeline registers varies between
device families. Most commonly, both asynchronous and synchronous resets are offered.
However, while Xilinx devices have LUT FFs with a configuration option supporting both
reset methods for their LUT FFs, memory and arithmetic block pipeline registers can only
be reset synchronously. Intel FPGA devices only offer asynchronous reset, emulating
synchronous reset with additional logic in the data path. In this case, the reset signal would
essentially AND-gate the datapath signal to zero. This increases the number of inputs to
each transfer function by one, increasing the LUTSs required to implement them.

4.2 Designing for FPGAs

The traditional tool for implementing an algorithm on an FPGA is RTL design. However,
this is a very low-level design method, and as discussed, RTL design languages have a
very different programming paradigm from most software programming languages despite
the surface-level similarities. This makes it inaccessible to software-focused programmers.

High-level synthesis tools attempt to bridge this gap. They can transform an algorithm
described in a software programming language, such as C, into a description the FPGA
synthesis tools can use for an FPGA design. However, in addition to the usual program
description, these tools often introduce tool-specific directives the programmer can use to
direct the tool in terms of how it implements the operations or unrolls and pipelines the
logic on the FPGA. Using these is essentially mandatory for high-performance designs,
and require knowledge of the underlying architecture and how to implement logic most
efficiently for it.

Overlay architectures are another way to map algorithms on FPGAs. They are a collection
of coarse-grained components that can be implemented on top of the FPGA fabric, to
allow for a higher level of abstraction for the programmer. The components can range in
complexity from blocks resembling the FPGA fabric itself [8, 10] to ones incorporating
arithmetic units [39] to soft processors, i.e., conventional processors implemented on the
FPGA fabric.

Soft processors are an important tool in an FPGA designer’s toolkit. The flexibility and
relative ease of programming a soft processor has attracted a wide variety of approaches
to processors, from conventional RISC designs to architectures designed around run-
time reconfigurability. However, processor design is almost always done at a low level
of abstraction, and the underlying FPGA architecture and its differences with ASIC
technologies have to be taken into account when designing and implementing a soft
processor. This means that while programming the processors is simple, designing them
falls outside the skill set of a software programmer.

4. Field Programmable Gate Arrays 24

4.3 Comparison to ASIC

Wong et al. [83] performed a quantitative comparison between ASIC and FPGA-based
processor components, carried out with the Intel Stratix III device. This is an older high-end
device family with features between the two tiers of Intel devices presented in Table 4.1,
with 6-input LUTs and additional memory block sizes in addition to the 9216-bit memory
blocks of the MAX 10 and Cyclone 10 LP families.

Wong et al. found that, in general, the arithmetic which has specialized logic for them
in the FPGA fabric area penalties compared with their ASIC implementations than other
components. In particular, multipliers and adders fared well in the comparison. On the
other hand, multiplexers had very high area and delay ratios. Newer FPGA architectures
may perform better in this respect: Series 7 FPGAs from Xilinx incorporate multiplexer
logic alongside the LUTs, and the larger LUTs of the higher-end Intel devices should be
able to implement multiplexing logic more efficiently.

Simple, single-ported memories were another highly area-efficient component. However,
complex memory structures, such as multi-ported memories for register files and content-
addressable memories for processor caches required more resources than the simpler
memories, as they could not be implemented directly with the FPGA memory primitives.
As such, Wong et al. recommend building large caches with low associativity so that
content-addressable memories are not required. Off-chip bandwidth was observed to be
worse than for fixed-function circuits by 30 to 50 percent, which can be alleviated with
caching the required data.

As expected, the hardened memory and arithmetic blocks feature heavily in efficient
FPGA designs. While the synthesis tools are capable of mapping generic RTL code to
hardened components, particularly multipliers, automatically, i.e. inferring them, this
gives the synthesis tool significant latitude in choosing the appropriate organization and
whether to optimize for fewer utilized LUTs, fewer utilized hardware multipliers or greater
performance.

The synthesis tool has a large amount of information at its disposal and the implementations
of common logic circuits have most likely been optimized to the underlying resources
device by the FPGA vendors. While this could be expected to lead to better outcomes than
a human designer, the implementation of the synthesis tool often requires adjustment for
better results in the author’s experience. This may be due to the synthesis tool prioritizing
the optimization metrics differently from the designer.

The alternative approach, explicitly instantiating the necessary hardware resources and
configuring them to the designer’s preferences, requires more effort, but can lead to better
results overall. In addition to hardened arithmetic resources, efficient implementation
of, for instance, bit-shift operations can require the explicit use of the logic intended for
multiplexing and addition. [66]

25

5. IMPLEMENTED OPTIMIZATIONS

The default RTL description generated by the TCE toolset has been primarily optimized for
ASIC designs. In the process of optimizing TTAs for FPGA designs, some structures were
found to be inefficient. This chapter details the changes made to each component of the
processor and lays out guidelines for FU design for a more efficient FPGA implementation.

5.1 Instruction Fetch and Decode

The instruction fetch and decode stages of the examined TTA template are very simple: by
default, only absolute jumps and calls are supported, and the instruction word is simple to
map to the control signals. The primary change for these stages is the reset organization.

As discussed, there are more options for reset in FPGAs than there are for ASIC. However,
the high performance target limits the choices considerably. In order to scale up a TTA
design to large FPGA devices, a multiprocessor organization is likely needed. In such a
design, the ability to reset processors independently is desirable, e.g. if different processors
are executing different workloads. This eliminates global reset structures and configuration-
time reset from the list of possible choices.

For local reset, there are still two options, namely, asynchronous and synchronous. The
choice is straightforward for Intel FPGA devices: because the registers only support asyn-
chronous reset, synchronous reset would introduce extra logic in the data path and affect
clock rates and utilization negatively. In Xilinx devices, LUT FFs can be reset either asyn-
chronously or synchronously, but the hardened arithmetic and memory components only
support synchronous reset, and synchronous reset is recommended so that the synthesis
tool has the option to map some of the processor functions to the hardened blocks.

5.2 Interconnection Network

A complex interconnection network can be the largest individual component in a TTA
processor, and it may affect the critical path within any function unit as FU logic is moved
across the registers to the IC or vice versa. Therefore, its efficient implementation is
paramount to a high-performance TTA design. The default implementation, described in
Chapter 3, did not map efficiently on to FPGA hardware.

For the FPGA implementations, the input socket side of the IC, with an AND-OR network
performing what is essentially a multiplexing operation, was replaced with a switch-case
structure in the RTL code. This describes a single multiplexer per bus, as shown in
Figure 5.1. In addition to mapping better to the dedicated multiplexing logic of the LUTs

5. Implemented Optimizations 26

To FU inputs From FU outputs

2

Value of Bus 0

Value of Bus N

7/_M 0007/—M

Short immediate

Instruction decoder

Figure 5.1. Multiplexer-based interconnection network.

of the FPGA device, the decode process needs to examine the source fields of a single bus,
rather than the source fields of every bus a given input socket is connected to. This reduces
the number of inputs to the logic function required to determine the control signals and,
subsequently, the number of logic elements required to implement it.

5.3 Memory Organization

The memory organization of a processor is an important factor contributing to its overall
performance. Traditional approaches, such as cache hierarchies, also apply to TTAs.
However, cache latency is inherently dynamic, depending on whether or not a cache miss
occurs. This requires the processor to handle more lock signals. The LSUs are often the
only source of the lock signal outside instruction fetch, as arithmetic operations generally
have static latencies.

In addition to caches and other sources of variable latency memory interfaces, high latency
interfaces pose an issue: extreme instruction latencies cannot be covered with other
operations, so every memory load introduces many no-operation instructions, inflating the
required instruction memory size. While they can be described as static latency memories,
it is usually beneficial to introduce a lock signal. In these LSUs, the lock signal should be
designed so that the logic within the LSU contributes little to the critical path originating
from the lock signal. In other words, the lock signal should originate directly from a

5. Implemented Optimizations 27

register, wherever possible.

Omitting the lock signal altogether simplifies the locking circuitry. This can be done by
using smaller, static latency memories local to the processor. The input data and the results
have to be moved between main memory and the processor through software control in
this approach, and requires an external interface to the memory model. Hardened SRAM
blocks in FPGAs usually have two bidirectional ports, one of which can be used for the
LSU, while the other enables external access.

The LSUs have little control over the instantiated memory: in the interest of portability,
memory models are kept outside the processor and given external signals to connect to.
The LSU only has to provide an interface compatible with the memory model, which is
fairly trivial in itself. However, like the reset, the lock signal is another high-fanout signal,
connected to most of the registers of the TTA.

Since LSUs are associated with an address space and address spaces usually correspond
to their own memory interface, the straightforward configuration is one LSU per address
space. This avoids the need for arbitration logic between two LSUs attempting to access
one address space. However, multiple LSUs accessing one address space allows for parallel
accesses. FPGA memory primitives are commonly limited to two ports, and building
memories with more ports is very expensive for large memories. Banking memory, i.e.,
dividing it into multiple independent blocks with e.g. one read and write port, can increase
parallel performance when different memory banks are accessed at once, but this introduces
variable latencies to the LSUs.

Register files are more self-contained, and have full control over how they are mapped to
the FPGA primitives. While many-ported memories can be constructed from primitives
with fewer ports, this can lead to a very large resource utilization [42]. Due to the port
restrictions of FPGA memories, write port reduction is especially important, as each write
port requires its own instance of the memory primitive as well as increases the required
bookkeeping logic. This can be further multiplied if the RF read port count exceeds that of
the memory primitive. The port thresholds vary, but for the Xilinx 7 Series devices, each
set of three read ports requires its own set of memory primitives. Partitioning the RF into
multiple less complex ones is one way to reduce the port count of the instanced memories.

5.4 Arithmetic Logic Units

Like LSUs, the challenge for FPGA optimization of ALUs is roughly the same: to
efficiently map the arithmetic functions and memory, respectively, to the hardened blocks
of the FPGA device. As a general guideline for all FUs, registers should not be reset
unnecessarily, as that requires more routing resources and adds fanout to the reset signal.

Compared to LSUs, ALUs have a wider design space, as the operations of one ALU can
be easily divided between multiple FUs. There are still reasons to keep certain operations

5. Implemented Optimizations 28

together. For example, addition, substraction and comparison operations can share a most
of their implementation logic, and keeping these operations together can save on resources.
However, replicating an adder may be a sufficiently small price to pay for the possibility of
executing two operations in parallel, on two different FUs. Furthermore, increasing the
number of FUs increases the number of ports, and therefore also port registers, which can
act as storage in lieu of an RF register.

When the application is suited to it, further parallel execution can be achieved by SIMD
function units. As these apply an operation independently to multiple vector elements,
without necessarily any communication between elements, the ALUs themselves can be
scaled up almost without limit. However, a comparatively massive ALU and the similarly-
sized RFs for the vector buses can essentially stretch the interconnect to cover more area,
and therefore negatively impact the timing of the processor. Another bottleneck may be the
communication between the scalar and vector buses. Whether it is done through memory
or by FUs, picking one vector element to feed to a scalar bus can require a large multiplexer
for wide vectors.

The ALUs have more control over the internal pipelining of the hardened blocks than LSUs,
as they usually reside fully within their ALU. A direct implementation of the operation
logic may not be enough, as there are many ways to organize even a simple multiplication,
and the synthesis tool may decide to use the wrong organization for the optimization
target set by the designer. As discussed, the direct instantiation of the hardened arithmetic
components is sometimes required to use the ideal organization.

For example, the 2x32b design presented in Section 6.4 only reached maximum clock
frequencies between 93 and 154 MHz with various organizations of the SIMD ALU, when
the multipliers were inferred from 32-bit wide multiplication operations in the VHDL code,
while the same design with hand-instantiated multipliers performing the same task reached
195 MHz.

29

6. EVALUATION

In this chapter, different implementations of TTA architectures are evaluated experimen-
tally. First, different configurations and optimizations of the subcomponents of a TTA
architecture are evaluated and compared. Following that, high-performance TTA processor
systems are discussed, and the scalability of TTA soft processors with SIMD capabili-
ties is examined. Lastly, an FPGA re-design of an architecture designed for an ASIC
implementation is presented, along with the individual changes made to the architecture.

6.1 Multiplexers on FPGA

Table 6.1. Multiplexer synthesis results.

Inputs 2 3 4 5 6
LUTs 32 32 32 64 64
F7 Muxes | O 0 0 0 0

F8 Muxes | 0 0 0 0 0
Delay (ns) | 1.903 1.961 2.093 2371 2.54

Inputs 7 8 9 10 11
LUTs 64 64 97 128 128
F7 Muxes | 32 32 0 0 0

F8 Muxes | 0 0 0 0 0
Delay (ns) | 2.385 2.571 2.888 2.808 2.745

Inputs 12 13 14 15 16
LUTs 128 130 128 128 128
F7 Muxes | 0 32 64 64 64
F8 Muxes | O 0 32 32 32

Delay (ns) | 2.59 3.046 2.632 2943 3.088

In order to verify the comparison between scalar OTA and TTA interconnect complexity, a
series of multiplexers were synthesized for an FPGA architecture. The synthesis results
for 32-bit multiplexers with a varying amount of inputs can be seen in Table 6.1. They
are the result of out-of-context synthesis for the multiplexers, with each input and output
registered. The synthesis used the same parameters as a performance-focused synthesis
profile in Vivado.

Against expectations, the delay is not a monotonic increase as the input count is increased.
For example, the six-input multiplexer is slower than the 7-input one. The utilization
results are more straightforward and go some way to explaining the timing discrepancies.
For up to four inputs, the implementation seems to be the same: one LUT for each bit of
the input. A six-input LUT can implement a four-input multiplexer, with two of the inputs
occupied by the select signal.

6. Evaluation 30

The seven- and eight-input multiplexers start using the F7 multiplexer resources, each
selecting between two bits. The five- and six-input multiplexers do not use these, as their
inputs are sourced from two LUTs, and implementing the logic with two LUTs directly is
cheaper. However, cascading two LUTs incurs more delay than one layer of LUTs feeding
into one F7 multiplexer. Similarly, once the multiplexers start using four LUTs per bit,
they do not need to use the F7 or F8 multiplexers until the input count rises to 13.

Assuming a 32-bit datapath, the logic utilization for the multiplexers for the scalar OTA
machine shown earlier is equal to 160 LUTs, while the TTA equivalent uses 192 LUTs,
an increase of 20 %. The critical path, on the other hand, is 4.3 nanoseconds for the OTA
implementation, and 2.6 for the TTA.

6.2 TTA Suboptimizations

There were a large number of individual improvements and possible parameters to the
TTA implementation presented, and testing every combination of them would be infeasible.
Instead, the configurations and optimizations were tested on their own and compared
against the TTA implementation used before the improvements presented in this thesis.

6.2.1 Reset Regime

In order to establish the effect of reset on the utilization and performance of a TTA core,
the two options were compared with the seven TTA architectures used in [37], with the
same methodology for determining utilization and maximum frequency. The same FPGA
device, a Xilinx Zynq 7020, was used. The results can be seen in Table 6.2. The difference
in utilization between asynchronous and synchronous reset was, while not major in an
absolute sense, unexpectedly high: since the LUT FFs support both reset methods, the only
difference should be found in the hardened blocks.

Inspection of the resulting netlist revealed that the internal synchronous reset had to be
emulated with logic in the data path when accompanied by an asynchronous external
reset, because the FFs can only have one type of reset at a time. When the external reset
was synchronous, the internal reset could be combined with it for a single reset signal.
Additionally, in the instruction fetch logic, the asynchronous reset loaded a constant to the
instruction pointer register, while with the synchronous reset the value was sourced from
an external signal. When both were active, extra logic was present, the amount depending
on the instruction word.

In order to verify that the differences were primarily from a mismatch between two resets,
the synthesis was rerun, while disabling the local reset by setting it to a constant, inactive
value. This allowed the synthesis tool to remove the local reset logic. The differences
between the asynchronous and synchronous utilization results are significantly smaller
now and mainly present in the instruction decode phase. This may be due to the synthesis

6. Evaluation 31
Table 6.2. Comparison between different reset regimes.
Internal LUTs
Reset | reset Instruction Instruction Fyrax
Arch. type enabled | Core decode fetch FFs | (MHz)
m-tta-1 | Async. | Yes 819 68 81 499 | 206
m-tta-1 | Synch. | Yes 765 (93 %) 47 (69 %) 48 (59 %) | 499 | 217
m-tta-1 | Async. | No 767 (94 %) 49 (72 %) 48 (59 %) | 499 | 203
m-tta-1 | Synch. | No 762 (93 %) 4566 %) 48 (59 %) | 499 | 217
m-tta-2 | Async. | Yes 984 114 100 588 | 214
m-tta-2 | Synch. | Yes 903 (92 %) 85(75%) 48 (48 %) | 588 | 208
m-tta-2 | Async. | No 90592 %) 87(76 %) 48 (48 %) | 588 | 216
m-tta-2 | Synch. | No 898 91 %) 81 (71 %) 48 (48 %) | 588 | 206
m-tta-3 | Async. | Yes 2002 230 135 869 | 167
m-tta-3 | Synch. | Yes 1866 (93 %) 180 (78 %) 48 (36 %) | 869 | 169
m-tta-3 | Async. | No 1860 (93 %) 175 (76 %) 48 (36 %) | 869 | 171
m-tta-3 | Synch. | No 1857 (93 %) 171 (74 %) 48 (36 %) | 869 | 170
p-tta-2 Async. | Yes 1160 141 101 606 | 206
p-tta-2 Synch. | Yes 1101 (95 %) 135 (96 %) 48 (48 %) | 606 | 213
p-tta-2 Async. | No 1095 (94 %) 129 (91 %) 48 (48 %) | 606 | 209
p-tta-2 Synch. | No 1097 (95 %) 131 (93 %) 48 (48 %) | 606 | 207
p-tta-3 Async. | Yes 1982 254 131 874 | 190
p-tta-3 Synch. | Yes 1865 (94 %) 220 (87 %) 48 (37 %) | 874 | 191
p-tta-3 Async. | No 1845 (93 %) 200 (79 %) 48 (37 %) | 874 | 189
p-tta-3 Synch. | No 1854 (94 %) 209 (82 %) 48 (37 %) | 874 | 189
bm-tta-2 | Async. | Yes 1059 125 93 577 | 213
bm-tta-2 | Synch. | Yes 981 (93 %) 91(73%) 48(52%) | 577 | 206
bm-tta-2 | Async. | No 984 (93 %) 95(76 %) 48 (52 %) | 577 | 213
bm-tta-2 | Synch. | No 982 (93 %) 92 (74 %) 48 (52%) | 577 | 207
bm-tta-3 | Async. | Yes 1769 209 109 821 | 188
bm-tta-3 | Synch. | Yes 1658 (94 %) 159 (76 %) 48 (44 %) | 821 | 187
bm-tta-3 | Async. | No 1661 (94 %) 162 (78 %) 48 (44 %) | 821 | 190
bm-tta-3 | Synch. | No 1654 (93 %) 155 (74 %) 48 (44 %) | 821 | 188

tool combining some datapath logic where registers are set to their reset values with the
reset signal, saving some logic in the synchronous case.

The differences in maximum frequency are more consistent regardless of local reset. The
cause, however, is not as clear. For example, in both m-tta-1 and bm-tta-2, the critical path
moves from an internal path starting from the RF index register in the asynchronous case
to a path between the instruction memory and the bus interface which would be used to
control the core in the synchronous case. In m-tta-1 this leads to an increase in maximum
frequency, while in bm-tta-2 it leads to a decrease.

It is possible that moving a register from FFs to the instruction memory block is faster in
the smaller cores, where the routing between the instruction memory and its fetch logic
is not a bottleneck, while the same approach reduces the freedom of placement for the
register in the larger cores, where having the registers midway between the memory and

6. Evaluation 32

instruction fetch would be ideal, but it is difficult to tell from the data. Regardless, the
differences for larger cores are minimal, as the instruction fetch stage does not have a
major effect on the internal paths.

6.2.2 Interconnection Network

Table 6.3. Comparison between interconnection network implementations.

LUTs
Instruction Fuyrax
Architecture | IC type Core decode IC FFs | (MHz)
m-tta-1 AND-OR 895 40 265 507 | 215
m-tta-1 Multiplexer | 765 (85 %) 47 (118 %) 128 (48 %) | 499 | 217
m-tta-2 AND-OR 1117 69 438 599 | 206
m-tta-2 Multiplexer | 903 (81 %) 85 (123 %) 208 (47 %) | 588 | 208
m-tta-3 AND-OR 2249 149 932 895 | 178
m-tta-3 Multiplexer | 1866 (83 %) 180 (121 %) 517 (55 %) | 869 | 169
p-tta-2 AND-OR 1270 114 542 619 | 208
p-tta-2 Multiplexer | 1101 (87 %) 135 (118 %) 352 (65 %) | 606 | 213
p-tta-3 AND-OR 2508 187 1290 908 | 190
p-tta-3 Multiplexer | 1865 (74 %) 220 (118 %) 614 (48 %) | 874 | 191
bm-tta-2 AND-OR 1130 78 438 590 | 202
bm-tta-2 Multiplexer | 981 (87 %) 91 (117 %) 276 (63 %) | 577 | 206
bm-tta-3 AND-OR 2196 142 1023 850 | 180
bm-tta-3 Multiplexer | 1658 (76 %) 159 (112 %) 468 (46 %) | 821 | 187

Like the earlier cases, the two interconnect options were synthesized for the same seven
architectures for comparison. The results can be seen in Table 6.3. The differences in
the IC as an isolated component are significant, ranging from 35 to 55 percent reduction.
As the control signal to an N-connected output socket only require /og,(N) bits in the
multiplexer-based approach, while the one-hot signalling of the AND-OR network requires
N bits, so the number of registers is also slightly reduced. A slight logic utilization increase
can be seen in the instruction decode stage, but this is comparatively small. When taking
the entire processor into account, every architecture sees a reduction in logic utilization,
ranging from 13 to 26 percent.

For the most part, minor increases in maximum frequency can be seen. A minor decrease
can be seen in m-tta-3. In that architecture, many buses have connections to five output
sockets, which requires three stages of two-to-one multiplexers. With four connections,
only two stages would be needed. In other words, the IC of m-tta-3 is just on the undesirable
side of a step up in critical path latency and an intelligently-pruned interconnect may settle
below it.

The multiplexer-based interconnect should be straightforward: each of the busses and each
of the input sockets contribute one multiplexer with as many inputs as the bus or socket.
However, as can be seen in Table 6.4, this is not always the case, as the synthesis tool may

6. Evaluation 33

Table 6.4. Predictions and synthesis results for the multiplexer-based IC LUT utilzation.

Architecture | Predicted Actual Difference
m-tta-1 128 128 0%
m-tta-2 320 208 -35 %
m-tta-3 608 517 -15 %
p-tta-2 448 352 21 %
p-tta-3 704 614 -13 %
bm-tta-2 320 276 -14 %
bm-tta-3 481 468 3%

find ways to optimize the interconnect further. For example, not all of the inputs are 32
bits: short immediates and boolean RF outputs are significantly shorter. In some cases, it
may also be possible to implement the socket and bus multiplexers as a single multiplexer.

6.3 Total Effect of Optimizations

Table 6.5. Comparison between original and fully FPGA-optimized implementations.

LUTs
Instr. Instr. Fyax
Arch. Optimization | Core decode fetch IC FFs | (MHz)
m-tta-1 | Original 955 68 81 265 507 | 215
m-tta-1 | FPGA 765 (80 %) 47 48 128 (48 %) | 499 | 217
m-tta-2 | Original 1210 115 100 435 599 | 207
m-tta-2 | FPGA 903 (75 %) 85 48 208 (48 %) | 588 | 208
m-tta-3 | Original 2398 211 135 932 895 | 178
m-tta-3 | FPGA 1866 (78 %) 180 48 517 (55 %) | 869 | 169
p-tta-2 Original 1341 132 101 542 619 | 209
p-tta-2 FPGA 1101 (82 %) 135 48 352 (65 %) | 606 | 213
p-tta-3 Original 2647 244 130 1290 908 | 189
p-tta-3 FPGA 1865 (70 %) 220 48 614 (48 %) | 874 | 191
bm-tta-2 | Original 1213 116 93 438 590 | 217
bm-tta-2 | FPGA 981 (81 %) 91 48 276 (63 %) | 577 | 206
bm-tta-3 | Original 2319 204 109 1023 850 | 185
bm-tta-3 | FPGA 1658 (71 %) 159 48 468 (46 %) | 821 | 187

In order to verify the total effect of the reset and interconnect optimizations, the fully
FPGA-optimized designs were compared with the implementations without any of the
optimizations. The synthesis results can be seen in Table 6.5. The difference in the
interconnect network utilization is dominant, and the difference in IC logic utilization is
similar as was seen with only that optimization. The number of registers is slightly reduced
as a result of the reset regime change. Overall, the cores see a logic utilization reduction of
18 to 30 percent.

The effect on maximum frequency is minor, and some cores even see a minor decrease in
clock rate. Based on the critical paths reported for the final synthesis results, it seems that

6. Evaluation 34

the multiplexer-based interconnect may improve timing in some cases: all but one of the
unoptimized implementations had a critical path in the interconnect, while only three of
the FPGA-optimized ones had such a critical path. Instead, their critical paths were either
internal to the ALU or between the instruction memory and the external memory bus used
to program the core.

6.4 Parallel Execution on TTAs

There are many ways to increase soft processor performance through parallelism. Multipro-
cessor systems are the simplest approach: simply instantiate multiple copies of the same
core, and connect them together through an external interconnect. A multiprocessor system
will be presented as a case study, but exploring multiprocessor organizations is outside
the scope of this thesis. Since the main contributor to multiprocessor performance scaling
— the interconnect — is not part of the processor, it can be assumed that multiprocessor
organizations scale similarly whether the cores themselves are TTAs, RISC processors, or
any other architecture.

Like VLIW architectures, TTAs can attain a higher performance by introducing more
function units. This is a simple approach, but simply increasing the computational capacity
of the processor will move the bottleneck to the memory components. With some appli-
cations, the LSU bandwidth will be the main bottleneck, while other applications may
require a large or complex register file for intra-processor communication.

Another way to increase the computational performance of a single core is using SIMD
function units. In an ideal application, doubling the SIMD element count halves the cycle
count. One easily vectorizable calculation that gets close to this is matrix multiplication: as
long as the matrix rows have a number of elements divisible by the SIMD element count,
all arithmetic can be done in fully-occupied SIMD operations.

A vectorized matrix multiplication program was developed with the goal to have adjustable
arithmetic precision and SIMD element count. For the execution of this program, TTA
architectures were generated from three templates, one for each arithmetic precision, for
five machines per template with varying vector widths.

The architectures were modified from the bm-tta-2 machine. Modifications include a new
vector unit capable of multiplication and addition and a simplified LSU containing only
the scalar operations needed by the matrix multiplication program and the vector loads and
stores to match the vector unit. Additionally, function units containing some operations to
interface the vector and scalar datapath together — such as a broadcast instruction — were
added.

The simple vectorization of matrix multiplication can be seen in the simulation results,
in Table 6.6. The execution time is approximately inversely proportional to the SIMD
element count across all architectures.

6. Evaluation 35

Table 6.6. Cycle counts executing a 64-by-64 element matrix multiplication with varying
arithmetic precision and vector width.

Arithmetic precision

SIMD element count | 8 bits | 16 bits | 32 bits

2 - - 957663

4 - 462047 | 478431

8 225774 | 226288 | 227120

16 113382 | 113640 | 114472

32 57122 | 57124 | 58020

64 31518 28958 -

Table 6.7. Synthesis results for SIMD machines.
LUTs

Vector Instr. Vector DSP48 | Maximum
width | Core decode IC ALU LSU | FFs | blocks | frequency
8x8 1612 124 514 67 312 | 1049 | 11 166
16x8 | 2242 125 738 131 561 | 1572 | 19 156
32x8 | 3625 128 1186 259 1177 | 2623 | 35 135
64x8 | 6201 125 2082 521 2234 | 4705 | 67 125
128x8 | 12077 128 3874 1039 4553 | 8908 | 131 108
4x16 | 1535 126 514 67 233 | 1065 | 7 188
8x16 | 2120 125 738 131 439 | 1584 | 11 172
16x16 | 3302 128 1186 259 862 | 2619 | 19 164
32x16 | 5733 124 2082 515 1764 | 4688 | 35 135
64x16 | 11145 128 3875 1028 3632 | 8853 | 67 117
2x32 | 1443 126 510 98 164 | 934 |9 197
4x32 | 2018 126 734 194 377 | 1322 | 15 186
8x32 | 3161 126 1182 386 795 | 2096 | 27 170
16x32 | 5521 126 2078 771 1701 | 3652 | 51 156!
32x32 | 9885 126 3870 1540 3165 | 6754 | 99 122

! The synthesis tool failed to synthesize the 16x32 machine with the same synthesis
options as the other machines. This maximum frequency is the result of a synthesis
without the ~keep_equivalent_registers option.

The synthesis results in Table 6.7 show that the maximum frequency declines as the vector
width is increased. Especially for machines with many SIMD elements, the bottleneck is
in the LSU logic, specifically the multiplexer instantiated to select a narrow load result
from the wide vector, e.g. a 32 bit result from a 32-by-32 bit vector. The logic utilization
of the interconnect and ALU also scale linearly with vector width, but the additional lanes
perform the same operations as the others, and the number of logic levels does not change.

The total runtimes, derived from the maximum frequency and cycle count for each of
the architectures, are presented in Figure 6.1. While the maximum frequency declines
with wider vector widths, the cycle count decreases are still dominant across the tested
architectures.

6. Evaluation 36

104 4
. Arithmetic width (bits)
8
16
32
0
=2
£ 10%
-E i
5
@
102 T T T T T T
2 4 8 16 32 64

SIMD elements

Figure 6.1. Total runtimes of the vector architectures.

6.5 Convolutional Neural Network Case Study

In this section, an FPGA-optimized design of an application-specific accelerator is pre-
sented. The architecture is an FPGA-focused redesign of the previously published AivoTTA
accelerator [27], designed for convolutional neural network (CNN) applications. As the
original AivoTTA design targeted ASIC technology, many changes had to be made in order
to make the design suitable for FPGA devices.

In the original architecture, the interconnect was fully connected for the first three buses,
i.e. there was a path from each of the input sockets to each output socket connected to
those buses. This proved infeasible on FPGA and rarely-used connections were removed
in order to simplify the inferred multiplexers. While this reduces the scheduling freedom
of the compiler, only a minor cycle count decrease was seen as a result of pruning the
connections.

The wide vector buses were found to be equally challenging for the synthesis tools. In the
original design, there was one bus for each of the vector datapaths. The 1024-bit wide bus
was split into two and given connections mainly to the multiply-add function unit and the
register file. This improved the interconnect logic utilization while keeping the important
paths intact.

6. Evaluation 37

While the clock frequency targets on the FPGA were significantly lower than the ASIC
implementation, the FPGA implementation of some function units was found to be difficult
at the latencies of the ASIC architecture. In particular, the single clock cycle latency for
the vectorized multiply-add unit was not a reasonable target for the FPGA. Its latency was
increased to 3 cycles and it was implemented using hand-instantiated hardened multipliers.
Furthermore, the latencies of all FUs were increased to a minimum of 2 cycles, so that they
could have a register at both ends of the instruction logic, isolating its their datapath from
the interconnect network.

In addition to the increased latencies, several vector function units were merged together.
As operand and output ports are combined, the complexity of the interconnect is reduced,
simplifying the multiplexers there, while requiring multiplexers within the function unit.
For simple operations, such as the SIMD greater-than instruction, the additional logic does
not affect clock frequency. For more complex operations, i.e. those in the interpolation
and multiply-add function units, were left as is. This helped simplify the 256-bit wide bus
in particular.

The proposed architecture was used in two designs targetting two FPGA boards, the PYNQ-
71, with a Zynq 7020 device, and the ZCU102, which has a Zynq UltraScale XCZU9EG
device. The dual-core PYNQ-Z1 design could be used for embedded applications, such as
camera drones, whereas the ZCU102 design targets high-performance use cases with 14
cores.

In order to evaluate the accelerators, the performance of a C application for face detec-
tion [24], also used in previous work [27], was measured. The CNN has four layers and
uses layer fusion in order to improve data locality and reduce memory accesses. In both
designs, it processes 720p frames.

In addition to the two programmable cores, the PYNQ-Z1 design includes fixed-function
logic to interface with an HDMI video stream for a real-time face detection demonstration.
This makes up approximately 14% of the logic utilization of the design.

For the calculation of the performance measurements, the application was simulated in the
TCE toolchain simulator. The simulation results contain the utilization of the multiply-add
operation as well as total cycle count. In the implemented design, however, memory
accesses to off-chip memory introduce stalls which lower the utilization. The stall counts
were read from debug registers after running the application for one frame.

The synthesis and performance results for the accelerator on both of the platforms is
presented in Table 6.8. While the non-programmable accelerators reach significantly
higher performance figures than the proposed design, particularly the multi-board designs
presented by Zhang et al., the overall performance is acceptable.

There is still slack in the design. The memory accesses are costly for AivoTTA and the
accelerator spends roughly a quarter of its execution time stalled due to memory accesses

38

6. Evaluation

"uone[nwIs woxy SJOO Yead [eonaIoay],

"SOIIAIP LOGIXA L-XOMIA XIS IO IN0J QU0 pue 1A Gp()L bukz suQ ,
"uosLiedwod SIyy Ut 3s10Mm AOLs arey sugisap paziwndo-£oudje| ayy se ‘paptwo (I pue g susise(

87'8% | (%8L) 0S6TIT (9%02) ¥0S 00¢ 7- Dd6NZ bukz
L€ | (%L8)1909% | (%ge)TL 94! I- 0z0L bufkz Q91 ugisop pasodoig
L9 (9%89) £9TS¢ (%99) LO1 STl ¢~ LOEEXTT S-XRMIA 991 [9L] ‘Te 12 sepeleyUeg
89 (%06) 0001 € (%82) ¥ 00¢ SEXS P-XUMIA 991 [z2] AND
$10JeI9[00¢e 9[qewwet3ord TTH
Lyl - - [00z | 1-10VTXTIA9-XMIA [q9f [1Z] MOLInaN |
SI0JRIS[AIIL S[qRINSYUOIAI-OWTIUNY
€LIT | (%91) 000ZT1 (%€T1) 95T 001 8dSH A-Xnens q91 pue g8 [851 (9107) 'Te 19 BN
'L (9%L1) 00002T (9%LE) LTL 0cl 8dSDH A-xneng q91 pue g8 [8L] ‘Te 30 epng
SI018I9[9008 STH
0'LET | (%¥1) 000191 | (%001) 8IST 0S1 C-0SIT XD 0l eLy q91 pue g8 [LS] (LT0D) TR 19 BN
6'S9S | (%95) S08€LT | (%LL) ¥¥1T 9¢1 C- LSSV XA L-XMIA 991 [SS] ey IT
0'LET | (%TS) 919781 (%L8) 08L 0SI T- Sv0L bukz 991 [2L] Te e nI)
¢C'P8 - - 001 LS8V XA L-XMIA Jeop qze [+9] ‘Te 32 IpaweIoN
£08¢l 70 LO69XA L-XMIA
9°6T8 - - 0SI pue z- G40L bukz Q91 1[s6] (9102) 'Te 10 Sueyyz
06¢
79'19 | (%Te) 167981 | (%08) 0¥CT 00T T LSSPXA L-XMIA jeop qge [¥6] (S102) 'Te 30 Sueyy
SIOYBIQ[QI0R UOTIOUNJ-PIXT,]
‘mn ‘mn (ZHIN) opei3 paads uorstoaxd
SdOD o130 dsda Youl, g pue 01 JYSToM J0JRIS[AIIY

$10ID42]299D 1UD-2Y]-[0-21D]S YIIM UOSLIDAUIO)) “8°9 I|qD],

6. Evaluation 39

to off-chip DRAM. This could be avoided by the better use of the local memories for each
of the cores, or an LSU with a two-stage load instruction that stalls only when the data is
needed. Furthermore, the 1024-bit bus could be split into two 512-bit busses, which could
be served by a single 512-bit LSU while keeping the vector FUs on that bus occupied.
However, these would have meant a more radical overhaul of the accelerator.

40

7. RELATED WORK

Previous work on soft processors spans a wide range of designs. Often, the simplest
solution is to use soft processors supplied by the FPGA vendors. All of the vendors
presented in Section 4.1 provide RISC-like soft processors as intellectual property (IP)
cores with some degree of customization [33, 49, 59, 87]. In particular, Xilinx and Intel
provide MicroBlaze and NIOS II, respectively, both of which are single-issue, in-order
RISC processors with many customization options, from a small control processor with a
minimal instruction set to a high-performance configuration with memory management
units and other resources for the capability of running a Linux distribution. For the Xilinx
device targeted in this thesis, the MicroBlaze soft processor has been previously compared
with a small TTA processor using some of the optimizations presented in this work [37].

Generally, high-performance designs for soft processors focus heavily on explicit par-
allelism, as the required control logic and iter-PE communication is simpler. In SIMD
processors, communication is often done through memory rather than the RF, allowing a
simple RF implementation that is connected to a single SIMD lane [13, 93], as was done
in this thesis. There are some solutions for the complexity of the memory interface. For
example, the SIMD processor design by Cho et al. [13] has a 17-bank memory access, so
that the 16 PEs can access elements separated by common stride sizes — powers of two —
simultaneously. Similarly, VEGAS [14] and the commercial MXP [77] have replaced the
conventional RF with banked scratchpad memories with shift networks to read and write
the data from and to the correct memory bank.

VLIW processors are another way to encode parallelism explicitly in the instruction
word. The primary hurdle in implementing VLIW soft processors appears to be the
implementation of the RF. Jones et al. [40] acknowledge as much, and attribute this to
the expensive nature of wide multiplexers. While methods to reduce the RF complexity
by partitioning a large RF into multiple smaller ones with fewer ports is common in
ASIC implementations of VLIWs, FPGA designs have some novel approaches to the
problem, possibly because the complex RFs are more costly to implement on FPGAs.
Saghir et al. [75] simplify the RF by banking the register file of their 2-issue VLIW
processor. As a result, two even or two odd registers cannot be updated simultaneously.
Purnaprajna and Ienne [71] suggest changes to the FPGA architecture that would make it
more suitable for the construction of multi-port RFs.

LaForest and Steffan [42] propose a multi-ported RF configuration that works within the
existing architectures. For an RF with N read and M write ports, this design instantiates
M banks with N two-port RFs. In contrast to simple banking, where one write port can
only write to a subset of registers, the source of the read is selected by a live value table. It

7. Related Work 41

keeps track of which register bank has been last written. In a configuration with 4 write
and 8 read ports, typical for a 4-issue VLIW processor, this RF design would utilize 32
times the block RAM required to implement a similarly-sized RF, and a sizable number of
LUTs. While there is an approach to reduce LUTs [43], this increases the required number
of RAM blocks further. This organization was used in the previous TTA soft processor
work [37] comparing TTAs and VLIW processors, and was used as the basis of examining
register file scalability in this thesis.

In terms of FPGA-optimized function units, more generic papers rarely go into detail about
their operation logic implementations. However, there are designs focused on utilizing
the hardended arithmetic blocks. Due to its inclusion in the hardened arithmetic blocks
of FPGAs and usefulness in many DSP applications, combined multiply-add operations
have featured in many processors [63, 75, 93]. DSP blocks can be a good choice used
for shifting, as it would require comparatively expensive multiplexers if implemented in
LUTs [92]. Efficient use of hardened arithmetic has been the focus of entire processor
designs. iDEA [12] is a soft processor designed around the hardened resources of a Xilinx
FPGA. In particular, the arithmetic-logic unit (ALU) of the design is mapped to a hardened
arithmetic block and uses no LUTs. Octavo [43] is likewise a processor family designed
from the ground up to map well on FPGA technology. With aggressive pipelining — up
to 16 pipeline stages — the Octavo processors reach very high operating frequencies. The
authors outline a plan to use the Octavo processors as the processing elements of SIMD
and VLIW processors, an avenue for research likely also suited to iDEA.

42

8. FUTURE WORK

The TTA processor design space is large. Even when constraining the processor to a fixed
set of operations, the processor can be altered in terms of the organization of operations
into function units, operation latencies, the number of register files, the number of ports
on the register files, the size of the IC and its connectivity. This can be overwhelming
for a designer, even if they have a specific application to optimize for. As such, methods
of approximating implementation costs, such as IC network logic utilization, from the
processor architecture without a lengthy synthesis process could reduce design effort and
speed up iteration times.

On the platform level, a multiprocessor system would reach a significantly higher perfor-
mance on a parallel workload. This includes optimizing memory organization, selection
of the processors and the interconnect to match the workload. Some work has been done
with more general-purpose processors: Nilokov et al. [65] presented a multiprocessor
platform generator using a high-level topological description, evaluated with MicroBlaze
soft processors. In the same vein, Ma et al. [56] and Lebedev et al. [53] both presented
frameworks for the automatic generation of multiprocessor platforms, including memory
organization, from parallel OpenCL code. Ma et al. used MicroBlaze processors, while
Lebedeyv et al. used a mixture of generic and customized processors for their platform. The
degree of customization on TTAs is higher compared with traditional operation-triggered
architectures, and an automatic framework would have more processor candidates to
choose from than the ones in any of these papers. Therefore, accurate approximations of
processor performance would be a requirement for such a system.

More generally, supporting high-level programming models like OpenCL can significantly
ease the programming effort of TTAs, especially during processor and platform design
space exploration. Abstracting data transfers between the host processor and the accelerator
and internally between TTA accelerators removes some of the burden from the user,
especially when the accelerators use local memories instead of or alongside caches. This
could remove the need for long latency accesses to system-level memory. Another approach
would be to divide the load into two operations, one which initiates the load and one which
reads its value from a buffer. Since the processor only needs to stall when a value is read
before it is ready, this can reduce the number of stall cycles for long-latency loads.

SIMT soft processors are a more recent research avenue, allowing for highly parallel
exection. SIMT organizations tend to have more PEs in total and the approach generally
targets very parallel workloads, with most soft SIMT processors composed of multiple
SIMD blocks [1, 2, 4, 6]. Using barrel threading to spread warp computation over multiple
clock cycles allows simplifying the RF since fewer simultaneous accesses are required [41].

8. Future Work 43

Integrating TTA processors as the PEs of SIMT machines is an interesting research
avenue. While TTAs can work as small, high-performance cores, the combination of
static instruction scheduling on an exposed datapath processor and warp scheduling might
introduce new obstacles to a high performance design.

Another way to leverage the strengths of FPGA devices is to use the reconfigurability
during execution. Anjam et al. [5] presented a VLIW design that could be split e.g.
from a single 4-issue processor to two 2-issue ones through partial reconfiguration, while
TUKUTURI [70] allows customizing operations using the same. Both designs, however,
require intervention from outside the soft processor to function. Nolting et al. [67] propose
a self-reconfigurable processor which dynamically reconfigures its function units based on
the executed software. At the processor level, TTA function units are very modular, and
could benefit from a processor template combined with partial reconfiguration for a TTA
design.

44

9. CONCLUSIONS

This thesis presented optimizations for TTA implementations for a soft processor use case.
The optimizations have been integrated to the TCE toolchain and can be enabled without
modifications to the processor architecture.

In this thesis, the TTA architecture was presented and contrasted with VLIW and scalar
OTA machines. The complexity of TTA processors was examined from the point of view
of FPGA implementations, showing that the transformation to TTAs does not increase
the interconnect logic complexity. Therefore, the primary drawback remains to be the
increased instruction word length and the consequent memory size increase.

Modern FPGA architectures are covered with a focus on the resources central to imple-
menting operation logic and memory structures. The design approaches for FPGAs are
covered to provide context for the soft processor use case, followed by a comparison
between FPGA and ASIC technologies in terms of processor implementation.

The FPGA-centric optimizations were evaluated through synthesis on TTA processors
with and without each optimization to determine the individual effects of the changes. The
biggest difference was found to be from the interconnection network optimizations, where
the network itself required up to 54 % less logic to implement with the optimizations than
without. Taking all of the optimizations into account, the logic utilization of the entire core
was reduced by up to 30 %. This improvement can be achieved without designer effort
beyond enabling the processor generator option.

For architectural optimizations, this thesis explored wide SIMD machine implementations
on FPGA devices. The primary bottleneck for the evaluated TTA processors is in the LSU
access path, particularly selecting e.g. 32-bit values from a wide bus. This can be mitigated
by, for example, increasing the latency of the scalar LSU operations. When the application
can utilize wide vectors, the cycle count decrease has a greater effect than the clock period
increase, resulting in an increase in performance.

Finally, a CNN processor originally designed for CNN applications was redesigned for
FPGA implementation, having originally been implemented on ASIC technologies. The
implemented changes were described and performance of the resulting architectures was
evaluated on two FPGA devices and compared with fixed-function, runtime configurable
and runtime programmable accelerators.

45

REFERENCES

[1]

[9]

[10]

A. Al-Dujaili, F. Deragisch, A. Hagiescu, W.F. Wong, Guppy: A GPU-like soft-core
processor, in: Field-Programmable Technology (FPT), 2012 International Conference
on, IEEE, 2012, pp. 57-60.

M. Al Kadi, B. Janssen, M. Huebner, FGPU: An SIMT-architecture for FPGAs,
in: Proceedings of the 2016 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ACM, 2016, pp. 254-263.

Amazon EC2 F1 instances, Amazon Web Services, website. Available (accessed on
18.5.2018): https://aws.amazon.com/ec2/instance-types/f1/

K. Andryc, M. Merchant, R. Tessier, FlexGrip: A soft GPGPU for FPGAs, in: Field-
Programmable Technology (FPT), 2013 International Conference on, IEEE, 2013,
pp- 230-237.

F. Anjam, M. Nadeem, S. Wong, A VLIW softcore processor with dynamically
adjustable issue-slots, in: Field-Programmable Technology (FPT), 2010 International
Conference on, IEEE, 2010, pp. 393-398.

R. Balasubramanian, V. Gangadhar, Z. Guo, C.H. Ho, C. Joseph, J. Menon, M.P.
Drumond, R. Paul, S. Prasad, P. Valathol et al., Enabling GPGPU low-level hardware
explorations with MIAOW: an open-source RTL implementation of a GPGPU, ACM
Transactions on Architecture and Code Optimization (TACO), Vol. 12, Iss. 2, 2015,
p. 21.

S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif,
L. Bao, J. Brown et al., Tile64-processor: A 64-core SoC with mesh interconnect,
in: Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers.
IEEE International, IEEE, 2008, pp. 88—598.

A. Brant, G.G. Lemieux, ZUMA: An open FPGA overlay architecture, in: Field-
Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th Annual
International Symposium on, IEEE, 2012, pp. 93-96.

D. Burger, S.W. Keckler, K.S. McKinley, M. Dahlin, L.K. John, C. Lin, C.R. Moore,
J. Burrill, R.G. McDonald, W. Yoder, Scaling to the end of silicon with EDGE
architectures, Computer, Vol. 37, Iss. 7, 2004, pp. 44-55.

D. Capalija, T.S. Abdelrahman, A high-performance overlay architecture for pipelined
execution of data flow graphs, in: Field Programmable Logic and Applications (FPL),
2013 23rd International Conference on, IEEE, 2013, pp. 1-8.

References 46

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

K. Chapman, Get smart about reset: think local, not global, Xilinx, White Pa-
per WP272 (v1.0.1), 2008, 7 p. Available: https://www.xilinx.com/support/
documentation/white_papers/wp272.pdf

H.Y. Cheah, F. Brosser, S.A. Fahmy, D.L. Maskell, The iDEA DSP block-based
soft processor for FPGAs, ACM Transactions on Reconfigurable Technology and
Systems (TRETS), Vol. 7, Iss. 3, 2014, p. 19.

J. Cho, H. Chang, W. Sung, An FPGA based SIMD processor with a vector mem-
ory unit, in: Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE
International Symposium on, IEEE, 2006, pp. 4—pp.

C.H. Chou, A. Severance, A.D. Brant, Z. Liu, S. Sant, G.G. Lemieux, VEGAS: Soft
vector processor with scratchpad memory, in: Proceedings of the 19th ACM/SIGDA
international symposium on Field programmable gate arrays, ACM, 2011, pp. 15-24.

A. Cilio, H. Schot, J. Janssen, P. Jddskeldinen, Architecture Definition File: Processor
Architecture Definition File Format for a New TTA Design Framework, Techn. rep.,
55 p. Available: http://tce.cs.tut.fi/specs/ADFE.pdf

S. Collange, Multi-threading or SIMD? How GPU architectures exploit regularity,
Presentation, 2011. Available (accessed on 3.10.2018): https://www.irisa.fr/alf/
downloads/collange/talks/archil 1_scollange.pdf

S. Collange, Stack-less SIMT reconvergence at low cost, 2011. Available (accessed
on 15.11.2018): https://hal.archives-ouvertes.fr/hal-00622654/

B.W. Coon, J.E. Lindholm, System and method for managing divergent threads in a
SIMD architecture, 2008. US Patent 7,353,369.

H. Corporaal, Transport triggered architectures: Design and evaluation, dissertation,
Technische Universiteit Delft, 1995.

P. Dillien, And the winner of best FPGA of 2016 is..., EE Times, blog post, 2017.
Available (accessed on 5.5.2018): https://www.eetimes.com/author.asp?section_id=
36&doc_id=1331443

C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, Y. LeCun, Neuflow: A
runtime reconfigurable dataflow processor for vision, in: Computer Vision and Pattern
Recognition Workshops (CVPRW), 2011 IEEE Computer Society Conference on,
IEEE, 2011, pp. 109-116.

C. Farabet, C. Poulet, J.Y. Han, Y. LeCun, CNP: An FPGA-based processor for
convolutional networks, in: Field Programmable Logic and Applications, 2009. FPL
2009. International Conference on, IEEE, 2009, pp. 32-37.

References 47

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

FPGA-accelerated cloud server, Huawei Technologies Co., Ltd., website. Available
(accessed on 18.5.2018): https://www.huaweicloud.com/en-us/product/fcs.html

C. Garcia, M. Delakis, Convolutional face finder: A neural architecture for fast and
robust face detection, IEEE Transactions on pattern analysis and machine intelligence,
Vol. 26, Iss. 11, 2004, pp. 1408—1423.

R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B.C. Lee, S. Richard-
son, C. Kozyrakis, M. Horowitz, Understanding sources of inefficiency in general-
purpose chips, in: ACM SIGARCH Computer Architecture News, ACM, 2010,
Vol. 38, pp. 37-47.

J.L. Hennessy, D.A. Patterson, Computer Architecture: a Quantitative Approach,
5th ed., Morgan Kaufmann, Waltham, MA, USA, 2012.

J. IJzerman, T. Viitanen, P. Jadskeldinen, H. Kultala, L. Lehtonen, M. Peemen,
H. Corporaal, J. Takala, AivoTTA: An energy efficient programmable accelerator
for CNN-based object recognition, in: International Conference on Embedded Com-
puter Systems: Architectures, MOdeling, and Simulation (SAMOS XVIII), 2018.
Forthcoming.

Intel® Arria® 10 Device Overview, Intel, Literature Number: A10-OVERVIEW,
2018, 43 p. Available: https://www.altera.com/content/dam/altera-www/global/en_
US/pdfs/literature/hb/arria- 10/a10_overview.pdf

Intel® Cyclone® 10 GX Device Overview, Intel, Literature Number: C10GX51001,
2018, 21 p. Available: https://www.altera.com/content/dam/altera-www/global/en_
US/pdfs/literature/hb/cyclone-10/c10gx-51001.pdf

Intel® Cyclone® 10 LP Device Overview, Intel, Literature Number: C10LP51001,
2017, 10 p. Available: https://www.altera.com/content/dam/altera-www/global/en_
US/pdfs/literature/hb/cyclone-10/c101p-51001.pdf

A New FPGA Architecture and Leading-Edge FinFET Process Tech-
nology Promise to Meet Next-Generation System Requirements, Intel,
White paper, 2018, 6 p. Available (accessed on 4.10.2018): https:
/Iwww.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-
01220-hyperflex-architecture-fpga-socs.pdf

Intel® MAX® 10 FPGA Device Overview, Intel, Literature Number: M10-
OVERVIEW, 2017, 14 p. Available: https://www.altera.com/content/dam/altera-
www/global/en_US/pdfs/literature/hb/max-10/m10_overview.pdf

Nios II Processor Reference Guide, Intel, Literature Number: NII-PRG, 2018, 233
p. Available: https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/
literature/hb/nios2/n2cpu-niiSv1gen2.pdf

References 48

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Quartus Prime Standard Edition Handbook, Intel, Literature Number: QPS5V1,
2017, 1916 p. Available: https://www.intel.com/content/dam/altera-www/global/en_
US/pdfs/literature/hb/qts/qts-qps-handbook.pdf

Stratix 10 GX/SX Device Overview, Intel, Literature Number: S10-OVERVIEW,
2017, 37 p. Available: https://www.altera.com/content/dam/altera-www/global/en_
US/pdfs/literature/hb/stratix- 10/s10-overview.pdf

Intel Stratix 10 LAB and ALM Architecture and Features, Intel, Literature Number:
UG-S10LAB, 2018, 18 p. Available: https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/hb/stratix- 10/ug-s10-lab.pdf

P. Jadskeldinen, A. Tervo, G. Paya-Vayd, T. Viitanen, N. Behmann, J. Takala,
H. Blume, Transport-triggered soft cores, in: 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), IEEE, 2018, pp. 83-90.

P. Jadskeldinen, T. Viitanen, J. Takala, H. Berg, HW/SW Co-design Toolset for
Customization of Exposed Datapath Processors, Springer International Publishing,
2017, pp. 147-164. Available: https://doi.org/10.1007/978-3-319-49679-5_8

A.K. Jain, S.A. Fahmy, D.L. Maskell, Efficient overlay architecture based on DSP
blocks, in: Field-Programmable Custom Computing Machines (FCCM), 2015 IEEE
23rd Annual International Symposium on, IEEE, 2015, pp. 25-28.

A K. Jones, R. Hoare, D. Kusic, J. Fazekas, J. Foster, An FPGA-based VLIW
processor with custom hardware execution, in: Proceedings of the 2005 ACM/SIGDA

13th international symposium on Field-programmable gate arrays, ACM, 2005, pp.
107-117.

J. Kingyens, J.G. Steffan, A GPU-inspired soft processor for high-throughput accel-
eration, in: Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW),
2010 IEEE International Symposium on, IEEE, 2010, pp. 1-8.

C.E. LaForest, J.G. Steffan, Efficient multi-ported memories for FPGAs, in: Pro-
ceedings of the 18th annual ACM/SIGDA international symposium on Field pro-
grammable gate arrays, ACM, 2010, pp. 41-50.

C.E. LaForest, J.G. Steffan, Octavo: an FPGA-centric processor family, in: Proceed-
ings of the ACM/SIGDA international symposium on Field Programmable Gate
Arrays, ACM, 2012, pp. 219-228.

S. Lahti, P. Sjovall, J. Vanne, T.D. Himéldinen, Are we there yet? A study on the state
of high-level synthesis, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, early access, 2018.

References 49

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

CrossLink Family, Lattice Semiconductor, Data Sheet FPGA-DS-02007 Version
1.4, 2018, 58 p. Available: http://www.latticesemi.com/view_document?document_
1d=51662

ECP5 and ECP5-5G Family, Lattice Semiconductor, Data Sheet FPGA-DS-02012
Version 1.9, 2018, 108 p. Available: http://www.latticesemi.com/view_document?
document_id=51754

iCE40 Ultra Family, Lattice Semiconductor, Data Sheet FPGA-DS-02028 Version
2.2,2018, 50 p. Available: http://www.latticesemi.com/view_document?document_
1d=50666

1CE40 UltraLite Family, Lattice Semiconductor, Data Sheet DS1050 Version 1.4,
2016, 37 p. Available: http://www.latticesemi.com/view_document?document_
1d=50945

LatticeMico32 Processor Reference Manual, Lattice Semiconductor, Techn. rep.,
2012, 101 p. Available: http://www.latticesemi.com/view_document?document_
1d=51108

MachXO3 Family, Lattice Semiconductor, Data Sheet FPGA-DS-02032 Version
2.1, 2018, 91 p. Available: http://www.latticesemi.com/view_document?document_
1d=50121

How to use GSR, PUR, and TSALL, Lattice Semiconductor, Techn. rep., 2009, 20 p.
Available: http://www.latticesemi.com/view_document?document_id=31408

C. Lattner, Llvm and clang: Next generation compiler technology, in: The BSD
conference, 2008, pp. 1-2.

I. Lebedev, S. Cheng, A. Doupnik, J. Martin, C. Fletcher, D. Burke, M. Lin,
J. Wawrzynek, MARC: A many-core approach to reconfigurable computing, in:
Reconfigurable Computing and FPGAs (ReConFig), 2010 International Conference
on, IEEE, 2010, pp. 7-12.

W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, S. Amarasinghe,
Space-time scheduling of instruction-level parallelism on a RAW machine, in: ACM
SIGPLAN Notices, ACM, 1998, Vol. 33, pp. 46-57.

H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, L. Wang, A high performance FPGA-based
accelerator for large-scale convolutional neural networks, in: Field Programmable
Logic and Applications (FPL), 2016 26th International Conference on, IEEE, 2016,

pp. 1-9.

S. Ma, M. Huang, D. Andrews, Developing application-specific multiprocessor
platforms on FPGAs, in: Reconfigurable Computing and FPGAs (ReConFig), 2012
International Conference on, IEEE, 2012.

References 50

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Y. Ma, Y. Cao, S. Vrudhula, J.s. Seo, Optimizing loop operation and dataflow in
fpga acceleration of deep convolutional neural networks, in: Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, ACM,
2017, pp. 45-54.

Y. Ma, N. Suda, Y. Cao, J.s. Seo, S. Vrudhula, Scalable and modularized RTL
compilation of convolutional neural networks onto FPGA, in: Field Programmable
Logic and Applications (FPL), 2016 26th International Conference on, IEEE, 2016,

pp. 1-8.

Mi-V embedded ecosystem, Microsemi, website. Available (accessed
on 15.6.2018): https://www.microsemi.com/product-directory/fpga-soc/3872-
embedded-processing

PolarFire FPGA Fabric, Microsemi, User Guide UG0680 Revision 4.0, 2018, 111 p.
Available: https://www.microsemi.com/document-portal/doc_view/136522-ug0680-
polarfire-fpga-fabric-user-guide

RRG4 FPGA Fabric, Microsemi, User Guide UG0574 Revision 3.0, 2017, 124 p.
Auvailable: https://www.microsemi.com/document-portal/doc_view/134407-ug0574-
rtg4-fpga-fabric-user-guide

SmartFusion2 SoC FPGA and IGLOO2 FPGA Fabric, Microsemi, User Guide
UGO0445 Revision 6.0, 2017, 124 p. Available: https://www.microsemi.com/
document-portal/doc_view/132008-ug0445-smartfusion2-soc-fpga-and-igloo2-
fpga-fabric-user-guide

M. Milford, J. McAllister, An ultra-fine processor for FPGA DSP chip multiproces-
sors, in: Signals, Systems and Computers, 2009 Conference Record of the Forty-Third
Asilomar Conference on, IEEE, 2009, pp. 226-230.

M. Motamedi, P. Gysel, V. Akella, S. Ghiasi, Design space exploration of FPGA-
based deep convolutional neural networks, in: ASP-DAC, 2016, pp. 575-580.

H. Nikolov, T. Stefanov, E. Deprettere, Efficient automated synthesis, programing,
and implementation of multi-processor platforms on FPGA chips, in: Field Pro-
grammable Logic and Applications, 2006. FPL’06. International Conference on,
IEEE, 2006.

S. Nolting, G. Paya-Vay4, H. Blume, Optimizing VLIW-SIMD processor architec-
tures for FPGA implementation, Proceedings of the ICT. OPEN, Vol. 2011, 2011.

S. Nolting, G. Paya-Vaya, F. Giesemann, H. Blume, S. Niemann, C. Miieller-Schloer,
Dynamic self-reconfiguration of a MIPS-based soft-processor architecture, in: Parallel
and Distributed Processing Symposium Workshops, 2016 IEEE International, IEEE,
2016, pp. 172-180.

References 51

[68] NVidia Telsa V100 GPU Architecture, NVidia, White paper WP-08608-001_v1.1,
2017, 36 p. Available: http://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf

[69] Occupational outlook handbook, Bureau of Labor Statistics, website. Available
(accessed on 18.5.2018): https://www.bls.gov/ooh/home.htm

[70] G.Paya-Vaya, R. Burg, H. Blume, Dynamic data-path self-reconfiguration of a VLIW-

SIMD soft-processor architecture, in: Workshop on Self-Awareness in Reconfigurable
Computing Systems, SRCS, 2012.

[71] M. Purnaprajna, P. Ienne, Making wide-issue VLIW processors viable on FPGAs,
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 8, Iss. 4,
2012, p. 33.

[72] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu, S. Song
et al., Going deeper with embedded FPGA platform for convolutional neural net-
work, in: Proceedings of the 2016 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ACM, 2016, pp. 26-35.

[73] RISCY: RISC-V Core, Repository. Available: https://github.com/pulp-platform/riscv

[74] A. Rushton, VHDL for logic synthesis, 2nd ed., John Wiley & Sons, Chichester,
United Kingdom, 1998, 375 p.

[75] M.A. Saghir, M. El-Majzoub, P. Akl, Datapath and ISA customization for soft VLIW
processors, in: Reconfigurable Computing and FPGA’s, 2006. ReConFig 2006. IEEE
International Conference on, IEEE, 2006, pp. 1-10.

[76] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Durdanovic, E. Cosatto,
H.P. Graf, A massively parallel coprocessor for convolutional neural networks, in:
Application-specific Systems, Architectures and Processors, 2009. ASAP 2009. 20th
IEEE International Conference on, IEEE, 2009, pp. 53-60.

[77] A. Severance, G.G. Lemieux, Embedded supercomputing in FPGAs with the Vec-
torBlox MXP matrix processor, in: Proceedings of the Ninth IEEE/ACM/IFIP Inter-
national Conference on Hardware/Software Codesign and System Synthesis, IEEE
Press, 2013, p. 6.

[78] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.s. Seo, Y. Cao,
Throughput-optimized opencl-based FPGA accelerator for large-scale convolutional
neural networks, in: Proceedings of the 2016 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, ACM, 2016, pp. 16-25.

[79] S. Swanson, K. Michelson, A. Schwerin, M. Oskin, WaveScalar, in: Proceedings of
the 36th annual IEEE/ACM International Symposium on Microarchitecture, IEEE
Computer Society, 2003, p. 291.

References 52

[80] M. Thuresson, M. Sjdlander, M. Bjork, L. Svensson, P. Larsson-Edefors, P. Stenstrom,
FlexCore: Utilizing exposed datapath control for efficient computing, Journal of
Signal Processing Systems, Vol. 57, Iss. 1, 2009, pp. 5-19.

[81] S.M. Trimberger, Three ages of FPGAs: A retrospective on the first thirty years of
FPGA technology, Proceedings of the IEEE, Vol. 103, Iss. 3, 2015, pp. 318-331.

[82] L. Waeijen, D. She, H. Corporaal, Y. He, A low-energy wide SIMD architecture with
explicit datapath, Journal of Signal Processing Systems, Vol. 80, Iss. 1, 2015, pp.
65-86.

[83] H. Wong, V. Betz, J. Rose, Quantifying the gap between FPGA and custom CMOS
to aid microarchitectural design, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Vol. 22, Iss. 10, 2014, pp. 2067-2080.

[84] 7 Series FPGAs Configurable Logic Block, Xilinx, User Guide UG474 (v1.8), 2016,
74 p. Available: https://www.xilinx.com/support/documentation/user_guides/ug474_
7Series_CLB.pdf

[85] 7 Series FPGAs DSP48E1 Slice, Xilinx, User Guide UG479 (v1.10), 2018,
58 p. Available: https://www.xilinx.com/support/documentation/user_guides/ug479_
7Series_DSP48E1.pdf

[86] 7 Series FPGAs Memory Resources, Xilinx, User Guide UG473 (v1.12), 2016,
86 p. Available: https://www.xilinx.com/support/documentation/user_guides/ug473_
7Series_Memory_Resources.pdf

[87] MicroBlaze Processor Reference Guide, Xilinx, User Guide UG4984 (v2018.1),
2018, 316 p. Available: https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2018_1/ug984-vivado-microblaze-ref.pdf

[88] UltraScale Architecture Configurable Logic Block, Xilinx, User Guide UG574 (v1.5),
2017, 58 p. Available: https://www.xilinx.com/support/documentation/user_guides/
ug574-ultrascale-clb.pdf

[89] UltraScale Architecture DSP Slice, Xilinx, User Guide UG579 (v1.7), 2018,
75 p. Available: https://www.xilinx.com/support/documentation/user_guides/ug579-
ultrascale-dsp.pdf

[90] UltraScale Architecture Memory Resources, Xilinx, User Guide UG573 (v1.9), 2018,
136 p. Available: https://www.xilinx.com/support/documentation/user_guides/ug573-
ultrascale-memory-resources.pdf

[91] P. Yiannacouras, J.G. Steffan, J. Rose, VESPA: portable, scalable, and flexible
FPGA-based vector processors, in: Proceedings of the 2008 international conference
on Compilers, architectures and synthesis for embedded systems, ACM, 2008, pp.
61-70.

References 53

[92] P. Yiannacouras, J.G. Steffan, J. Rose, Portable, flexible, and scalable soft vector
processors, IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
Vol. 20, Iss. 8, 2012, pp. 1429-1442.

[93] J. Yu, C. Eagleston, C.H.Y. Chou, M. Perreault, G. Lemieux, Vector processing as
a soft processor accelerator, ACM Transactions on Reconfigurable Technology and
Systems (TRETS), Vol. 2, Iss. 2, 2009, p. 12.

[94] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, J. Cong, Optimizing FPGA-based
accelerator design for deep convolutional neural networks, in: Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
ACM, 2015, pp. 161-170.

[95] C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, J. Cong, Energy-efficient CNN implemen-
tation on a deeply pipelined FPGA cluster, in: Proceedings of the 2016 International
Symposium on Low Power Electronics and Design, ACM, 2016, pp. 326-331.

