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ABSTRACT
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Diagrams are used in multiple fields as an aid in the design process. These diagrams can
be automatically generated or manually drawn. In manually drawn diagrams, the editor
software can assist the drawing process by offering automatic routing of connectors to
speed up the drawing process. In automatically generated diagrams automatic routing is a
must. We go through an orthogonal connector routing algorithm and compare its design
decisions to other alternatives. A web based prototype of the algorithm was implemented
in TypeScript and evaluated. It was considered to produce good quality routes and to be
efficient enough for interactive editing of diagrams.
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Diagrammeja käytetään monella alalla tutkimustyön apuna. Käytetyt diagrammit ovat joko
automaattisesti generoituja tai käsin piirrettyjä. Manuaalisessa piirtämisessä editointiohjel-
misto voi auttaa käyttäjää viivojen piirrossa reitittämällä ne automaattisesti ja nopeuttaa
siten piirrostyötä. Automaattisessa diagrammin generoinnissa reititys on välttämätöntä.
Työssä käydään läpi algoritmi suorakulmaisten viivojen reititykseen ja pohditaan algo-
ritmissä käytettyjä ratkaisuja. Työn ohessa on toteutettiin ja evaluoitiin web-pohjainen
prototyyppi tästä algoritmista käyttäen TypeScript ohjelmointikieltä. Prototyypin todettiin
tuottavan hyvälaatuisia reittejä ja olevan tarpeeksi tehokas interaktiiviseen editointiin.
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1. INTRODUCTION

Diagramming is an integral part of many design tools, including UML diagram tools, CAD
tools, and graphics software. These tools are extensively used to aid in design work in
numerous fields of application including software design and development. In software
design, diagrams are used to represent various concepts, including system architecture,
class diagrams, program flow, software dependencies, and visual programming languages.
Some of these visualizations are automatically generated and are used to visualize existing
data. However, many are hand drawn as an actual design input and require every object
and connection to be drawn manually. This can be tedious [16], especially when you need
to reorganize an existing diagram with complex connections to make room for additional
objects. Usually one ends up needing to draw every connection all over again. People also
have a tendency to spend huge amounts of time in fine-tuning connection lines. In all, these
will add up to a significant amount of time that could be spent more productively.

To reduce the time spent on tedious tasks related to diagram drawing, automated routing of
connections between diagram items can be utilized. Most diagram editors have some kind
of automatic connector routing capabilities but they usually have limited features, produce
unpredictable routes and do not allow fully interactive editing [16]. This thesis reviews
various existing pieces of software with connection routing capabilities, goes through theory
and implementation of an algorithm for routing connectors in diagrams and evaluates the
achieved results.

The routing algorithm implemented in this thesis is based on the paper Orthogonal Connec-
tor Routing [17]. The paper introduces an algorithm in three steps to produce predictable
orthogonal object-avoiding routes in presence of obstacles. In this thesis, a prototype of
the algorithm introduced by Wybrow’s paper was implemented using TypeScript. The
prototype is supposed to be used in web applications.

Evaluation of the implemented prototype shows that TypeScript implementation is feasible
in terms of performance, showing acceptable performance even in larger diagrams. Lastly,
before the conclusion, we go through possible topics for further developing the prototype
of which one is already partly implemented.

In this chapter we introduced the topic of this thesis. In the second chapter, we cover the
background and theory. The third chapter introduces an algorithm for routing connectors
in diagrams.

Next, we look into the Typescript implementation of the connector routing algorithm that
was done during the thesis work and evaluate its routing quality and performance.
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The fourth chapter describes various ideas for further development of the implemented
software to further improve its performance.

Lastly, we conclude with a summary of what was done and the main results of this thesis.
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2. BACKGROUND AND THEORY

In this chapter we define the terminology used in this thesis and then go through the basic
idea behind automatic routing and review a collection of different criteria by which we can
evaluate visual aesthetics and readability of diagrams.

2.1 Automatic routing

When authoring any drawings or diagrams with logical connections between objects, e.g.
circuit diagrams, CAD drawings, UML diagrams; where it is important to clearly identify
which items are connected; it usually needs extensive fine-tuning of the connectors. The
user needs to manually adjust them to avoid overlaps, bundle related connections, arrange
connector segments to introduce symmetry, and so on. Usually, all of this needs to be
repeated multiple times when making modifications to the diagram, for example adding or
removing objects or rearranging objects into new hierarchies.

Requirements for connection layout can be divided into three cases. Firstly, in some cases
the layout should be freely drawn by user. General drawing applications can be placed in
this category. In this case, no automatic routing is needed. In the second case, one is not
interested in the layout except that it should be easily readable, i.e. aesthetics are the most
important factor. And lastly, the layout needs to be optimized by some other constraints.
These constraints can include overall area, gap between lines, length of connectors. In this
thesis we concentrate on the second category where we are only interested in readability of
the diagram.

2.2 Requirements

This thesis had only a few requirements. This was because it started as a investigation on
possibilities to utilize automatic routing in interactive editor tools. The basic idea was to
try to implement a good enough automatic routing prototype as a web application.

Web as the platform restricted the choice of implementation language to JavaScript
or another language that transpiles to JavaScript, such as TypeScript, but offers many
advantages such as a web browser being available on almost any device today. This is not
true any more as web browser vendors have started to ship WebAssembly [3] implementation
which expands the language selection with languages that have it as a compilation target.

No restrictive licenses can be included through third party components such as proprietary
or copyleft licenses.
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Support diagrams that consist of rectangular obstacles and rectilinear connectors or
rectilinear connection networks (connectors that connect more than two connection points).
Furthermore, obstacles are not overlapping in most cases but because interactive editing
must be supported, there may be intermediate situations where overlapping obstacles are
created and we have to handle them in a sensible and predictable way. Connector segments
cannot the share same path unless they belong to the same connection network. The
gap between neighbouring connectors and obstacles must be configurable. Connection
points reside on either the left, right, top, or bottom side of the obstacles. Connectors can
approach connection points only from predefined directions. At this phase it is defined that
connection points on the left side of obstacles can be approached only from the right of the
connection point, points on the right side from the left of the connection point, and so on.

Routing quality has to be good enough so that manual connector drawing can be forfeit
and have automatic routing as the only option. The requirements did not specify how
the quality should be measured but stated only that it must be subjectively good enough.
However, the next chapter explores various criteria of how the quality could be compared
objectively.

Performance must be good enough to allow relatively smooth interactive editing in dia-
grams with up to 100 obstacles and 200 connectors.

Only the first two of these requirements are strict and objective. The last two regarding the
quality and performance were only loosely defined as ”as good as possible” and are thus
not actually requirements but rather results of this work.

2.3 Existing solutions

Libavoid seems to be the most promising one of the reviewed solutions. It is part of the
adaptagrams library, which offers extensive tools for layouts and routing with adaquate
performance. On top of this, it is completely open source. However, the library is distributed
under GPL license making it hard to use in a JavaScript environment without infecting
the whole codebase with the license. The library is implemented in C++, which in itself
wouldn’t be a problem as it could be compiled to JavaScript or WebAssembly. However,
the resulting binary would be quite large and GPL licensing causes issues.

yWorks is a commercial proprietary library implementing much of the same features
that adaptagrams is offering. Its quality and performance seems to be good enough but
being Java-based means that it cannot be integrated natively in a web browser. Also the
proprietary license means that yWorks cannot be used.

WebCola is a TypeScript based library distributed under a non-restricting MIT license.
The library implements only a handful of constraint-based layout algorithms and a simple
grid routing algorithm. This means that it is not good enough for our use because we are
not interested in the layout of the whole diagram but only in routing of the connectors



2.4 Terminology 5

between blocks. The grid routing provided was also not useful because it requires very
coarse snap-to-grid to be fast enough for interactive editing. However, some parts of it are
very useful in implementing a routing library.

In this thesis we implemented a routing library with TypeScript, using parts of WebCola as
a library. This choice was made partly because WebCola contains a few critical parts that
were needed for the implementation, namely the constraint solver, that is somewhat hard
to implement efficiently and without bugs. In addition, it was first planned to implement
the prototype as a part of the WebCola library but that idea was later abandoned. Another
reason was that static typing was preferred to dynamic typing and TypeScript was the most
reliable language applicable being created and maintained by Microsoft.

The implemented algorithm is using a paper by Wybrow et al. called orthogonal connector
routing [17] as the basis. Libavoid is based on the same work. The rest of the thesis
concentrates on the theory and the implementation of the routing algorithm.

2.4 Terminology

Graph is a data structure consisting of a set of nodes connected together by a set of edges.
An edge is a pair of nodes marking them as connected. An edge can also contain additional
data such as cost value for traversal. A node usually contains some useful data, for example
coordinates.

Visibility graph is a special graph representing each vertex’s visibility to each other. It
consists of vertices, edges, and obstacles. In a visibility graph, an edge can only be defined
between two vertices if there are no obstacles in between.

Obstacle is a rectangular area in the diagram which we want connectors to avoid in routing.
An obstacle can contain any number of connection points which can be located on any side
of the obstacle.

Connection point is a point residing on a side of an obstacle to which connectors can be
connected to.

Connector represents a connection between two connection points and is represented in
the diagram as a rectilinear route. A connector consists of list of segments. These two
terms can be used interchangeably. Connectors are calculated by finding the minimum
cost paths in the graph and first consists of list of graph edges. However, they are later
”simplified” by unifying all consecutive edges between bends.

Rectilinear connector or route is a route consisting of only rectangular bends, i.e. it only
has horizontal and vertical segments. Synonymous with orthogonal.

Segment is defined as a straight line between two points. In this thesis, we are only
interested in rectilinear routes, which means that all segments we are dealing with are either
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horizontal or vertical. In the former case, both points share their y-coordinates; and in the
latter case, their x-coordinates.

Connection network is a connector which has more than two endpoints, thus forming a
tree between the endpoints.

Junction is a branch point in connection network visualization.

Bend is a corner in the connector’s route, i.e. point between two segments of different
alignment.

2.5 Diagram quality

Diagram quality can be evaluated using various criteria. Purchase et al. shows that the
most important criteria are minimizing route length, number of bends, number of route
crossings, using only horizontal text, joining of inheritance connectors, narrower diagrams,
and orthogonality of the layout, i.e. objects are aligned on the same horizontal and vertical
lines[14]. These criteria are based on UML diagrams but can probably be also applied
to more general cases. Some diagrams representing concrete real world concepts might
benefit from mimicking the real world parallel which is also impossible to automate without
user input [14]. An earlier paper by Purchase et al. shows that increasing symmetry doesn’t
have as large an effect on graph aesthetics as minimizing crossings, but still has some effect
[13].

Out of these criteria we try to focus on route length, number of bends, number of crossings
and symmetry. These criteria were picked because they can easily be affected by adjusting
the routes while leaving the obstacle layout as is.

In case of symmetry, we can only adjust the symmetry of the routes but not the symmetry of
the whole layout. This decreases the effect of it even further and may not be very important
at all. However, route symmetry is tried to be addressed by trying to place the route bends
in the middle of the available space and having equal length gaps between adjacent routes.

Another way of evaluating automatic routing quality is the predictability of the result.
Routes should behave predictably and produce consistent results when the user makes
modifications to the diagram layout or connections. In other words, making small changes
to the layout should not cause large changes in routes. [17]

The term orthogonality used here is referring to the whole diagram, describing the or-
thogonality between diagram blocks, and should not be confused with orthogonality of
connectors.

2.6 Minimizing length, bends and crossings

Dijkstra’s algorithm [6] solves the criteria of minimizing the path length, i.e. the shortest
path problem. It works by traversing a graph, keeping track of the minimum cost to every
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traversed node. Usually some kind of distance is used as a cost function, such as Euclidean
distance, i.e. the actual distance between two points, or Manhattan distance, i.e., the sum
of horizontal and vertical distance between two points. A* algorithm [5] is a variant of
Dijkstra’s algorithm. It applies a heuristic function estimating the remaining cost to our
goal node, thus allowing it to discard certainly suboptimal routes. The heuristic function
needs to be admissible, meaning that it never overestimates the remaining cost, to guarantee
that the minimum cost path is found [5]. A* is therefore much more efficient when finding
a single route from point A to B because it needs to traverse much fewer graph nodes.
Dijkstra, on the other hand, is more efficient when we need the shortest path from some
node A to every other nodes. In this case, A* is the preferred algorithm as we are only
interested in individual paths.

Figure 2.1. Minimum remaining bends where the arrow marked as the target is the con-
nection point and the angle which it can be entered from. Circles are possible current
positions and arrows indicate all possible directions for the next position. The numbers tell
the minimum amount of bends that need to be taken if that direction is chosen.

A* provides an efficient way of calculating a minimum cost path in a graph. In addition to
minimizing the distance, thus providing the shortest path, one can add an additional cost
for bends in the cost function. If one gives large enough penalty to bends we can get the
algorithm to always choose the shortest path available when considering only paths with
the minimum bends possible.

On the other hand, instead of adding the bend penalty to the cost function, the bend penalty
can be pre-calculated to the edge costs of the graph. This can be achieved by separating the
graph into two parts, the other part contains the horizontal segments, and the other contains
the vertical segments. The parts are linked by adding additional edges representing the
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bends between the horizontal and vertical graph nodes which are at in the same position.
This has the benefit that the cost function does not need to know about the previously
traversed edges. For this implementation, the cost function approach was used as it seemed
more simple to implement at the time.

However, if one applies a bend penalty, explicitly or implicitly, to the cost function one
needs to add heuristic of it to the A* heuristic function as well. Fortunately, Wybrow et
al. introduced a simple heuristic to estimate the remaining bends in their paper [17]. It
works by observing the direction where A* is currently traversing and the directions from
where one can approach the goal and deducing the remaining bends from this information
according to the figure (Figure 2.1). If we start at a position indicated as a circle in the
figure and the target is at the end of the ”target” arrow and must be approached in the
direction indicated by the arrow, the minimum remaining bends for each possible direction
can be read from the number next to each arrow.

Figure 2.2. Demonstration of importance of ordering nudged segments. On the top we
have the segments in an arbitrary order. On the bottom we have ordered the segments so
that connector crossings are minimized.

Crossings minimization can be addressed by identifying parallel connector segments and
ordering them in such a way that the first one to bend in either direction is in the outermost
position (Figure 2.2). Wybrow et al. has come up with a solution that utilizes the longest
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common subsequence and the direction of the convergence and divergence which can
decide the optimal order which minimizes crossings between these parallel routes [17].

In the above sections we have described solutions to minimize properties of connectors,
which produces quality diagrams. In the next chapter we will go through the specifics of
the Orthogonal Connector Routing as described by Wybrow et al.
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3. ORTHOGONAL CONNECTOR ROUTING

This chapter introduces the algorithm that was implemented in the thesis and explains its
details. We start with the overall view of the three step algorithm and then go through the
details of each step in subsequent sections.

A suitable data structure has to be found for representing the diagram. A graph is a widely
used structure for optimizing paths and has been used to solve similar problems in various
ways [8] [5] [15] [12] [9] [17]. A graph is also the basis for the algorithms introduced in
the earlier chapter.

In the paper Orthogonal Connector Routing, published in 2010 [17], Wybrow et al. in-
troduced an algorithm for routing predictable orthogonal object-avoiding point-to-point
connections in block diagrams. The paper also walks through the some of the other afore-
mentioned papers in the paper Orthogonal Connector routing and points their weaknesses.

Lee [8] used an uniform grid graph which would cause the graph to be massive when
fine-grained block placement is required. Wu uses a so-called track graph which is only
concerned with length minimization [15], Miryala uses rectangulation which is similar to
their own representation but does not model vertical connections well [12].

In this thesis, it was decided to implement the algorithm described in Wybrow’s paper. The
decision was made by considering the similarity of the problem at hand and the following
benefits of the approach.

• Documented clearly with the published paper and reference implementation.

• The algorithm is efficient enough to allow fully interactive editing even in large
diagrams and the performance could be verified with the reference implementation.

• Implementation is easily modularized as the three-step model clearly separates the
concerns of each step. The algorithm also introduces the concept of nudging in which
connectors can be routed on top of each other and they are separated from each other
at later stage. This allows routes to be routed separately, which in turn opens up the
possibility of routing them in parallel. It also makes the A* routing easier because
you do not need to avoid other routes.

• It was the only source where the implementation details were explained on a practical
level.

Wybrow’s algorithm is divided to three steps, each with different concerns. The algorithm
is derived from earlier work, taking its three-stage model from [1] and showing that the
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three-stage model is also applicable to orthogonal routes. Wybrow’s algorithm is also
similar to work introduced by Miriyala et al. [12] but with different design decisions and
the contribution of concept of nudging to the original work.

The three-stage model used in Wybrow’s algorithm consists of following steps.

1. Construct a graph representation of the diagram.

2. Route connectors in the graph, without taking overlapping routes into consideration.

3. Nudge overlapping segments apart from each other and adjust route visualization (this
step can be composed of arbitrary visual adjustments, fitting different use-cases).

The three-stage algorithm’s idea is to utilize existing research on path and tree minimization
done in graph theory and VLSI [6][5][9][17] by representing the diagram as a graph, using
existing graph algorithms to minimize connectors and then trying to overcome the visual
shortcomings of those algorithms in the last step including overlapping segments, non-
uniform gaps between routes, and large amount of crossing routes. The last step is very
important in terms of diagram quality. Next we present a high level overview of the whole
algorithm in very general terms.

1. Build orthogonal visibility graph
• Generate horizontal graph segments with vertical line sweep.
• Generate vertical graph segments with horizontal line sweep.
• Intersect the segments to produce complete OVG.

2. Route connectors using A*

3. Final adjustments and nudging
• Simplify routes by removing intermediate vertices
• For vertical and horizontal segments separately

– Calculate nudging limits for each segment
– Divide segments to bundles based on their nudging limits and placement
– Try to place as many segments in the same position to improve ordering

results
• Nudge vertical bundles

– Create separation constraints between segments in the bundle
– Solve constraints using the VPSC (variable placement with separation

constraints) algorithm from WebCola repeatedly until satisfied.
• Recalculate nudging limits because vertical nudging may have changed limits

for horizontal segments.
• Nudge horizontal bundles.

The following sections describe the details of each step of the algorithm, and provide the
chosen implementation details.
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3.1 Step 1: Orthogonal visibility graph

The paper Orthogonal Connector Routing [17] describes the so-called orthogonal visibility
graph (OVG) to be used for A* routing. This is built in the first step of the three-step model
described in the section above. The last two steps do not enforce a particular graph structure
so a different choice could be made if it would serve our use case better. An improvement
to the OVG was introduced in a later paper by Marriot et al. called Seeing Around Corners:
Fast Orthogonal Connector Routing [10]. This graph structure makes an improvement
to the OVG by trying to remove topologically equivalent routes. This was, however, not
chosen to be implemented in this thesis because the algorithm was more complicated and
there were errors in the documentation.

The definition of the Orthogonal Visibility Graph as follows: Let 𝐼 be set of interesting
points in the diagram, i.e. corners and connection points of objects [17]. These points
can be considered interesting because connection points are where we start and finish
connectors and corners allow us to go around obstacles. If we draw a line from each
interesting point in 𝐼 to each cardinal direction; stopping to first obstacle met; we can define
vertices 𝑉 as a union of interesting points 𝐼, intersection points between aforementioned
lines, and points where lines stopped at an obstacle [17]. Now we can define the orthogonal
visibility graph as 𝑂𝑉𝐺 = (𝑉, 𝐸) where edges 𝐸 are defined between each orthogonally
adjacent vertices, i.e. if the vertices have rectilinear visibility to each other [17].

Figure 3.1. Visualization of Orthogonal Visibility Graph where the red lines are edges
and intersection points are vertices.
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Figure 3.2. Orthogonal visibility graph demonstrating the visibility part of it. The large
block on the right blocks the visibility lines of the smaller blocks. In this figure we have
removed all non-connected connection points from the graph to reduce complexity.

By using OVG as the underlying graph, we get the guarantee that it contains the shortest
paths between the connection points that avoid obstacles [17] while still having a relatively
small amount of vertices and edges. However, routes and connection networks in the OVG
might not be the most visually pleasing, because of overlapping routes. Correcting these
visual shortcomings are done in the last step of the algorithm which addresses the problem
by trying to order, center, and nudge route segments to be more visually pleasing.

OVG is also interesting because it is very similar to the Hanan grid (shown in Figure 3.3),
which has been studied extensively because it is known to contain a minimum rectilinear
steiner tree (MRST) for its vertices [4]. The Figure 3.3 has one possible MRST solution
shown with blue lines on the right. Remember mind that there can be multiple correct
solutions. MRST, or Minimum Rectilinear Steiner Tree, is an optimal solution to the

Figure 3.3. Left: Hanan Grid with four terminals. The black dots are terminals (connection
points), and the white dots intersection points. Right: Minimum rectilinear steiner tree in
the same grid.
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following problem. Connect n vertices in a plane with the shortest graph, using only
vertical and horizontal lines. The resulting graph can be shown to be a tree, with the initial
vertices as terminals with some vertices added. These added vertices are called Steiner
points. Unfortunately, calculating exact MRST is NP-hard [4] so using it in the routing
phase is not feasible in our case because we have requirements for interactive editing and
ability to support diagrams with 100 obstacles and 200 connectors, however the property
of having the most optimal connection network by total length included in the graph is still
useful as it opens the possibility of approximating MRST. However, MRST approximation
was not done in this work but is included in the further development chapter.

Line sweep is the core of the OVG building algorithm. Line sweep operates on nodes and
events. Nodes are used to identify and order obstacles and connection points along the
scanline. Events are positions in the sweeping direction where the scanline is ”stopped”.
These points include points where obstacles start and end. In a vertical sweep, as in
figure 3.4 we have a horizontal scanline, nodes represent x-position of obstacles and events
represent the y-position of interesting points of obstacles. The algorithm goes through every
obstacle and creates a 𝑛𝑜𝑑𝑒(𝑖𝑑, 𝑟, 𝑝, 𝑙𝑒𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡) where 𝑖𝑑 is a unique id, 𝑟 is the reference to
the obstacle, 𝑝 is the rectangle’s centre position, and 𝑙𝑒𝑓t and 𝑟𝑖𝑔ℎ𝑡 are ids of neighbouring
nodes. Then for each node an 𝑒𝑣𝑒𝑛𝑡(𝑡, 𝑛, 𝑝) for both the start and end of the rectangle is
created where 𝑡 is the event type, 𝑛 is a reference to a node, and 𝑝 the is position of the event
in the processed dimension. An event is a position in the diagram that contains interesting
properties, such as start or end boundary of a block or a connection point. In addition to
obstacle events, a node and an event are also created for each connection point. In Figure
3.4, we can see an example of event and node positions with a vertical line sweep.

Figure 3.4. Vertical line sweep producing horizontal segments

Events are then sorted primarily by their position p and secondarily by their type where
following order is used: Open > Connection Point > Close.
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We then iterate through these events in two passes. The event processing function processEvent

is provided as pseudo-code in the code listing below. The pseudo-code is somewhat simpli-
fied as it drops certain details including overlap handling. In the first pass we add the nodes
from open events to a scan line object. The scan line is a self-balancing binary search tree
which keeps the inserted nodes in order by their position and allow us to query neighbour
nodes. When adding nodes to the scan line, we also iterate the scan line to both direction
from the inserted node and update the left and right directions in the node objects.

1 Segment {
2 position: number
3 type: Open | ConnectionPoint | Close
4 }
5
6 Node {
7 position: number
8 left: Node
9 right: Node

10 }
11
12 function findNearest(node, position, forward):
13 left = MIN_NUMBER
14 right = MAX_NUMBER
15 next = node[forward]
16 while (next != null):
17 atSameRegion = isBetween(position, next.obstacle.top, next.obstacle.bottom)
18 if atSameRegion AND next.obstacle.right <= node.obstacle.left:
19 left = max(next.obstacle.right, left)
20 if atSameRegion AND next.obstacle.left >= node.obstacle.right:
21 left = min(next.obstacle.left, right)
22 next = next[forward]
23 return left, right
24
25 function processEvent(event, scanline, pass, direction):
26 node = event.node
27 obstacle = node.obstacle
28 position = event.position
29 if (pass == 1 AND event.type == Open)
30 OR (pass == 2 AND event.type == ConnectionPoint):
31 scanline.insert(node)
32 prev = scanline.prevOf(node)
33 next = scanline.nextOf(node)
34 if prev:
35 prev.right = node
36 node.left = prev
37 if next:
38 next.left = node
39 node.right = next
40
41 if pass == 2 AND (event.type == Open OR event.type == Close):
42 left, right = findNearest(node, position)
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43
44 segments.insert((left, obstacle.left, position))
45 segments.insert((obstacle.left, obstacle.right, position))
46 segments.insert((obstacle.right, right, position))
47
48 if pass == 2 && event.type == ConnectionPoint:
49 left, right = findNearest(node, position)
50 if (direction == vertical):
51 if left connection point:
52 segments.insert((left, node.connectionPoint.x, position))
53 if right connection point:
54 segments.insert((node.connectionPoint.x, right, position))

After the first pass, we have successfully inserted all obstacle nodes to the scan line and
have set up references to neighbouring nodes to them.

In the second pass we reiterate through the events. On encountering a connection point
event, we add the node to the scan line similarly as in the first pass. On open and close events,
we go through their neighbour nodes (left nodes in case of open event and right nodes in
case of close events) starting from the closest one and check if their rectangle would block
the line drawn from the originating point. Depending on the outcome, we create a segment
starting from the node being processed and end it to the blocking rectangle boundary, if
there are no blocking nodes we set the other end point to drawing area maximum. Also, in
case of open events, the matching close event is searched and a segment is created between
them and marking the end points as corner points.

These segments are then merged into continuous lines with the end point information still
preserved for each segment as they are later used as graph vertices.

This process is then repeated vertically so that the notion of left and right becomes top and
bottom.

3.2 Step 2: Routing connectors

In the second step, we utilize the graph structure constructed in the first phase to route the
connectors. Any graph shortest path algorithm can be utilized as long as it minimizes the
given cost function and does not have any special assumptions about the graph shape.

The solution used in Wybrow’s paper [17] is to route each connector independently from
each other in the orthogonal visibility graph using the A* algorithm with Manhattan distance
and the number of bends with heavy weight as the penalty function. Because we are using
additional penalty for bends, we need to acknowledge it in the heuristic function to keep
it admissible. The minimum amount of bends is estimated as described in Figure 2.1.
Routing the connectors in this manner can produce routes with shared segments which will
be addressed in the final step.
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Figure 3.5. Visualization of Orthogonal Visibility Graph where the red lines are edges
and intersection points are vertices. The gray line is a routed connector.

Figure 3.6. Visualization of Orthogonal Visibility Graph where the red lines are edges
and intersection points are vertices. Gray line is routed connector.

In Figure 3.5, one route is routed with A* in the OVG from the top left block to the bottom
right block. By adding another route in Figure 3.6 we can demonstrate route overlapping.
This is normal behaviour in this step of the algorithm and is fixed in the last step.
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Using a shortest path algorithm to minimize a single connector cannot, however, produce
optimal results for connection networks, i.e. connectors with multiple terminals. In these
cases, we either try to post-process these in the final step, or use multiple routing algorithms,
one for point-to-point connections and one for connection networks.

3.3 Step 3: Ordering and nudging

The routing step leaves us with overlaps in routes. To fix this they need to be nudged
away from each other. However, we need to figure out in which order they should be after
nudging. The nudging algorithm from Wybrow’s paper Orthogonal Connector Routing
uses an ordering which minimizes the connector crossings between the nudged routes.

Figure 2.2 demonstrates the necessity of ordering. On the left side we have the nudged-apart
segments in an arbitrary order, which leaves us with five crossings between connectors. On
the right side we have calculated the optimal order which reduces the connector crossings to
one. The specifics of the ordering algorithm are not explained here as we did not implement
it ourselves but used a ready-made implementation.

However, all overlapping segments are not nudged apart. In Figure 3.7 we have two con-
nectors which have same connection point as the other end. We want this to be represented
as a connection network so that it is shown as a single tree structure in the diagram instead
of two separate connectors. In these cases, we want to make sure that the overlapping
segments remain overlapping.

Before nudging the routed connectors, the nearest obstacle boundaries have to be calculated
first for each segment (in Figure 3.8 the right side of the left block and the left side of the
right block act as boundaries for the vertical middle segment). These boundaries act as
limits for segments when nudging them. A modified version of the line sweep algorithm
used in building the OVG is applied in the boundary calculation. Vertical sweep is used
in the description, the same applies to horizontal sweep but the x and y dimensions are
swapped. With vertical sweep, horizontal limits for vertical segments are calculated. See
Figure 3.8.

Boundary calculation works in the same way as finding the nearest blocks in the OVG
building except now connector segments are also taken into account. Thus we have Open,
Open Segment, Close Segment, and Close as possible event types which have priority in the
aforementioned order. Again, events know their vertical position and have a reference to a
node object. Obstacle nodes are the same as earlier and segment nodes have a reference
to the segment object and have the segment’s horizontal position information. Also, four
passes are now used and are explained below.

Pass one updates limits for segments when encountering Close Segment by going through
the node’s left and right neighbours, and for Close events it iterates through segments on
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Figure 3.7. Two routes which have same connection point form a connection network.

Figure 3.8. Vertical scan line sweep producing horizontal limits.
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its left and right sides and adds itself as the segment’s limit if it is closer than the limit the
segment already has.

Pass two removes neighbour references from the node and removes it from the scanline.
This is only done on Close and Close Segment events.

Pass three adds a node from the Open and Open Segment event to the scanline and then
iterates through the scanline to both directions, updating the neighbour references.

Pass four does the same thing as pass one but for Open and Open Segment events.

The algorithm applies each pass to all events in the same position, one pass at the time for
each event. When encountering an event in a new position it starts the passes from one
again, repeating the process.

Intuitively this means that we move a horizontal scanline from top to bottom, checking
which events (obstacles and segments) are still open in that particular position and adding
the closest rectangle borders as limits to the segments. In addition, first and last segments
always have both boundaries set to its own position because we do not allow them to be
nudged.

Next, after having calculated boundaries for each segment, we try to place as many segments
as possible in the same position. This is necessary for the order calculation as it depends on
segments having the same positions. Then we calculate an optimal order which minimizes
connector crossings using a method described in the Wybrow’s paper [17]. After the order
of segments are calculated, we need to nudge the overlapping segments apart.

Figure 3.9. Three routes a, b and c with segments 1 to 3 from left to right.
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Figure 3.10. Routes a, b and c nudged apart with the constraints between them visualized
by dashed lines.

The nudging is done separately for vertical and horizontal segments so we start by separating
them. We also need to recalculate nudge limits between the vertical and horizontal nudging
because the nudging may affect them. The actual nudging process is done by placing
so-called constraints between segments and then solving the minimum-stress state for the
segment placements. By constraint, we mean a rule that some numerical values 𝑎 and
𝑏 are constrained in some way. In our case, we want segments to have a minimum gap
between them so we create inequality constraints between the segment coordinate values.
The values that are constrained are called variables and have a weight in addition to the
value. The weight is used in constraint solving. In Figure 3.9 we have three routes labeled
𝑎, 𝑏 and 𝑐. We now refer to each segment as 𝑟𝑖, where 𝑟 is the route label and 𝑖 the segment
number from left to right, and to the x-coordinate of a segment as 𝑟𝑖.𝑥. In the figure, let’s
say that we want the vertical segment 𝑎 to be at least 10 pixels left of the vertical segment
𝑐, we create the following inequality constraint:

𝑎2.𝑥 + 10 ≤ 𝑐2.𝑥

We do not want to place constraints between every segment because that would result
in a huge amount of constraints which in turn would slow down the algorithm in larger
diagrams. Instead, we divide the segments in so-called bundles. A bundle contains all
segments that can end up overlapping as a result of nudging. This is done by comparing
each segment’s boundaries and adding them to the same bundle if their boundaries overlap
with the widest boundary in the bundle. This way of dividing the segments is not optimal
as it usually results in an overly large bundle with segments that would not need nudging.
This is one place where we could need some improvement. In Figure 3.9 we can put all the
three vertical segments in the same bundle because all of them have the same boundaries.
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Figure 3.11. Two routes where overlapping segments have been nudged apart.

After the segments have been divided in bundles, the segments in each bundle are ordered
using the nudge order calculated earlier. Then constraints are placed between the neighbour-
ing segments in the bundle. Additionally, the leftmost segment in the bundle is constrained
with the left boundary of that segment and the rightmost one with the right boundary. The
boundaries are given a weight that is an order of magnitude greater than the normal weight.
This way we can ensure that segments are nudged apart in the right order and no segments
are nudged inside an obstacle. We also create an equality constraint between overlapping
segments that belong to the same connection network. The first and last segments of a
route are given a strong weight in order to keep them in place instead of them moving when
some other segments are constrained to them. In the example Figure 3.9, let’s say we have
ordered the routes as follows: 𝑎 is left of 𝑐 is left of 𝑏. Then the following constraints would
be created (visualized in Figure 3.10):

𝑎.𝑙𝑒𝑓 𝑡𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 + 𝑔𝑎𝑝 ≤ 𝑎2.𝑥
𝑎2.𝑥 + 𝑔𝑎𝑝 ≤ 𝑐2.𝑥
𝑐2.𝑥 + 𝑔𝑎𝑝 ≤ 𝑏2.𝑥
𝑏2.𝑥 + 𝑔𝑎𝑝 ≤ 𝑏.𝑟𝑖𝑔ℎ𝑡𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦

No constraints are created for horizontal segments because all of them are first or last
segments in the example and thus are not nudged at all. After the constraints for the bundle
have been placed, they are solved using a constraint solver based on the algorithm by Dwyer
et al. [2] and implemented in WebCola. The result is then checked if any of the strongly
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weighted segments or boundaries have moved. If so, we lower the gap in the constraints
that results in their movement and try to solve the constraints again. Do this until satisfied
or the minimum gap size has been reached. This whole process of placing constraints and
solving them is then done for each remaining segment bundle. Figure 3.11 demonstrates
the end result of nudging two overlapping routes. The original route without nudging can
be seen in Figure 3.6.
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4. IMPLEMENTATION

During the thesis work, a TypeScript implementation of the connector routing algorithm
was made. TypeScript was chosen as the implementation language as it was originally
the plan to implement the algorithm as a part of WebCola library. However, in the end,
the implementation ended up using only two parts of the library: edge ordering and the
constraint solver. No other libraries were used in the implementation. The implementation
consists of eight different modules: Router, OVG, Scanline, Route, ShortestPath, Ordering,
Nudging and Direction. Their dependencies are shown in Figure 4.1.

Figure 4.1. Modules that comprise the implementation and their dependencies. The
ordering module is shown in the prototype side because it was copied and modified.

The whole routing application is packaged as an npm module but is currently only used
internally and not published to the npm registry. After installing the npm module with
npm install connector-router it can be imported and intialized to your application as
an EcmaScript module as follows:
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1 import { Router } from "connector-router";
2 const router = new Router(options);

After initializing the router object, you can start routing connectors by adding obstacles
and connectors and then calling the routing methods.

1 router.addObstacles(myObstacles);
2 router.addRoutes(myRoutes);
3 router.buildOvg();
4 router.routeConnectors();
5 router.makeRoutes();
6 router.orderEdges();
7 router.nudgeRoutes();
8 const routes = router.getRoutes();
9 // Do something with the routes here

4.1 TypeScript

TypeScript was chosen as the implementation language. The decision was first made because
the original plan was to implement the algorithm as part of the WebCola library. This
idea was later abandoned but TypeScript still remained the language of choice. TypeScript
is an open-source programming language developed by Microsoft and is used mostly for
web programming. TypeScript as a language is a superset of JavaScript which means
that all valid JavaScript is also valid TypeScript. As the name suggests, TypeScript adds
(optional) static typing to the language. One of the goals of TypeScript’s development is
that it aims to follow the standardization process of JavaScript and try to keep the language’s
features as close to the current or upcoming standard’s version as possible. TypeScript
is an ahead-of-time compiled language and it is compiled to JavaScript so no additional
runtime support is needed. [11]

TypeScript’s type system is static and all of its type checking is done at compile time. The
type system has support for all the basic features found in JavaScript, including primitives,
objects, inheritance, functions and generics. It also includes the 𝑎𝑛𝑦 type as a fallback
which tells the compiler to opt-out of any type checking for that variable. However, using
the 𝑎𝑛𝑦 type is risky because all the possible type errors are now left to runtime. It is thus
better to use either generics or object subtyping whenever polymorphism is needed.

TypeScript was found to be extremely helpful in finding bugs and errors as early as possible.
Having all your functions and data structures typed statically gives a tremendous advantage
when refactoring code. However, one of the most useful features of TypeScript’s type
system has been the quite recent compiler option strictNullChecks. It forces the programmer
to add checks for null or undefined if a value can possibly be null or undefined. This is
done by having it differentiate between types, 𝑇 and a union type 𝑇|𝑢𝑛𝑑𝑒𝑓 𝑖𝑛𝑒𝑑. Without
strictNullChecks 𝑇 and 𝑇|𝑢𝑛𝑑𝑒𝑓 𝑖𝑛𝑒𝑑 are considered to be equivalent.
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Another helpful feature in TypeScript’s type system is its type inference capabilities. The
programmer can omit type annotations from the code if the compiler can infer the types
from the expressions. This removes much of the tediousness of static typing by not having
to write obvious type annotations and having the compiler do it instead. However, when
compared to type inference features of languages like OCaml or Haskell, TypeScript’s type
inference is still rather primitive.

4.2 Router

Router provides an interface for adding, removing, and manipulating obstacles and routes
and triggering the routing. This class only holds the routing options and data structures
and is only mostly glue code, delegating the calls to other modules.

Currently the following routing options can be configured. Property 𝑏𝑒𝑛𝑑𝐶𝑜𝑠𝑡 is a number
value for bend penalty in A* routing. 𝑚𝑎𝑟𝑔𝑖𝑛 is a pair of numbers (x, y) indicating how
much space should be left between the obstacle and connector. 𝑚𝑎𝑟𝑔𝑖𝑛 can be separately
configured for horizontal and vertical sides of obstacles. 𝑔𝑎𝑝 is a number indicating how
much space should be left between connector segments. The property 𝑓 𝑖𝑥𝑒𝑑𝑊𝑒𝑖𝑔ℎ𝑡 can be
used to configure weight for boundary constraints in nudge constraint solving. Property
𝑝𝑟𝑢𝑛𝑒𝑁𝑜𝑛𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 is a boolean value. If true, connection points are not added to the
OVG if they do not have connector connected to them. 𝑝𝑟𝑜𝑛𝑒𝑁𝑜𝑛𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 is used for
performance reasons but it is useful to be able to disable it for visualization purposes.

The router module implements the following interface and is the only public facing interface.
The reason why the routing is split between 𝑏𝑢𝑖𝑙𝑑𝑂𝑉𝐺, 𝑟𝑜𝑢𝑡𝑒𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠, 𝑜𝑟𝑑𝑒𝑟𝐸𝑑𝑔𝑒𝑠,
𝑚𝑎𝑘𝑒𝑅𝑜𝑢𝑡𝑒𝑠 and 𝑛𝑢𝑑𝑔𝑒𝑅𝑜𝑢𝑡𝑒𝑠 is because it allows visualizing the OVG and intermediate
routes after each step. It also allows easier canceling of routing in the middle of the process
if obstacles or connectors have been modified. In order to use the router, one has to first
add obstacles and connectors with 𝑎𝑑𝑑𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 and 𝑎𝑑𝑑𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠 and then call the
following functions in the specified order: buildOvg, routeWires, makeRoutes, orderEdges,
nudgeRoutes and finally to get the results by calling getRoutes.

1 interface Router {
2 constructor(options: RoutingOptions): Router
3 addObstacles(obstacles: Obstacle[]): void
4 removeObstacle(obstacleIds: string[]): void
5 addConnectors(connectors: Connector[]): void
6 getObstacles(): Obstacle[]
7 getConnectors(): Connector[]
8 removeConnectors(connectorIds: string[]): void
9 getOVG(): OVG

10 buildOvg(): void
11 routeConnectors(): void
12 orderEdges(): void
13 makeRoutes(): void
14 nudgeRoutes(): void
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15 getRouteById(id: string): Route
16 getRoutes(): Route[]
17 }

Functions addObstacles, removeObstacles, addConnectors, removeConnectors are used for
adding and removing obstacles and connectors. Structure of the Obstacle and Connector
objects are defined below. Adding an obstacle or connector that has the same id as an
existing one can be used to modify that obstacle or connector.

1 interface Obstacle {
2 id: string;
3 x: number;
4 X: number;
5 y: number;
6 Y: number;
7 points: ConnectionPoint;
8 }
9 interface Connector {

10 id: string;
11 source: string;
12 target: string;
13 }

An obstacle can have connection points on its left and right side. We decided to include
them in the 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒 definitions because in our demo application they are always located
on sides of obstacles. The structure of the 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡 objects is defined below. They
have their own id that is referenced by the 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 source and target properties. The
side property indicates on which side of the block the connection point is located and the
offset tells the location in y-dimension in number of pixels.

1 interface ConnectionPoint {
2 id: string;
3 side: "left" | "right";
4 offset: number;
5 }

Function buildOVG creates an OVG using the added obstacles. If pruneNonConnected is
enabled all connection points that are not referenced by any connector are excluded from
the OVG. The OVG is generated using the procedure explained in detail in Section 3.1

The function routeConnectors requires buildOVG to be called first so that the OVG is built.
BuildOVG runs the A* algorithm using the bendPenalty defined in options. The A* is
implemented using a pairing heap priority queue to store open neighbours. The priority
queue data structure is taken from the WebCola library.
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The function makeRoutes is called after routeConnectors. It creates segments from list of
points created by routeConnectors. Routes created by routeConnectors contain vertices of
OVG and this method simplifies these routes by eliminating all the intermediate vertices
from each segment, only retaining the start and end vertices of each segment. After
simplifying, boundaries as explained in section 3.3 are calculated and then segments are
placed in the middle of the available space between the boundaries. This ensures that
as many segments as possible can be taken into account in the next phase where routes
are ordered. This is because it relies on overlapping segments. Lastly, points where
overlapping routes diverge from each other are added to each route pairs as the Longest
Common Subsequence algorithm used by the ordering needs the routes to contain all the
common points.

The function orderEdges requires 𝑚𝑎𝑘𝑒𝑅𝑜𝑢𝑡𝑒𝑠 to be called first. The ordering algorithm is
provided by the WebCola library with a little modification that allows a custom comparison
function for the Longest Common Subsequence algorithm that is used in the implementation.

The function nudgeRoutes follows the approach described earlier in section 3.3. All
segments in all routes are split to vertical and horizontal segments which are processed
separately. As the last step in nudgeRoutes, all junction points are searched from the routes
that form connection networks.

The algorithm needs a way of storing rectilinear direction information in many places. The
direction also needs to be manipulated efficiently, such as reversing and rotating it. In
some cases, multiple directions are needed at the same time,for example representing all
connectible directions of a connection point.

1 const enum Dir {
2 NONE = 0b0000,
3 NORTH = 0b1000,
4 EAST = 0b0100,
5 SOUTH = 0b0010,
6 WEST = 0b0001
7 }

A four-bit field was chosen for this, represented as number in TypeScript as there is no
better type for it. The choice of bit field gives us an interesting way of defining operations
on it. Rotating the direction left or right becomes right or left bit rotation; and reversing
becomes swapping high and low bits.

4.3 Challenges in implementation

Performance was a concern as JavaScript, which TypeScript is compiled to, has limited
performance, especially as it is critical for it to be fast enough to be used interactively. Type-
Script also lacks many basic data structures as it doesn’t have a standard library. Thankfully,
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most of the basic algorithms and data structures that were needed were implemented in the
WebCola library that was used; including red-black tree, priority queue, pairing heap, vpcs
(variable placement with separation constraints) and the longest common subsequence. On
the other hand, vpsc and longest common subsequence are very specific algorithms that
are hardly available in any language’s standard libraries. In this perspective, TypeScript
was a good language choice in terms of having most of the needed algorithms available in
just one library.

The algorithm that was implemented was also somewhat hard to understand from the
research paper alone and many details required reading the reference implementation called
libavoid. This was especially true with the corner cases and small details in getting the
nudging step working correctly.
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5. EVALUATION

5.1 Routing quality

Evaluating the produced routings with the defined criteria was difficult. To be able to
get any meaningful comparison of produced routes, you would need to compare the re-
sults to another implementation for meaningful results. This is, however, not relevant for
this thesis, as the only reference implementation which would be somewhat feasible to
compare to is libavoid because it uses the same algorithm as our implementation but has
more optimizations. Also because of licensing and platform requirements there were no
comparable implementations. Because of this, we are satisfied with a subjective analysis
that the produced routing quality is good enough for this purpose.

Figure 5.1. Grid layout and routed connectors used in measurements.

5.2 Shortcomings

Our implementation has several shortcomings in different areas. The connection network
implementation depends on multiple equality constraints to get multiple point to point
routes to same positions. This creates a large amount of additional constraints which in turn
increases the execution duration. It also doesn’t optimize the connection network globally,
which results in redundant segments and loops in larger networks. This is a temporary
solution that was easy to implement in the given timeframe and will be replaced by a more
sophisticated algorithm in future. The algorithm planned for this is shortly explained in
Section 6.3.

Overlaps between segments are created in situations where we would need to nudge the
first or last segments of a route with other segments demonstrated in Figure 5.2. This is
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because the first and last segments are never moved from their initial positions to keep them
in the original connection point. To fix this problem, the first and last segments could be
split with a joint segment between them. This, however, has not been done in the current
implementation.

Figure 5.2. (a) Two fixed segments overlapping. (b) Proposed fix to split the first and last
segment with a joint segment to allow nudging the segments.

The current implementation does not properly handle overlapping blocks. This is only a
problem if the routing is used in an environment where the user can freely place the blocks.
Even in that situation, overlapping blocks are probably mostly created while rearranging
blocks, thus temporarily creating an overlap situation. Because of this, we need to handle
overlaps in a predictable manner so that the user does not notice that something abnormal
is happening while he or she is moving the blocks. Figure 5.3 demonstrates the resulting
orthogonal visibility graph (OVG) in the current implementation. In short, edges are not
drawn over the intersection where the blocks overlap, making a stack of overlapping blocks
one large obstacle from the OVG point of view. This is favourable in cases where you don’t
want for connectors to go through a column of stacked blocks but can create situations
where all possible routes from another connection point are blocked. One way to tackle this
problem would be to add an additional cost penalty in the graph depending on how much
nudging space that route uses. It would favour routes that have a large amount of nudging
space and would decrease the amount of routes which would only have a minimum amount
of nudging space.

This would also mitigate the next problem where route quality starts to suffer when there is
not enough nudging space available. This problem is shown in Figure 5.5.

Another problem, similar to the connection network shortcoming, is the routing related
connections. As demonstrated in Figure 5.4, you can see two problems with the current
implementation. Firstly, connectors that are related to each other, in this case by having
the same blocks as start and end, are routed with a completely different topology. And
secondly, unrelated connections are nudged in the same bundles, which makes it hard to
differentiate them.
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Figure 5.3. OVG of two overlapping blocks. Connection points are not included in this
OVG because the connection points are not connected.

Figure 5.4. The related connectors shortcoming: both connectors from the lower left block
should be routed close to each other.



5.3 Performance 33

5.3 Performance

Performance was measured by preparing five diagrams with a different number of blocks,
connections, and layout. The hardware used in the measurement was a Lenovo W541
laptop with 2.8GHz Intel i7-4810MQ and 16GB of memory. Measurements were done with
Chrome browser performance API and Google Chrome version 65.0.3325.146. Because
of recent security vulnerabilities in CPUs, browser vendors had to lower the resolution of
these performance measurement APIs to mitigate timing based attacks [7]. Because of this,
all measurements have the maximum resolution of 20 microseconds.

The measurement procedure was as follows: the duration of each step of the routing was
measured and stored in an array. After the diagram was loaded, one block from the diagram
was moved repeatedly causing connector routing to recalculate the routes. This was repeated
until 100 measurements were completed. Finally, the total duration for each measurement
was calculated after which we calculate minimum, maximum, mean, and average for each
duration array.

5.3.1 Impact of diagram size

The impact of the increased diagram size was measured by creating a diagram with a
symmetrical grid layout consisting of 25 blocks and 50 connections shown in the figure
5.1. From now on we use the notation of <amount of blocks>x<amount of connections> to
describe diagram sizes. For the larger versions of the same layout, the same diagram was
copy-pasted side by side two times for the medium size and four times for the large size. It
is important to use the exact same layout in the measurements because different layouts
perform differently as can be seen from the layout comparisons in the next section.

Layout Blocks Connections Graph Routing Ordering Nudging Total

Grid

25 50 min 1.3 ms 1.1 ms 1.0 ms 1.0 ms 4.6 ms
max 9.8 ms 5.7 ms 5.9 ms 10.8 ms 25.3 ms
mean 1.5 ms 1.5 ms 1.1 ms 1.2 ms 6.3 ms
avg 2.0 ms 2.0 ms 1.0 ms 2.0 ms 7.0 ms

Grid

50 100 min 4.0 ms 4.7 ms 4.0 ms 2.4 ms 15.4 ms
max 13.3 ms 14.9 ms 15.0 ms 32.5 ms 55.1 ms
mean 4.4 ms 5.1 ms 4.3 ms 2.8 ms 18.5 ms
avg 5.0 ms 5.0 ms 5.0 ms 4.0 ms 20.0 ms

Grid

100 200 min 14.3 ms 18.6 ms 17.3 ms 7.4 ms 60.7 ms
max 59.1 ms 35.9 ms 38.2 ms 24.8 ms 121.5 ms
mean 16.8 ms 20.5 ms 19.9 ms 8.5 ms 65.6 ms
avg 18.0 ms 22.0 ms 20.0 ms 10.0 ms 70.0 ms

From these measurements we can see that the average total duration seems to behave
polynomially. A large deviation between the minimum and the maximum can also be
observed, but this can be explained by garbage collector triggering. These also seems to be
quite rare by because the average is much closer to the minimum than to the maximum.

From these results we can safely say that the performance is quite adequate for interactive
editing especially in diagrams that are 25x50 or smaller. If we set 60 frames per second as
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our target, 20 milliseconds take 20% of the frame budget, which is still a large amount, but
depending on the application, might still be feasible.

5.3.2 Impact of different layouts

In addition to measuring the effect of an increased diagram size, different layouts with a
fixed number of blocks and connectors were used in measurements. The following three
layouts were used.

A simple layout (Figure5.1) has mostly point to point connections and connections that
flow from the left to the right.

A compact layout (Figure5.5) is mostly the same but more compact, thus having less space
for the connections.

Figure 5.5. Compact layout used in measurements

Lastly, the networks layout (Figure 5.6) has mostly connection networks instead of point-
to-point connections, which allows measuring the impact of network constraints.
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Figure 5.6. Networks layout used in measurements

Layout Blocks Connections Graph Routing Ordering Nudging Total

Grid

25 50 min 1.3 ms 1.1 ms 1.0 ms 1.0 ms 4.6 ms
max 9.8 ms 5.7 ms 5.9 ms 10.8 ms 25.3 ms
mean 1.5 ms 1.5 ms 1.1 ms 1.2 ms 6.3 ms
avg 2.0 ms 2.0 ms 1.0 ms 2.0 ms 7.0 ms

Compact

25 50 min 1.9 ms 3.1 ms 2.0 ms 2.5 ms 9.7 ms
max 12.7 ms 19.4 ms 35.1 ms 12.2 ms 54.2 ms
mean 2.2 ms 3.7 ms 2.1 ms 3.2 ms 13.1 ms
avg 3.0 ms 5.0 ms 3.0 ms 4.0 ms 14.0 ms

Networks

25 1 network min 1.2 ms 6.2 ms 4.8 ms 10.9 ms 24.8 ms
50 terminals max 8.8 ms 26.4 ms 13.9 ms 39.5 ms 73.4 ms

mean 1.4 ms 8.0 ms 5.1 ms 12.6 ms 28.3 ms
avg 2.0 ms 9.0 ms 6.0 ms 13.0 ms 30.0 ms

The difference in the execution time between the grid and compact layout in each step
of the algorithm is between 0.5x to 3x with a difference of 2x in the total duration. This
can be explained by the larger visibility graph in the compact layout caused by the more
dense layout and asymmetric block placement. This, in turn, affects routing by having a
larger search space in the A* phase. Increase in ordering can be explained by observing the
diagram and noticing that it has a larger number of overlapping connector segments, which
in turn is caused by having smaller gaps between obstacles. This means that we have to
calculate more orderings between connectors. Lastly, we have the increase in the nudging
step: the increase in this can also be tracked down to same reason as in the ordering phase
– more overlapping segments that need nudging.

Grid and network layouts, on the other hand, have no meaningful difference in graph
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building duration but have a noticeable difference in routing, ordering and nudging. When
you compare the compact and networks diagrams, you can notice that the routes in the
networks diagram are much longer, which affects the duration of A* routing. The 6x
increase in the ordering duration is most likely caused by the network diagram mostly
having overlapping segments. And lastly, the increase in nudging can be explained by the
same reason. Additionally, when nudging overlapping segments that belong to the same
connection network, an equality constraint is placed between the overlapping segments
keeping them in the same location. These additional constraints also explain the increased
duration. In total, we can see a 6x increase between grid and network layouts.

From these results we can see that both the layout and diagram size is a factor in the total
routing duration of the connectors, with a difference over 4x between the simplest and most
complex layout that have the same number of blocks and connectors.
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6. FURTHER DEVELOPMENT

6.1 Extensibility

The algorithm’s three phase structure makes it easy change parts of it to another imple-
mentation if its output satisfies the next step’s expected input. Also, an arbitrary number
of post-processing steps can be added. However, no API for extensions were made in the
prototype as it was not needed nor was seen feasible for the scope of this work. TypeScript’s
type system could be leveraged more extensively to bring benefits of static typing. This
would allow it to be used as a library more easily in different use cases.

6.2 Combining manual routing with automatic routing

Currently the algorithm only allows for fully automatically routed connectors as it was
originally intended. In some situations, however, it could be beneficial for the user to have
some control over how the connector is routed, e.g. manually correcting some shortcomings
of the automatic routing. The user could, for example, add checkpoints for a connector
without bringing too many new concepts into the algorithm.

When building OVG, you could add a list of checkpoints which are then processed by the
line sweep to generate horizontal and vertical segments of the OVG. The checkpoint would
contain the id, coordinates, and the id of the connector it is related to.

Routing connectors in the OVG needs to route from the start through each checkpoint to
the end. However, adding checkpoints modifies the graph and will affect routing other
connectors indirectly even if routing through other connectors checkpoints is disallowed.
This may mean that the checkpoint should be added to the graph in another way. The steps
that come after the routing do not need to take the checkpoints in to account.

6.3 Improved connection networks with rectilinear steiner tree
heuristic

The algorithm used does not model connection networks very well. We have a local
optimization which gives us acceptable route quality in simple cases. Orthogonal hyperedge
routing from Wybrow’s 2012 paper [18] could be utilized to improve the connector network
quality.

The algorithm works by starting to build minimum cost trees from each network terminal.
This is done by traversing the graph by Dijkstra’s algorithm. When two of these trees reach
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each other, the connecting edge is marked as the bridge edge and tree building continues
without traversing anymore in to the other tree’s area. This process continues until the
new tree edge cost is more than double of the bridge cost. At this point we commit to the
bridge and connect these two terminals by taking the shortest path to the bridge edge from
both trees. After that, we forget other branches from the tree and start this process again
by starting the tree-growing from every point from the committed path. This process is
repeated until all terminals are connected at which point we have the complete network.

To be able to use this approach, we would need to represent connectors as a set of terminals
instead of a tuple of start and end. We would also need to adapt our edge ordering and
nudging to work on tree structures instead of paths. This on top of the work of implementing
the above-mentioned algorithm, would need large amounts of work so it was left out from
this implementation.

Most parts of this algorithm were implemented as of June 10, 2018 but not yet integrated
to the rest of the prototype. The more recently implemented parts have not been evaluated
at the time of writing.

6.4 One-bend graph

The OVG is not optimal in every way to represent the diagram. One of its weaknesses is
that it contains multiple routes between two connection points that have an equal cost as in
Figure 6.1. If we could remove all these kind of equal cost routes from the OVG, we could
achieve much better performance in the routing step.

Figure 6.1. Two routes, a and b, that have equivalent cost.
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Fortunately Marriot et al. have published an algorithm in a paper Seeing Around Corners:
Fast Orthogonal Connector Routing [10], which tries to solve this problem with a so-called
1-bend graph which is an optimization of the OVG. The one-bend graph tries to remove all
topologically equivalent routes from the OVG, thus potentially removing considerable of
edges from the graph. The paper notes that the same effect could be achieved by adding
additional route pruning to A*.
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7. CONCLUSION

Diagram editors usually require users to draw connectors lines manually or provide limited
automatic routing capabilities. We reviewed a few solutions that provide better routing
quality but were unable to utilize them due to restrictive licensing and not being able to use
them in a web-based application. However, one of the reviewed solutions was based on a
promising algorithm that had enough research material on it so it was decided to implement
it using TypeScript.

The orthogonal connector routing algorithm has many benefits. It produces predictable
routes, which means that the user can reason its behavior and it is not sensitive to the
order in which objects and connectors are placed [17]. The routing quality is sufficient
by many of the criteria mentioned earlier. It minimizes both connector length and bend
count, does some local crossing minimization, tries to produce symmetric routes and
does not allow routes to overlap other routes or obstacles. However, it does not minimize
global connector crossings, the algorithm only makes sure that it does not introduce any
unnecessary additional crossings while nudging routes. Some local connector crossing
reduction could be achieved by adding a penalty to the A* cost function [17]. However,
minimizing crossings globally would be hard. The algorithm is also efficient enough for
interactive editing even in larger diagrams [17].

One drawback of the approach is that the algorithm does not model connection networks,
i.e., connections with more than two endpoints, very well because it can only minimize the
cost of a single route at a time. This will lead to a potentially very suboptimal outcome
if a diagram contains multiple connection networks. A solution to this problem could be
to allow the user-defined junction points, i.e., points in the connection network where the
network forks, which could be placed freely in the diagram. This would introduce some
of the problems which we tried to solve in the first place but could improve the quality of
routes in difficult cases. Another solution to this is proposed by Wybrow et al. in Hyperedge
Routing [18], which introduces a similar algorithm to minimize the connection network’s
overall cost. This algorithm was also explained in Chapter 6 Further development and is
already partially implemented in the prototype.

The algorithm was implemented using TypeScript as the language. The language choice
was considered to be an improvement over JavaScript in terms of easier maintenance and
refactoring. The implementation was not completely faithful to the original algorithm in
all areas. Especially nudging was not described with sufficient details for me to be able
to implement it in the same manner. Some other details were also done differently or
were not implemented. However, the prototype implemented has sufficient performance
for interactive editing with the required 100 blocks and 200 connectors and has received
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mostly positive feedback from test users. The negative points that users have reported were
covered in the Section 5.2 Performance.
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