
SYED SAFDAR ALI SHAH
SEMANTIC INTEROPERABILITY IN INTERNET OF THINGS

Master of Science thesis

Examiner: Prof. Kari Systä
Examiner and topic approved by the
Dean of the Faculty of
Computing and Electrical Engineering
on date 29.03.2017

i

TABLE OF CONTENTS

1. Introduction . 1

2. Internet of Things . 3

2.1 Definition of the Internet of Things 3

2.2 Internet of Things Technologies . 4

2.2.1 Network/Link Layer . 6

2.2.2 Internet Layer . 6

2.2.3 Transport Layer . 7

2.2.4 Data Protocols . 8

2.2.5 Discovery . 9

2.2.6 Device Management . 10

2.2.7 Semantic . 11

3. Interoperability in the Internet of Things 14

3.1 Technical Interoperability . 14

3.2 Syntactic Interoperability . 15

3.3 Semantic Interoperability . 15

3.3.1 Proxy Gateway . 16

3.3.2 Unified Data Models and Frameworks 16

3.3.3 Ontologies . 16

4. Proposed Semantic Interoperability Solution for IoT 18

4.1 Endpoint . 19

4.2 Resource Directory . 20

4.3 Interoperability Server . 21

4.3.1 Apache Jena . 21

4.3.2 Thing Description Repository . 22

4.3.3 Semantic Engine . 24

ii

4.3.4 Management Client . 26

4.4 Interfaces . 26

4.4.1 Peer Interface . 27

4.4.2 Resource Directory Interface . 27

4.4.3 Interoperability Server Interface 30

4.4.4 Management Interface . 32

4.5 Working Principles . 36

4.5.1 Temperature Sensor, Fan Actuator, and Central Controller reg-
isters their Thing Descriptions with Interoperability Server 38

4.5.2 Temperature Sensor and Fan Actuator registers their resources
with Resource Directory . 39

4.5.3 Central Controller query Resource Directory for temperature re-
source . 40

4.5.4 Central Controller query Interoperability Server for semantic in-
formation about temperature resource 40

4.5.5 Central Controller request data from the Temperature Sensor . . 41

5. Conclusion . 42

5.1 Discussion . 43

5.2 Proposed Future Work . 45

A. Thing Descriptions: Temperature Sensor 46

B. Thing Descriptions: Fan Actuator . 48

C. Thing Descriptions: Controller . 51

D. Translation: Temperature Resource of Temperature Sensor 53

Bibliography . 53

iii

LIST OF FIGURES

2.1 IoT Stakeholders . 4

2.2 IoT Communication Stack . 5

3.1 Interoperability Layers . 15

4.1 Prototype Topology . 19

4.2 Interoperability Server Model . 21

4.3 Proof of Concept Topology . 37

4.4 Register a Thing Description with Interoperability Server 38

4.5 Register a Resource with Resource Directory 39

4.6 Resource Lookup from Resource Directory 40

4.7 Translation Lookup from Interoperability Server 41

4.8 Get Temperature Value from Sensor 41

iv

LIST OF TABLES

2.1 Layer Model of IoT Technologies . 5

4.1 Resource URI vs Associated URI Mapping 23

v

LIST OF ABBREVIATIONS AND SYMBOLS

3GPP 3rd Generation Partnership Project
6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks
AMQP Advanced Message Queuing Protocol
API Application Programming Interface
BLE Bluetooth Low Energy
CoAP The Constrained Application Protocol
DNS Domain Name System
DNS-SD DNS Service Discovery
DTLS Datagram Transport Layer Security
ETRI Electronics and Telecommunications Research Institute, Korea
ETSI The European Telecommunications Standards Institute
HATEOAS Hypermedia as the Engine of Application State
HTTP Hypertext Transfer Protocol
HTTPS HTTP Secure
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IoT Internet of Things
IPv4 Internet Protocol Version 4
Ipv6 Internet Protocol Version 6
IS Interoperability Server
ISM The Industrial, Scientific, and Medical (radio band)
ISO International Organization for Standardization
ITU International Telecommunication Union
ITU-T ITU-Telecommunication Standardization Sector
JSON JavaScript Object Notation
JSON-LD JavaScript Object Notation-Linked Data
LP-WAN Low-Power Wide-Area Network
M2M Machine-to-Machine
MQTT Message Queuing Telemetry Transport
NB-IoT Narrowband IoT
OMA Open Mobile Alliance
OMA-LWM2M OMA Lightweight Machine-to-Machine
OSI The Open Systems Interconnection

vi

QUIC Quick UDP Internet Connections
RD Resource Directory
RDF Resource Description Framework
REST Representational State Transfer
RFC Request for Comments
SOAP Simple Object Access Protocol
SPARQL SPARQL Protocol and RDF Query Language
SSDP Simple Service Discovery Protocol
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TD Thing Description
TLS Transport Layer Security
UDP User Datagram Protocol
UPnP Universal Plug and Play
URI Uniform Resource Identifier
URL Uniform Resource Locator
U.S United States of America
W3C World Wide Web Consortium
XMPP Extensible Messaging and Presence Protocol

The abbreviations and symbols used in the thesis are collected into a list in alpha-
betical order. In addition, they must be explained upon first usage in the text.

vii

ABSTRACT

SYED SAFDAR ALI SHAH: Semantic Interoperability in Internet of Things
Tampere University of Technology
Master of Science thesis, 45 pages, 8 Appendix pages
May 2018
Master’s Degree Programme in Information Technology
Major: Communication Systems and Networks
Examiner: Prof. Kari Systä
Keywords: Internet of Things, Semantic Interoperability, Semantics in IoT, Machine to
Machine, Cyber Physical Systems

With every passing day, we are connecting more devices to the Internet. These
devices are of various types, ranging from personal devices (e.g. cell phones, com-
puters, televisions, game consoles, home appliances controllers) to industrial devices
(e.g. industrial robots, navigation equipment, medical equipment, self-driving ve-
hicles, digitized monitoring of machines). The interaction of such devices over the
Internet without the human intervention introduced a new concept of connectivity
named Internet of Things. Where the Internet of Things opens the possibilities for
new services, it also brings a few problems alongside. One of those problems is to
understand the intended meaning and context of the communication. A successful
communication is comprised of two parts, to exchange data between the communi-
cating parties and a common agreement on the meanings of the data. This whole
process of exchanging data and perceiving the intended meaning of the data is called
Interoperability. The latter part of the interoperability process, where one needs to
perceive the intended meaning of the data is called Semantic Interoperability.

The present communication methods in the Internet of Things are good enough to
successfully exchange data, but, they do not provide enough information to realize
the intended meaning of the data. Thus, we need a solution to provide Semantic
Interoperability in the Internet of Things. A major problem with the Internet of
Things is that the majority of the IoT devices are resource constrained. There-
fore, the required solution should solve the Semantic Interoperability problem while
considering the limitations of the constrained devices. This thesis describes and im-
plements a solution to solve the Semantic Interoperability problem in the Internet
of Things.

viii

PREFACE

I would like to thank all who helped me to complete this challenging task. A
special thanks to Prof. Kari Systä, Prof. Jarmo Harju, Oscar Novo, and Bilhanan
Silverajan. I would also like to thank my family and friends who always supported
me during the work.

Fortunes of nations ripen through individual prowess
Each person is one star of their ascendant
(Muhammad Iqbal)

Tampere, May 2018

SYED SAFDAR ALI SHAH

1

1. INTRODUCTION

Internet of Things (IoT) is a network of interconnected devices (either physical or
virtual) that communicate without human intervention. Due to its rapid growth,
the Internet of Things has a huge impact in our daily lives. Most of the devices
we interact with are either already part of the Internet of Things ecosystem or to
join IoT. Examples of such devices are sensors(temperature, humidity, light, prox-
imity), coffee maker, refrigerator, light bulbs, self-driving cars, elevator, controller
of a drilling machine, jet engine of an airplane, micro-satellite etc. As the Internet
of Things focuses on machine-to-machine communication without human interven-
tion, a mandatory requirement is to have seamless interoperability between devices.
Similar to the Internet, many specialized protocols and standards are developed for
the Internet of Things to enable the communication and data exchange between IoT
devices. In the Internet, a human behind the computer interprets the semantics of
received data while in the Internet of Things, devices are required to understand the
semantics of data and act accordingly.

There are multiple areas of IoT applications e.g., energy, transportation, health
care, logistics, manufacturing, media etc. The devices from different domains can
also communicate with each other e.g., a smart electricity meter can simultaneously
communicate to a grid station and to an IoT gateway at customer premises which
further communicates to the customer’s cell phone or tablet. All these devices
must share unambiguous semantics of the received data. This poses a challenge of
semantic interoperability when heterogeneous devices are connected to the Internet.
To understand the concept of semantic interoperability, it is of utmost importance
to individually study the concepts of interoperability and semantics.

Interoperability is the ability of the IoT devices to successfully exchange data and
perceive its intended meanings. We can divide the interoperability into three stages:
technical interoperability, syntactic interoperability, and semantic interoperability.
The technical interoperability deals with the actual transfer of digital data (bits

1. Introduction 2

transferred over wired or wireless medium). The syntactic interoperability makes
sure that devices use a common language (symbols & concepts). The semantic
interoperability confirms that the devices have a common agreement on meanings
of the syntax and symbols.

Semantics, on the other hand, is defined as an agreement on the common meanings
of an information. Semantics are extremely important in our daily life, e.g. a
single word plant can be interpreted in two different ways, as a living organism or
a working unit of a factory. The humans can perceive the intended meaning of the
word plant, given the corresponding context. A similar situation can arise in the
Internet of Things. Thus, the devices need a mechanism to understand the context
of the information to be able to perceive the intended meanings of it.

In the Internet, the target is to achieve connectivity and successful data exchange,
while humans are required to solve semantic issues. Following a similar approach,
most of the research in IoT is only addressing technical and syntactic interoperability
problems. However, IoT requires the devices to communicate and understand data
semantics without human assistance, which leaves an open challenge of semantic
interoperability in IoT. The research in this thesis focus on semantic interoperabil-
ity in IoT domain and devices are expected to be interoperable at technical and
syntactic levels. To fully utilize the potential of IoT, interoperability is the primary
requirement at every stage. Although several solutions claim to solve the semantic
interoperability problem in IoT, there is still need to address some issues. This
thesis tries to answer a major research question of semantic interoperability in IoT:

“What is a possible semantic interoperability solution that is independent of un-
derlying technical and syntactic technologies in IoT, and meets the requirements of
resource-constrained IoT devices?”

The goal of this research is to enable IoT devices to obtain and understand the se-
mantics of shared data, and the proposed solution is feasible for resource-constrained
IoT devices. This thesis uses constructive research method that includes the design
and implementation of a prototype for semantic interoperability in IoT. The re-
search work begins with the literature review of IoT technologies followed by the
study of interoperability problems and their existing solutions. In the end, the the-
sis presents a solution to solve semantic interoperability problem and implements a
proof of concept prototype.

3

2. INTERNET OF THINGS

2.1 Definition of the Internet of Things

Internet of Things (IoT) is a network of connected devices. The concept of con-
nected devices was originated in 1982 when the cold drinks machine at Carnegie
Mellon University was connected to the Internet to report its drinks inventory and
temperature. Since then there have been few developments in this area. Further-
more, Kevin Ashton at MIT introduced the term “Internet of Things”[1] for the
first time in 1999. Recent developments and initiative in this area transformed the
term “Internet of Things” into a buzzword. Based on network architecture, busi-
ness models or application context, there are several definitions of the Internet of
Things (IoT) by the standardization organizations, IoT industry, IoT projects and
academic institutions. ITU-T (United Nations specialized agency for information
and communication technologies) study group 13 that leads the work on standards
for next-generation networks, define the Internet of Things as follows,

A global infrastructure for the information society, enabling advanced services by
interconnecting (physical and virtual) things based on existing and evolving inter-
operable information and communication technologies [2, P.19].

Machine-to-Machine (M2M) Communication and Cyber-Physical Systems are used
interchangeably with term Internet of Things. The term Machine-to-Machine com-
munication is defined by the European Telecommunication Standards Institute (ETSI)[3]
as follows,

Machine-to-Machine (M2M) communication is the communication between two
or more entities that do not necessarily need any direct human intervention. M2M
services intended to automate decision and communication processes [2, P.12].

2.2. Internet of Things Technologies 4

Figure 2.1 Internet of Things Stakeholders.

ETSI has defined Machine-to-Machine communication architecture and a global
partnership called oneM2M [4] has been established to develop standards for Machine-
to-Machine communication.

The term Cyber Physical Systems is defined by the National Institute of Standards
and Technology (U.S. Department of Commerce)[5] as follows:

Cyber-Physical Systems or "smart systems are co-engineered interacting networks
of physical and computational components. These systems will provide the foun-
dation of our critical infrastructure, form the basis of emerging and future smart
services, and improve our quality of life in many areas [5].

Internet of Things covered a vast range of industries, applications, and use cases.
Figure 2.1 lists potential stakeholders in the Internet of Things domain. Few of the
areas listed in Figure 2.1 already have a considerable deployment of IoT e.g. home
automation, manufacturing, logistics, etc.

2.2 Internet of Things Technologies

In the Internet of Things, different technologies are in use to facilitate communi-
cation and data exchange between the endpoints. Figure 2.2 describes an example
of an IoT communication stack compared with TCP/IP model. The Internet uses
TCP/IP model or OSI model to divide the protocols into different layers, depending
upon their roles. In the Internet of Things, we can also use the similar model to

2.2. Internet of Things Technologies 5

Figure 2.2 Comparison of Internet of Things communication stack with TCP/IP model

classify the IoT protocols. In addition to that, the Internet of Things includes other
application layer technologies that facilitate the communication in an IoT network.
Therefore, instead of fitting all of the IoT protocols and technologies in TCP/IP
model or OSI model, the thesis introduces a new model described in Table 2.1 to
provide a better classification of the IoT technologies[6]. Using this model we can
organize the IoT protocols and other related technologies in a single model based
on their roles.

Table 2.1 Layer Model of IoT Technologies

8 Semantic
7 Device Management
6 Discovery
5 Data Protocols
4 Transport Layer
2 Internet Layer
1 Network/Link Layer

2.2. Internet of Things Technologies 6

The following section outlines a brief explanation of the roles and examples of as-
sociated technologies at each layer. Understanding of these layer’s functions will
provide a base to solve the semantic interoperability problem.

2.2.1 Network/Link Layer

This layer works with hardware and provides connectivity between endpoints. It
includes the technologies that provide physical connectivity and link-local addressing
features. Few prominent IoT technologies at this layer are,

IEEE802.15.4: IEEE802.15.4[7] is a protocol for low-rate wireless personal area
networks. This protocol is used with 6LoWPAN[8] in conjunction with IPv6[9].

Zigbee: Zigbee protocol[10] uses IEEE802.15.4 standard and operates on 2.4 GHz
frequency with 250 Kbps output. Zigbee can have a maximum range of up to 200
meters.

Bluetooth Low Energy: Bluetooth Low Energy(BLE)[11] also known as Blue-
tooth Smart is a technology for personal area networks. It uses 2.4 GHz ISM band
and has a 100 meters range. Bluetooth Low Energy is defined by Bluetooth Special
Interest Group.

NB-IoT: Narrowband IoT (NB-IoT)[12] is a Low Power Wide Area Network (LP-
WAN) radio technology standardized by 3GPP[13] for IoT. NB-IoT focuses on indoor
coverage, long battery life, and low cost for a large number of devices.

2.2.2 Internet Layer

Internet layer protocols provide addressing/identification to IoT devices. Following
are examples of this layer technologies.

2.2. Internet of Things Technologies 7

Internet Protocol: Internet Protocol (IP) is the widely used protocol for address-
ing devices at the network layer in the computer networks. Internet Protocol has
two versions Internet Protocol version 4 (IPv4)[14] and Internet Protocol version 6
(IPv6)[9]. IPv4 provides 32bit addresses while the IPv6 provides 128-bit addresses.

6LoWPAN: 6LoWPAN[8] is a networking technology to carry the IPv6 packets
over the low rate wireless networks such as IEEE 802.15.4. It stands for IPv6 over
Low power Wireless Personal Area Networks. 6LoWPAN provide 250 Kbps data
rate over a 2.4 GHz frequency.

In addition to IPv6, the Internet of Things include 6LoWPAN at Internet layer.
6LoWPAN is IPv6 adaptation layer for IoT.

2.2.3 Transport Layer

Transport layer includes protocols to establish end-to-end communication channel.
Examples of transport layer protocols include:

TCP: Transmission Control Protocol (TCP)[15] provides logical end-to-end con-
nection on process level. It works with IP protocol to establish a reliable commu-
nication channel. TCP provides ordered delivery of packets, error checking, and
retransmissions features.

UDP: User Datagram Protocol (UDP)[16] provides ports numbers for identifying
the different application or multiple sessions of an application. UDP is used in
combination with IP to create communication sockets.

QUIC: Quick UDP Internet Connection (QUIC) support multiplexed connection
between two endpoints over UDP. QUIC is designed to provide security equivalent to
TLS/SSL, lower latency, and congestion avoidance through bandwidth estimation.
There are some IETF drafts that describe the specifications of QUIC[17] protocol
at the time of this writing.

2.2. Internet of Things Technologies 8

TLS: Transport Layer Security(TLS)[18] provides three functions, encryption, au-
thentication and integrity. TLS has two layers, TLS Record Protocol and TLS
Handshake Protocol. TLS Record Protocol provides data connection security. TLS
Handshake Protocol provides authentication and negotiation of encryption algorithm
between client and server.

DTLS: Datagram Transport Layer Security (DTLS)[19] ensure the security for
UDP segments. It prevents the UDP segment against eavesdropping, tampering or
message forgery. DTLS is based on TLS.

TLS and DTLS protocols are used to establish secure communication channel over
UDP and TCP respectively. The TCP/IP model include these protocols at appli-
cation layer. In this model we include these protocols at transport layer to simplify
things at upper layers.

2.2.4 Data Protocols

Data protocols layer includes protocols used for data exchange between devices.
Below is a brief description of well-known data protocols for IoT.

HTTP/HTTPS: Hyper Text Transfer Protocol[20] is used to transfer web pages.
IoT devices can also use HTTP as data transfer protocol. HTTP is a stateless
application protocol to encode and transport information between a client and a
web server. HTTP uses request-response semantics and a particular type of URI
called Uniform Resource Locator (URL) which identify the resources. HTTPS[21]
stands for HTTP over TLS. It is a secure version of HTTP protocol to provide secure
communication between a client and a server.

MQTT: Message Queuing Telemetry Transport (MQTT)[22] is a messaging pro-
tocol based on an event-driven architecture (Publish/Subscribe) that enables MQTT
to send push messages to the receiver. MQTT Broker handles the communication
between MQTT nodes. A node publishes a message to the broker. Each message
contains a topic information. The topic is like routing information. Any node that
subscribes to the topic receives all messages related to the topic.

2.2. Internet of Things Technologies 9

CoAP: Constrained Application Protocol (CoAP)[23] is a specialized web trans-
fer protocol for constrained devices and constrained networks. CoAP uses Request-
Response interaction model. CoAP defines status codes to inform the client about
the operation results. It uses UDP as the primary transport protocol. CoAP sup-
ports built-in discovery, asynchronous message transfer, block transfer, multicast
and observe. CoAP also provides reliability over UDP using confirmable messages.
CoAP architecture is composed of two parts, messaging model, and request-response
model.

CoAP Messaging Model is based on the exchange of messages over UDP. The sim-
ple and concise header of CoAP protocol, minimize the header size overhead for
small packets in IoT domain. CoAP provides reliability by marking messages as
confirmable and receives acknowledgments from the recipient.

CoAP Request-Response Model carries request-response semantics in CoAP mes-
sages as method code or response code. CoAP options carry the optional informa-
tion like URI, path, content format, etc. The CoAP header contains a token to
relate a response to the corresponding request.

Similar to HTTP, CoAP is also a REST based protocol. CoAP is already being used
in many IoT applications and devices.

In addition to the above-mentioned protocols, few other protocols and frameworks
related to data exchange are Advanced Message Queuing Protocol, WebSocket, Ex-
tensible Messaging and Presence Protocol(XMPP), Simple Object Access Protocol
(SOAP) etc.

2.2.5 Discovery

In the Internet of Things, the discovery of devices and their resources is critical. Fol-
lowing are examples of well-known technologies and specification for device discovery
or resource discovery.

DNS: Domain Name System(DNS)[24, 25] is a way of mapping the domain name
of a machine to its IP address. The mapping information is called DNS record.
DNS records are stored on a server call DNS server. To use DNS service, a client
sends the domain name e.g “example.com”, in a request message to a DNS server.

2.2. Internet of Things Technologies 10

The DNS server replies back with an IP address of the corresponding machine if a
matching record is found.

Multicast CoAP: A CoAP client makes a multicast request to find CoAP server
running on a multicast address and default CoAP port. The multicast address for
CoAP is named as All CoAP Nodes address. The multicast address for IPv4 is
224.0.1.187 and for IPv6 is FF0X::FD. A client can discover resources on a CoAP
server by sending a GET request to /.well-known/core.

Core Resource Directory: Core Resource Directory[26] is a specification of a
resource directory server to register and discover resources in an IoT network. A
resource directory hosts the description of resources hosted on other web servers.
The Core Resource Directory specifies the web interfaces for the resource directory
server. The web interfaces are used by the web server to register, update, delete
resource descriptions in the resource directory. The clients can retrieve resource
descriptions using a GET request.

UPnP: Universal Plug and Play (UPnP) is a set of protocols to discover and a
establish connection to other endpoints.

Few more examples of discovery protocols are mDNS, Physical Web DNS-SD, SSDP,
XMPP Service Discovery, etc.

2.2.6 Device Management

Device management is related to identity and access management of IoT devices.
Device management is divided into the following functions, provisioning, authenti-
cation, configuration, control, monitoring, diagnostics, maintenance, and software
updates. OMA LWM2M, OMA DM, and TR069 are the examples of well-known de-
vice management protocols. Among the above-mentioned protocols, OMA LWM2M
is specifically designed for constrained devices in an IoT network.

OMA LightweightM2M: OMA LightweightM2M (OMA LWM2M)[27] is a de-
vice management protocol from Open Mobile Alliance (OMA). OMA LWM2M pur-

2.2. Internet of Things Technologies 11

pose is to facilitate the fast deployment of client-server M2M services. On protocol
stack, OMA LWM2M uses Efficient Payload(plain text payload for individual re-
sources), CoAP Protocol, DTLS Security, and UDP/SMS Bearer. For client-server
communication, LWM2M define following four interfaces between OMA LWM2M
Server and OMA LWM2M Client.

• A bootstrapping interface that provides information for the OMA LWM2M
client to register with the OMA LWM2M server. OMA LWM2M enabler
supports three bootstrapping methods, pre-provisioned bootstrapping, boot-
strapping via smartcard and client/server initiated bootstrapping.

• A registration interface registers a client and its objects with LWM2M Server.
Registration interface supports registration, update and de-register functions.

• A device management and service enablement interface provides access to
LWM2M client objects and resources for LWM2M server. This Interface sup-
port “write”, “read”, “create”, “delete”, “execute”, “write attributes” and “dis-
cover” operations. An object template defines the operations supported by a
resource.

• An information reporting interface is used by LWM2M server to observes any
changes in LWM2M client resources. Information reporting interface support
“observe”, “notify” and “cancel observe” operations.

2.2.7 Semantic

Semantics is the mutual understanding on the meaning of shared data. In the
following section, we will discuss the technologies that help to provide data semantics
in IoT.

JSON-LD: JSON-LD[28] is an acronym of JavaScript Object Notation- Linked
Data. It is composed of two parts, JSON and Linked Data. Linked data provides
interlinking between the data on Web, so that it is understandable by computers.
On the other hand, JSON is a data serialization format. Together JSON and Linked
Data create an enhanced version of JSON data serialization called JSON-LD. JSON-
LD uses context to provide the mapping between JSON and RDF model. This helps
to make relations between the properties of an object described in a JSON document
and the related concepts in the ontology of an object.

2.2. Internet of Things Technologies 12

RDF, RDF Schema, and OWL: Resource Description Framework (RDF)[29]
is the standard data representation model on the semantic web. RDF represents
data as RDF statements. RDF statements are written as a triple.

subject – predicate – object

The subject in a triple denotes the resource usually specified by a URI. Object
denotes another resource or entity. The predicate describes the relationship between
the subject and object e.g. apple colour is red. In that example “apple” is subject,
“red” is an object, and “colour” is the predicate that associates the red colour with
an apple.

RDF Schema[30] is the vocabulary for RDF data. It is an extension to RDF data
model and provides semantics to RDF data. RDF Schema expresses the relation
between resources by grouping related RDF resources. RDF Schema defines the
concept of classes, property, domain, range. Resource groups in RDF Schema are
called classes. Property is equivalent of a predicate; it defines a relation between
subject and object. Domain and range are the additional constraints to provide
semantic meaning to data.

Web Ontology Language (OWL)[31] is semantic web language designed to represent
complex knowledge and relationships about things. Documents of OWL are referred
as Ontologies. Ontologies are described in section 3.3.3. OWL statements are writ-
ten using RDF statements. The commonly used representation language for RDF
is XML. RDF also support JSON[32] as an alternative to the XML.

Thing Description: Thing Description[33] is a model defined by W3C to describe
metadata and interaction properties of an IoT device. Thing Description uses RDF
as underlying data model and JSON-LD as a serialization format. Thing Description
has four parts:

• Semantic Metadata: It provides thing generic information and context e.g.
vocabulary to define the semantics of things and encoding, supported protocols

• Security: It provides information about the prerequisites to access things and
resources e.g. authentication, authorization.

2.2. Internet of Things Technologies 13

• Communication: It provides information about supported protocols, address
location e.g. HTTP, CoAP, etc. and bindings to an interaction resource.

• Interaction Resource: Things interaction resource contains information about
thing interactions and functions. It is further divided into:

– Property interaction of a Thing Description provides information of
hosted resource data. The data can be static or dynamic. The “writable”
attribute defines if data is read-only or writable. Another important
information is media type and serialization format of the available data.

– Action field defines the processes that a device can perform, or it is as-
sociated. Actions are changes or processes that require time to complete,
e.g. fan control, brewing Coffee.

– Event interaction defines the ability of a device to notify peer nodes upon
certain conditions.

Each section of interaction resource contains meta-data about things supported
data format/value types, units, links, etc.

While W3C Web of Things Interest Group defines a vocabulary for Thing Descrip-
tion, it can also make use of external vocabulary through context field defined in
Thing Description.

14

3. INTEROPERABILITY IN THE INTERNET

OF THINGS

Interoperability is the ability of information systems to exchange, interpret, and
understand the unambiguously shared meaning of the information. Interoperability
enables a device to work with other devices seamlessly. In the IoT domain, we
can divide interoperability into three layers: Technical Interoperability, Syntactic
Interoperability, and Semantic Interoperability. Figure 3.1 list interoperability layers
in the order of their dependability. Each layer of this interoperability model is the
prerequisite for upper layers[34].

Before we discuss the three layers of interoperability, an understanding of the differ-
ence between data data model and information model is a prerequisite. The infor-
mation model is the conceptual modeling of managed objects independent of any im-
plementation or underlying protocol. It describes the relationships between objects.
On the other hand, a data model describes the implementation and protocol-specific
details of these objects. Further details of the difference between the information
model and data model can be referenced in [35]. Following section provide a brief
introduction to the above-mentioned interoperability layers.

3.1 Technical Interoperability

The basic requirement for interoperability is Technical Interoperability. Technical
Interoperability is defined as the ability of a device to communicate with other
devices and is associated with hardware/software components e.g. two devices can
communicate using Bluetooth LE or 6LoWPAN. The Network/Link Layer of IoT
Technologies model 2.1 provide the technical interoperability.

3.2. Syntactic Interoperability 15

Figure 3.1 Layered structure of interoperability.

3.2 Syntactic Interoperability

Once communication is established, the next step is syntactic interoperability. Syn-
tactic interoperability deals with the data models, communication protocols, data
formats, data encoding, and serialization techniques. To achieve syntactic interoper-
ability, devices must agree to use same standards on both ends. Providing syntactic
interoperability in IoT systems and achieving a consensus is a challenging work.
Many organizations and consortia have been developing syntactic interoperability
standards for use in IoT domain. The technologies from the Data Protocols layer of
IoT Technologies model 2.1 provide the syntactic interoperability.

The technologies from discovery and device management layers do not directly pro-
vide the interoperability, but, they facilitate the communication through discovering
resources and managing devices in an IoT Network.

3.3 Semantic Interoperability

Semantic Interoperability is related to the meaning of content and is the ability
of entities to understand unambiguous, shared meaning of data. In Information
Systems like IoT, devices must be able to exchange information in a way that precise
meaning of data is understood. Following approaches are currently in use to provide
semantic interoperability in an IoT network.

3.3. Semantic Interoperability 16

3.3.1 Proxy Gateway

Proxy gateway acts as an intermediate node in communication. Like any other
proxy server, it sends requests and delivers responses on behalf of some other nodes.
The proxy gateway can communicate with nodes in their native data model and
encoding scheme. This enables a transparent communication between nodes. One
example of such proxy gateways is “data model translator”. Data model translator
is an entity in the network that performs translation between two data models. This
approach is simple and provides the ability to communicate but implementing a data
model translator that has knowledge of mapping between data models and encoding
scheme for all the devices in a heterogeneous network is a complex task and does not
scale well. This approach also makes the proxy gateway as a single point of failure
in the network. Despite its shortcomings proxy gateway can be useful in a small
network[36]. A proxy gateway can provide technical interoperability service (e.g., a
proxy gateway with two radio interfaces IEEE 802.15.4 and LTE, can receive data
from sensors using IEEE 802.15.4 and then send that data to a server using LTE
radio).

3.3.2 Unified Data Models and Frameworks

One approach to solving semantic interoperability problem is through unified data
model for all devices. Unified data models provide a universal data model to use in
IoT devices. There are some initiatives to develop such models and frameworks e.g.
IPSO Smart Objects. LWM2M objects, Cluster Library (Zigbee Alliance) and ETRI
Data Model (based on Yang Model). These models provide syntactic and semantic
information, but that is not enough to provide a general solution for large-scale
IoT implementation as the communication between such frameworks still require an
external device e.g. proxy gateway.

3.3.3 Ontologies

Ontology is defined as the formal specification of a concept. It is a working model
of the types, properties, interactions, and the relationship of entities in a system.
Ontologies can provide semantic interoperability in IoT by providing the contex-
t/reference to a wide range of vocabulary. Ontology has four main components:

3.3. Semantic Interoperability 17

class, individuals, attributes and relations[31, 37]. Classes can have sub-classes and
attributes. Relations in an ontology connect the instances of a class and a subclass.
Such instances are called individuals. Ontologies are not limited to physical objects,
they are extended to virtual objects and models. Examples of this approach are
SSN Ontology[38], IoT-O Ontology[39] and Thing Description 2.2.7.

18

4. PROPOSED SEMANTIC

INTEROPERABILITY SOLUTION FOR IOT

Use of standardized protocols and other IoT technologies helps to solve the syntactic
interoperability problem. The semantic interoperability issues at application layer
still require attention. As described in section 3.3, the semantic interoperability is
related to the agreement on the meaning of data and solving the semantic inter-
operability problem is a two-step process. First, we need to devise a method to
solve the problem and then select appropriate standards and protocols that support
our method. Many working groups, consortia, organizations, or academia have de-
veloped protocols, data model, vocabulary, information models, and Ontologies to
solve the various parts of the semantic interoperability problem in IoT. In chapter 2,
we learned about many IoT protocols, standards and different approaches to solve
semantic interoperability problem. Now, we step forward to design a solution that
complies with our research goal for this thesis. Figure 4.1 represents the topology
of our designed solution and has following entities.

• Endpoint

• Resource Directory

• Interoperability Server

• Peer Interface

• Resource Directory Interface

• Interoperability Server Interface

• Management Interface

Among the above-mentioned components, Interoperability Server and Management
Client, IS Interface, Management Interface are implemented by this thesis. The

4.1. Endpoint 19

Figure 4.1 Topology of the Prototype using Thing Description for Semantic Interoper-
ability

Resource Directory is specified in IETF draft[26] of Core Resource Directory. The
Endpoints are standard CoAP client and server devices. In addition to standard
options, the thesis introduces a new mandatory option for registering resources in
Resource Directory. Details of above-mentioned components, interfaces, and their
role in the prototype are discussed in the following section.

4.1 Endpoint

An endpoint is an IoT device. An endpoint is usually the device running an IoT
application or providing some data to other IoT applications, e.g., a temperature
sensor, light bulb, coffee maker, controller, etc. An endpoint can be a physical or
emulated device or a software instance representing device functions. This thesis
implements the endpoints as virtual devices. The endpoints use the CoAP protocol
for data exchange and support CoAP GET, POST, PUT, and DELETE methods
for different operations.

4.2. Resource Directory 20

4.2 Resource Directory

Resource Directory (RD) is specified in an IETF draft[26] (at the time of this writ-
ing). In an IoT network, a Resource Directory provides the resource discovery ser-
vice. It hosts the description of the resources that are hosted on other constrained
servers. This description of each resource is in the form of a web link. Thus a
Resource Directory can also be referred as a repository of the web links of the re-
sources hosted on the IoT endpoints, and a client can perform a lookup on Resource
Directory to discover these resources. This way the Resource Directory solves the
resource discovery problem when the IoT endpoints are in sleep mode or do not
support resource discovery.

An IoT endpoint advertises its resources to the Resource Directory by sending the
registration message. A registration message is in the form of a REST POST request.
Following is a sample POST request for resource registration.

POST coap://rd.example.com/rd?ep=node1&ct=41&sem=td1

The parameters ep is endpoint name and ct is the content type. These parameters
are defined in Core Resource Directory draft at IETF [26]. Details of parameters
ep, ct are described in Section 4.4.2. The parameter sem is introduced in this thesis
as a semantic identifier of an IoT endpoint and it uniquely identifies the endpoint
(the constrained server that hosts the resource) in the Interoperability Server. The
endpoint obtains its semantic identifier from the Interoperability Server, before reg-
istering with Resource Directory. The method of obtaining semantic identifier is
described in section 4.3.

An IoT endpoint can also update its registration on the Resource Directory. An
IoT endpoint that does not support the registration mechanism, can make their
resources available at “/.well-known/core” address. The Resource Directory can
scan these resources by sending a GET request at “/.well-known/core” address on
each server to retrieve and register these resource. The Resource Directory specifies
REST based "RD Interface" for communication. The details of the RD Interface
are described in section 4.4.2.

4.3. Interoperability Server 21

Figure 4.2 Interoperability server model

4.3 Interoperability Server

Interoperability Server (IS) is the main component of our solution. The main func-
tions of Interoperability Server are to store Thing Descriptions of endpoints and
provide a translation for resources hosted on an endpoint. For communication,
Interoperability Server specifies two interfaces, a northbound interface called "Man-
agement Interface", for communication with a Management Client and a southbound
Interface called "IS Interface" for communication with the endpoints. Both of these
interfaces provide REST APIs for sending and receiving requests. Section 4.4.3 de-
scribes the supported operations on IS interfaces. The Management Interface of
Interoperability Server supports HTTP protocol. The IS Interface supports CoAP
protocol for data transfer. Section 2.2.4 provided a brief introduction of CoAP and
HTTP. Before we discuss in detail the functionality of Interoperability Server and
its interfaces, let’s take a look at the anatomy of Interoperability Server. The Inter-
operability Server is composed of the entities mentioned in Figure 4.2. In upcoming
section, we will briefly discuss each component of the Interoperability Server.

4.3.1 Apache Jena

Apache Jena[40] is the open source framework to build semantic web and linked
data applications. It provides a high-performance database called TDB to store
RDF triples. Apache Jena provides RDF API to query TDB and also supports the
SPARQL query language. Apache Jena TDB has two types of RDF graphs called
Default Graph, and Named Graph. An instance of Apache Jena TDB will always

4.3. Interoperability Server 22

contain one default graph and can have one or more than one named graph. The
thesis uses the Apache Jena TDB to store Thing Descriptions of endpoints inside
Interoperability Server.

4.3.2 Thing Description Repository

Thing Description Repository is a storage for the Thing Descriptions of endpoints.
The Thing Description Repository is based on Apache Jena TDB. Thing Descrip-
tion Repository uses default graph to store the indexes and meta-data of the Named
Graphs. When Interoperability Server receives a request to register Thing Descrip-
tion of an endpoint, it stores Thing Description in Thing Description Repository as
follows:

• Thing Description data is parsed as RDF graph. This RDF graph is stored as
named graph in the Thing Description Repository.

• An entry is created in default graph to store index and meta-data of newly
created name graph.

• Interoperability Server allocates a URI called Resource URI to the stored
Thing Description.

• Thing Description text is stored in default graph using Resource URI as the
key.

The Resource URI can be used to retrieve, update or delete Thing Description
from Thing Description Repository. The Resource URI is constructed using the
Base URI of the endpoint represented by the Thing Description, Thing Description
storage path in Interoperability Server and a unique Semantic ID generated by
Interoperability Server. An example of Resource URI is:

http://www.example.com/td/ef124d6d

The Semantic ID is same for a set of similar endpoints. To understand why a set of
similar endpoints have a same Semantic ID, consider the following scenario:

4.3. Interoperability Server 23

Every endpoint connected to an IoT network has a unique URI that is usually a
URL address. There can be multiple endpoints with exactly the same functionality
e.g. multiple motion sensors in an office. So, their Thing Descriptions will be exactly
the same, except URI of the endpoint. Also, an endpoint can have more than one
URIs which are either completely different from each other or the same URI with
different schemes e.g. CoAP, and HTTP.

The mentioned scenario would have resulted in a different Resource URI inside In-
teroperability Server for endpoints with exactly same functionality. Such a situation
may not be a problem for smaller IoT networks, but with larger networks, it will
increase the complexity of managing endpoints Thing Descriptions inside Interop-
erability Server. It will also require redundant efforts to provide translations of
resources hosted on these endpoints.

Interoperability Server provides a solution to this problem by introducing a mapping
service between URI of an endpoint and Resource URI. This mapping service is
named as UriMap. UriMap is a table of mappings between Resource URI and
URIs of similar endpoints, as shown in Table 4.1. All the endpoints that have
the exact same Thing Description except their URI will have same Resource URI
inside Interoperability Server. Using this approach, we have successfully reduced the
amount of work for the administrating Thing Descriptions and translations when
using the manual approach to create translations (as described in section4.3.3).

Resource URI URIs of endpoints

http://www.example.com/td/10941912 ["coap://www.example.com:5683/temperature",
"coap://www.example2.com:5683/temp",
"coap://www.example1.com:5683/temp"]

http://www.example.com/td/bfb7b4fe ["coap://www.example.com:5683/fan"]
. .
. .
. .

http://www.example.com/td/cf374318 ["coap://www.example5.com:5683/cup"]

Table 4.1 Resource URI vs Associated URI Mapping

The first row in Table 4.1 shows a Resource URI associated to a list of URIs of
different endpoints. As described in Figure 4.2, the Interoperability Server has
two main components Thing Description Repository and Semantic Engine. In the
previous section, we have discussed the Thing Description Repository in detail, Let’s

4.3. Interoperability Server 24

have a look at the Semantic Engine part of Interoperability Server.

4.3.3 Semantic Engine

Semantic Engine is an important component of Interoperability Server. It provides
translation service for the resources hosted on IoT endpoints. By using these trans-
lations, an endpoint will have access to the context and meta-data of a resource it
wants to retrieve from the peer endpoint. The Interoperability Server design incor-
porates two models to create translations. The first method is manual approach by
an Interoperability Server administrator, the second method is to automatically cre-
ate the requested translations using Thing Descriptions and Ontologies of endpoints
with technologies like semantic reasoning using Ontologies, and machine learning.
As the complexity of the second method is beyond the scope of this thesis work,
we will use the manual approach to create translations for the proof of concept.
Following is the explanation of how these approaches work.

Manual Approach

In manual approach, an administrator of Interoperability Server creates translations
for resources hosted on endpoints in an IoT network. The main purpose of a trans-
lation is to include the meta-data related to the resource payload and information
about vocabulary to provide the context for meta-data. The translation should be
created and stored in Interoperability Server before an endpoint requests for it. For
the missing translations, the Interoperability Server generates a translation requests
when an endpoint query the Interoperability Server for a translation and that spe-
cific translation is not found in Interoperability Server. Later, an administrator of
the Interoperability Server queries Interoperability Server for translation requests
and creates the requested translations. To create a translation, the administrator
searches for the Thing Description of requesting endpoint and target endpoint. If the
Thing Description of the requesting and target endpoint is found in Interoperability
Server, the administrator follows the following steps to create a translation:

Compare the vocabulary for both Thing Descriptions. If requesting endpoint
uses a different vocabulary than target endpoint, use the vocabulary of re-
questing endpoint in translation.

4.3. Interoperability Server 25

Collect all the information about the resource from target endpoint Thing De-
scription.

Create the translation object with context and resource properties.

Context includes the reference to the vocabulary used in translation.

Resource properties include information about request and response operation

Request part includes information on how to get/update the specified resource,
what kind of media type is supported etc.)

Response part includes meta-data about the requested resource.

The Interoperability Server stores the translations the same way as Thing Descrip-
tion. The Path of a translation Resource URI /translate distinguishes between a
Thing Description and a translation. The translation name is derived from the Se-
mantic ID of the requesting and target endpoint Thing Descriptions, as mentioned
below:

<requesting: Semantic ID>_<target: Semantic ID>_<resource type>

e.g. if the Semantic ID of requesting endpoint is 965f6543, and Semantic ID of
target endpoint is 56d98v74, and resource type is temperature, then the ID of the
translation will be 965f6543_56d98v74_temperature. The thesis does not restrict
the way a translation can be created manually, although, the translation needs to
comply with the Thing Descriptions of requesting and target endpoints. The data
encoding can be in any format as long as the endpoints in the network use the same.
The thesis uses JSON format for encoding/decoding purpose.

Automatic creation of Translations

The overall design of this semantic interoperability solution is that Interoperability
Server should automatically generate the translation upon request. For that purpose
the Interoperability Server requires intelligence. As machine learning and artificial
intelligence are trying to make ways into the IoT domain, there is a possibility
to use these technologies to create required functionality. Machine learning requires

4.4. Interfaces 26

sample data for algorithm training before it can produce desired results. The sample
data in our case are Thing Descriptions of endpoints. However, Thing Descriptions
only provide information about the endpoints, and we require more data that can
somehow provide inferencing information about the Thing Descriptions data. For
this purpose, another standard technology Ontologies from W3C can provide the
necessary functionality. Section 3.3.3 briefly describes the Ontologies . Ontologies
have their application in semantic web to provide inferencing on linked data. We
believe, the combination of Thing description along with Ontologies can provide
similar inferencing capabilities to generate translation about a target resource. As
the implementation of this approach requires expertise in machine learning and
artificial intelligence, we leave this work as future enhancements to the solution.

As discussed earlier, the Interoperability Server is using the manual approach to
create translations, it requires an administrative interface to manage Thing De-
scriptions and translations. For this purpose, we have developed a management
client for our semantic interoperability solution.

4.3.4 Management Client

The management client as the name suggests provides a web interface for an ad-
ministrator of the Interoperability Server to store and manage Thing Descriptions
and translation. The management client resides as a separate entity to ensure com-
patibility and simplicity of the project for future development. The management
client is based on REST architecture and communicates with the Interoperability
Server over REST based management interface. It provides the capabilities to view,
create, modify and delete Thing Descriptions and translations. Further details of
these capabilities are listed under section 4.4.4

4.4 Interfaces

The semantic interoperability solutions have specified following interfaces to facil-
itate communication between different entities. The following section briefly de-
scribes each interface in detail.

4.4. Interfaces 27

4.4.1 Peer Interface

Peer Interface is used between two endpoints. This interface is based on REST
model and can support CoAP or HTTP. Our recommendations for this interface is
to use CoAP as data transfer protocol. Using CoAP to interact with peer endpoints
and retrieve data is lightweight and will comply with the resource-constrained nature
of IoT endpoints. The peer interface does not have any strict specifications. The
peer interface supports the CoAP standard request-response architecture to send
and receive data i.e CoAP Requests and CoAP Response messages, options, URI
schemes, content formats.

4.4.2 Resource Directory Interface

RD Interface provides the communication capabilities of the Resource Directory.
It provides the Resource Directory functions accessible to Endpoints. Resource
Directory functions are standardized in [26]. Following are the available functions
that endpoint can perform on RD interface.

Register a Resource

Endpoints can register their resources to the Resource Directory using the CoAP
POST command. The registration operation requires two parameters “ep, sem”
followed by few optional parameters. The specification of this operation is,

Method: POST

URI Template: /rd?<parameters>

Parameters: ep=<mandatory: endpoint name>&sem=<mandatory:endpoint
Semantic ID>&<optional:d,lt,con>

Content-Type: application/<JSON or link-format>

Payload: content of JSON or link-format file

Success: 2.01 Created (returns an ID of the resource in Resource Directory)

Failure: 4.00 Bad Request (if some error in request parameters or payload)

4.4. Interfaces 28

Failure: 5.03 Service Unavailable (some internal error in RD)

The optional parameters are,
“d” : domain where endpoint belongs
“lt” : life time of the registration in seconds
“con” : this parameter sets the scheme address and port e.g “scheme://host:port/path”.

Update a Resource

Endpoints can update their resource by sending a CoAP PUT request to the Re-
source Directory. The specification of this operation is,

Method: PUT

URI Template: /rd/<resource ID>

Parameters: <optional:lt, con>

Content-Type: application/<JSON or link-format>

Payload: content of JSON or link-format file

Success: 2.04 Changed

Failure: 4.00 Bad Request (some error in the request parameters or payload)

Failure: 4.04 Not Found (if the requested resource does not exist in RD)

Failure: 5.03 Service Unavailable (some internal error in RD)

The optional parameters are defined as,
“lt” : life time of the registration in seconds
“con” : this parameter sets the scheme address and port e.g “scheme://host:port/path”.

“/rd-group/” path is used to create a group of endpoints. All group operations
are supported on RD interface using this path. “rd-group” require one mandatory
and two optional parameters,

“gp” : (mandatory)It is group name and is unique within a domain

4.4. Interfaces 29

“d” : domain where group belongs
“con”: this parameter sets the scheme address and port where the server is available

Lookup a Resource

Endpoints can perform a lookup for a resource or peer endpoint containing some
specific resource type. Endpoints send a CoAP GET request to the resource direc-
tory and specify a lookup type. An endpoint can specify optional parameters to
filter lookup results. Following is the lookup operation specification,

Method: GET

URI Template: /rd-lookup/<lookup-type: ep, res, d, gp>

Parameters: <optional:ep, d, rt, et>

Success: 2.05 OK ()payload containing information about resource including
semantic ID of the target endpoint)

Failure: 4.00 Bad Request (some error in the request parameters or path)

Failure: 4.04 Not Found (if the requested resource does not exist in RD)

Failure: 5.03 Service Unavailable (some internal error in RD)

The lookup type is defined as,
“ep”: endpoint name can also be used as parameter
“res”: type of resource
“d” : domain where resource or endpoint belongs
“gp”: group where resource belongs

Optional parameters include “ep", "d” as defined above and,
“rt”: type of resource e.g. light
“et”: endpoint type e.g. sensor

Many other operations are defined in [26] (e.g. delete a resource, group registra-
tion, and group update, etc.) and are available on RD interface. For our semantic

4.4. Interfaces 30

interoperability solution, the mandatory requirements on RD Interface are resource
registration, resource update and resource lookup. The RD Interface also supports
the resource removal operation.

4.4.3 Interoperability Server Interface

IS Interface also follows the REST model and provides the communication capa-
bilities between interoperability server and endpoints. This thesis formalizes the IS
Interface to ensure compatibility across the whole IoT domain. IS Interface pro-
vides the registration and update operation of Thing Description in Interoperability
Server. IS Interface also provides lookup functionality for translations. IS Interface
uses CoAP protocol for data transfer between endpoints and Interoperability Server.
Endpoints can perform the following operations over the IS Interface,

Register a Thing Description

An Endpoint can register its Thing Description by sending Thing Description con-
tent as the payload of CoAP POST request on “/td/” path. Following is the
specification of this operation.

Method: POST

URI Template: /td

Content-Type: application/ld+jso

Payload: Content of a JSON-LD file representing the Thing Description of an
endpoint.

Success: 2.01 Created a new entry in Interoperability Server.

Failure: 4.00 Bad Request (some error in the payload)

Failure: 5.00 Internal Server Error (if there is some error in processing payload
or registering Thing Description)

4.4. Interfaces 31

Update a Thing Description

Endpoints can update their Thing Description by sending the updated content in
the payload of PUT operation on “/td/<Semantic ID>” address. Following is the
specification for this operation.

Method: PUT

URI Template: /td/<Semantic ID>

Content-Type: application/ld+json

Payload: content of a Updated Thing Description file

Success: 2.04 Changed

Failure: 4.00 Bad Request (some error in the request payload or the existing TD
is not found in the database)

Failure: 5.00 Internal Server Error (some error in processing the payload or
updating the TD)

Lookup Translations

Endpoints can lookup a translation of a target resource by sending a GET request
on “/translate-lookup” address and specify the source endpoint Semantic ID, target
endpoint Semantic ID and resource type. The following specification explains the
GET request in detail.

Method: GET

URI Template: /translate-lookup?<parameters>

Parameters: source=<source endpoint Semantic ID>&target=<target endpoint
Semantic ID>&rt=<resource type>

Success: 2.05 Content (the translation data is sent in the payload)

Failure: 4.00 Bad Request (if there is some error in the request parameters)

4.4. Interfaces 32

Failure: 5.00 Internal Server Error (if there is some error processing the param-
eters or getting the translation from the database)

4.4.4 Management Interface

The Management Client uses the Management Interface to communicate with the
Interoperability Server. The Management Interface is based on the REST model.
The management client uses the HTTP protocol to communicate with the Interop-
erability Server. All the operations performed on the IS Interface are also possible
on the Management Interface. The return code of update and lookup functions will
be different to comply with HTTP standards. Upon successful Thing Description
update request, the return code on Management Interface is 200 OK. Similarly, upon
successful lookup request for translation, the return code on Management Interface
is 200 OK.

In addition to the operations specified by IS Interface, the following functions are
available on the Management Interface:

GET a Thing Description

The Management Client can retrieve a specific Thing Description from the Interop-
erability Server database by sending an HTTP GET request and specify the Thing
Description path as request URI. The complete specification of the operation is given
as follows.

Method: GET

URI Template: /td/<Semantic ID>

Success: 200 OK (content of Thing Description as JSON-LD document)

Failure: 404 Not Found (if the TD is not present)

Failure: 500 Internal Server Error (if there is some error deleting a TD form the
database)

4.4. Interfaces 33

Delete a Thing Description

The Management Client can delete a specific Thing Description by sending a HTTP
DELETE request to the Interoperability Server, specifying the Thing Description
resource URI. The specification of this operation is given below,

Method: DELETE

URI Template: /td/<Semantic ID>

Success: 200 OK

Failure: 404 Not Found (if the TD is not present)

Failure: 500 Internal Server Error (if there is some error deleting Thing Descrip-
tion form the database)

List All Thing Descriptions

The Management Client can request the list of all registered Thing Descriptions
from the Interoperability Server. The Management Client will send an HTTP GET
request to the Interoperability Server on the “/td” path, and the Interoperability
Server will send all the registered TDs in return. Following is the specification of
this operation,

Method: GET

URI Template: /td?<parameters>

Parameters: <query, text, rdf> to filter results

Success: 200 OK (Content of all Thing Descriptions stored in Interoperability
Server database)

Failure: 400 Bad Request (some error in the request parameters)

Failure: 500 Internal Server Error (if there is some error processing the param-
eters or getting a translation from the database)

4.4. Interfaces 34

The request parameters are optional and are defined as,
“query”: a sparql query in form <?s ?p ?o>
“text” : text based search for TDs e.g light
“rdf” : rdf triple to search for TDs

Register a Translation

The Management Client registers a translation of a specific resource. The Man-
agement Client sends an HTTP POST request to Interoperability Server specifying
all necessary parameters and includes the translation data in the payload of the
message. The detailed specification of the operation is given as,

Method: POST

URI Template: /translate?<parameters>

Parameters: source=<source endpoint Semantic ID>&target=<target endpoint
Semantic ID>&rt=<resource type>

Content-Type: application/<JSON, XML or other supported types>

Payload: the content of a translation file

Success: 201 Created

Failure: 400 Bad Request (if there is some error in the request parameters or
the payload)

Failure: 500 Internal Server Error (if there is some error storing the translation
in the database)

Update a Translation

The Management Client can update a translation by sending an HTTP PUT request
to the Interoperability Server. The update request does not require any parame-
ters and only includes the translation information in the payload. Following is the
specification of this operation,

4.4. Interfaces 35

Method: PUT

URI Template: /translate/<translation ID>

Content-Type: application/<JSON, XML or other supported types>

Payload: the content of a translation file

Success: 200 OK

Failure: 400 Bad Request (if there is some error in the request parameters or
processing the payload)

Failure: 500 Internal Server Error (if there is some error storing the translation
in the database)

Delete a Translation

The Management Client can delete a specific Thing Description by sending an HTTP
DELETE request to the Interoperability Server. Following is the specification of this
operation,

Method: DELETE

URI Template: /translate/<translation ID>

Success: 200 OK

Failure: 404 Not Found (if the translation is not present)

Failure: 500 Internal Server Error (if there is some error deleting the translation
from the database)

Translations Failed-Lookup Log

An administrator of the Interoperability Server can retrieve the log of failed lookups
for translations. Then, it can create the requested translation for to be used in
future. The Management Client sends HTTP GET request on Management Inter-

4.5. Working Principles 36

face on “/failed-lookup” path and Interoperability Server returns a JSON formatted
document of failed lookups. Following is the specification of this operation,

Method: GET

URI Template: /failed-lookup

Success: 200 OK (Content of a JSON formatted documents containing failed
lookup data)

Failure: 500 Internal Server Error (if there is some error retrieving the log)

This approach provides a generic interoperability solution to use in the IoT domain.
The concept of Resource Directory provides the capability to discover resources;
Interoperability Server performs semantic reasoning to create translations, and the
translations provide semantic information about the resource and host Endpoint.
The upcoming section4.5 describes the interaction of these entities and how different
parts of our semantic interoperability solution work together.

4.5 Working Principles

Earlier we discussed the different components of our semantic interoperability so-
lution. In this section, we will discuss how all these components work together to
provide a solution for the semantic interoperability problem. For a better under-
standing of the process, we take an example of an IoT network as given in Figure
4.3.

In this example, we have a central controller that receive temperature data from a
temperature sensor, and then send commands to a fan actuator to control the fan
speed accordingly. The temperature sensor or fan actuator are constrained devices.
Their resources are very limited and hence they usually do not provide meta-data
about their output. In an IoT network, where numerous constrained devices from
different manufacturers are connected to the network, there is a high probability
of misunderstanding the semantics of output of these devices. A simple example
of such a scenario would be multiple temperature sensors sending data to a central
controller, where few temperature sensors use Fahrenheit as temperature unit and
rest are using Celsius unit. Such a situation can easily lead to some unintended
consequences causing semantic interoperability problem. In this section, we will

4.5. Working Principles 37

Figure 4.3 An IoT network using Interoperability Server and Resource Directory

demonstrate the working principles of our solution using the example given in Figure
4.3.

We divide the whole process into the following steps,

1. Temperature Sensor, Fan Actuator, and Central Controller registers their
Thing Descriptions with Interoperability Server

2. Temperature Sensor and Fan Actuator registers their resources with Resource
Directory

3. Central Controller query Resource Directory for a resource

4. Central Controller query Interoperability Server for semantic information about
temperature resource

5. Central Controller request data from the Temperature Sensor

4.5. Working Principles 38

Now we have a high-level concept of how the Endpoints can make use of Interoper-
ability Server to receive semantic information of the target resource. In the following
sections, we will discuss each of the steps in detail.

4.5.1 Temperature Sensor, Fan Actuator, and Central Con-
troller registers their Thing Descriptions with Interop-
erability Server

The first step in the communication is that every endpoint is identified by a semantic
ID. The semantic ID is a unique identifier allocated by the Interoperability Server to
an endpoint upon registration of its Thing Description with Interoperability Server.
The endpoint can register its Thing Description with the Interoperability Server by
sending a POST request over IS Interface. Specifications of the POST request are
defined in section 4.4.3. Example of such request is given in Figure 4.4

Figure 4.4 An example of the registration of the Thing Description with the Interoper-
ability Server

The Figure 4.4 shows the output of the temperature sensor registration Thing De-
scription registration request. The output has two import important things to no-
tice. First, the CoAP 2.01 message for successful operation, second, a string output
"/td/1831d3ad". The text string contains the Semantic ID "1831d3ad" of the tem-
perature sensor. This string is also the path of Thing Description inside the Interop-
erability Server. Using this path, we can create a URI to get the Thing Description

4.5. Working Principles 39

from the Interoperability Server (as shown in Figure4.4.3). Every Endpoint is re-
quired to perform this procedure to get a Semantic ID. If the Endpoint does not
have enough capabilities to do registration with Interoperability Server, an adminis-
trator can add the corresponding endpoint Thing Description to the Interoperability
Server to get a Semantic ID.

4.5.2 Temperature Sensor and Fan Actuator registers their
resources with Resource Directory

Next step in the communication is that the endpoints register their hosted resources
with Resource Directory. Endpoint uses the Semantic ID for Uri-Query option
"sem", in the registration message along with the other options as specified in section
4.4.2. An Example of a resource registration with Resource Directory is given in
Figure 4.5.

Figure 4.5 An example of the registration of the temperature resource with the Resource
Directory

The registration request in Figure 4.5 shows the output of a temperature resource
registration request with Resource Directory. The response message indicates the re-
turn code of "2.01 Create" i.e. the registration was successful. The important things
to notice in POST request message are the Semantic ID, resource type, and path of
the resource. If an Endpoint hosts more than one resource, the same Semantic ID
will be used with all the resources

The same way every endpoint can register resources with Resource Directory. If the
endpoint does not have capabilities to register resources with Resource Directory, a
third party can also do the registration on behalf of an endpoint.

4.5. Working Principles 40

4.5.3 Central Controller query Resource Directory for tem-
perature resource

The next step in communication is to lookup for resources, an endpoint can query
the Resource Directory for the resources hosted on the other endpoints. The query
can include parameters like content type, resource type, and Semantic ID. We use
the resource type (rt) parameter to find where the temperature resource is located.
The Figure 4.6 shows a lookup query to Resource Directory for the temperature
resource and the query response from the Resource Directory.

Figure 4.6 An example of the resource lookup from Resource Directory

The lookup request as shown in Figure 4.6 is a GET request to the Resource Direc-
tory for temperature resource. The parameters rt="Temperature" gets all possible
resources of Temperature type. For demonstration, we have only one resource regis-
tered with the Resource Directory during the earlier steps in communication. So, the
Resource Directory replies with that resource and its related attributes like Semantic
ID, resource type, content type.

4.5.4 Central Controller query Interoperability Server for se-
mantic information about temperature resource

After querying the Resource Directory for a temperature resource, the Central Con-
troller has the Semantic ID of the Temperature Sensor. In the next step, the Central
Controller sends a lookup request to Interoperability Server for the temperature re-
source specifying the Semantic ID of the Temperature Sensor. For the proof of
concept, we have a sample translation (Appendix D) for the temperature resource
already stored in Interoperability Server. This translation contains the information
about the meta-data of temperature resource and also specifies the vocabulary used
for the context. The Figure 4.7 shows an example of a lookup for a translation in
Interoperability Server. If we look at the last part of URI, we will see the way how
we specify which translation to lookup as described in section 4.3.3.

The output of the sample translation has two important parts. The operations part
have information about where to find the resource (href), mediatype, and which

4.5. Working Principles 41

Figure 4.7 An example of the translation lookup from Interoperability Server

Figure 4.8 An example of the getting the temperature value from the Temperature Sensor

method are allowed (writeable) e.g. if the resource is writeable we can also perform
PUT operation to update the resource. In our case, the temperature value is only
readable.

The response part has meta-data about the payload that an endpoint will receive in
response to GET request. The metadata can include different attributes depending
upon the resource in question. For the temperature resource, the important informa-
tion can be the unit and value type. Depending upon the capabilities, an endpoint
can cache the translation information to reduce the queries between endpoint and
Interoperability Server.

4.5.5 Central Controller request data from the Temperature
Sensor

The last step in the communication is Central Controller requests the temperature
value from the Temperature Sensor. The GET request for the resource is a CoAP
GET request as specified in CoAP RFC[23]. An example of the GET request for
temperature resource from the Temperature Sensor in prototype topology is given
in Figure 4.8. The response to the request is simply a number value. From the
response itself, the central controller cannot determine how to interpret this value.
Given the meta-data from the translation, the Central Controller knows that this
number is a temperature value in Celsius.

42

5. CONCLUSION

In this thesis, we focused on the semantic interoperability problem for constrained
devices in the Internet of Things(IoT). In IoT, there are enormous devices of differ-
ent capabilities. A huge number of these devices are constrained devices and only
produce data, then there is an intermediate layer of devices with sufficient capa-
bilities to produce and consume data, and then on top are the servers with higher
capabilities to facilitate these devices. Together they all create an Internet of Things
ecosystem. In this thesis, we named the servers by their corresponding roles and
used the term Endpoint for the all other types of devices. In the beginning, we
discussed the technologies related to the Internet of Things to grasp a bigger pic-
ture of the versatile nature of the IoT. The thesis introduces a new classification
of IoT protocols and technologies to provide a better perspective from IoT point
of view. This classification discuses everything from hardware communication to
application-level interoperability. In order to focus on semantic interoperability, we
divided the interoperability into three layers, which helped us to isolate semantic
interoperability from it prerequisites layers of technical interoperability and syntac-
tic interoperability. The thesis discussed the existing solutions to semantic inter-
operability problem e.g. proxy gateways, unified data models & frameworks, and
ontologies. All the above-mentioned methods have both positive aspects and few
limitations. The main limitations of these methods are a single point of failure,
scalability issues, integrating semantic interoperability with syntactic interoperabil-
ity (that leads to the problem of full-scale adaptation of the proposed solution) and,
resource-intensive solutions that are not feasible for constrained devices. Our con-
clusion with the existing approaches is that they are applicable in IoT network with
specific capabilities and requirements. The research goal of the thesis is to create
a generic solution that could adapt to the dynamic behavior of the IoT ecosystem.
Looking beyond the limited scope of the present IoT technologies, we found tech-
nologies from the semantic web making their way to the Internet of Things, e.g. the
Thing Description from the Web of Things project by W3C. Thing description is a
great model for representing resources and interactions of any physical and virtual

5.1. Discussion 43

devices. Using thing description to model our endpoints, we create a solution that
can provide semantics for the data exchanged between endpoints. The core part
of the solution is a server named "Interoperability Server" that provides semantic
information about the data. Another server called "Resource Directory" provides
the resource discovery functions for the IoT network. The chapter 4 describes the
proposed solution in detail. However, the key aspects of this solution are,

• It does not limit the endpoints to use a specific data model or information
model. An endpoint with any data model or information model can be repre-
sented by Thing Description.

• It supports the hierarchical communication model where the endpoints at
lower layers have fewer resources than upper layer endpoints. These resource-
constrained endpoints can be managed by a third-party inside Interoperability
Serve and Resource Directory to provide the semantics of their data for other
endpoints.

• The registration with Interoperability Server and Resource directory can be
Endpoint originated or managed by the third party as mentioned earlier. It
decreases the overhead of registration for constrained devices.

• The endpoints can cache the translation lookup information for a specified
period to reduce the lookup overhead and save power on Endpoint.

• The translations are provided on per resource basis for source and target End-
point. This feature provides a security measure, by not exposing the whole
Thing Description of the target Endpoint to the source Endpoint of the re-
quest.

• The solution can withstand the inconsistent nature of IoT network, where the
devices can join and leave the network at any time.

5.1 Discussion

The aim of the thesis was to create a semantic interoperability solution for IoT
network. The thesis presented a solution to cater the said problem. The thesis has
tried to answer the following main questions:

5.1. Discussion 44

Question: What is a possible semantic interoperability solution that is independent
of underlying technical and syntactic technologies of an IoT endpoint? Answer:
The implemented solution describes every endpoint with Thing Description. The
use of Thing Description provides the ability to represent any physical or virtual
device of any capabilities independent of their underlying data models and infor-
mation models. The working principles of this solution make it independent of any
communication technology used to transfer data.

Question: How the presented solution provide semantics? Answer: The semantic
interoperability means to agree on common meanings of data. To agree on common
meanings of data in an IoT network, endpoints need the meta-data of the data. The
solution presents a way to provide the meta-data of the output through translations.
The presented solution is also applicable for cases when the endpoints e.g. sensors,
actuators do not have enough resources to provide the meta-data information by
themselves.

Question: How the presented solution meets the needs of resource-constrained IoT
endpoints? Answer: The presented solution requires every endpoint must be reg-
istered with Interoperability Server. For resource-constrained endpoints that do
not have capabilities to register themselves, registration through third-party is sup-
ported. Through this approach, all the resource constrained devices have repre-
sentation in Interoperability Server, and the meta-data of their resources is readily
available to other endpoints.

Question: Can the presented solution can be used in IoT Networks? Answer: Yes,
the solution can be used to work in existing IoT networks facing problems of semantic
interoperability. Any use case that involves different kinds of IoT endpoint or same
kind of IoT endpoints with different standards (e.g multiple air pressure sensors from
different vendors and possibly each vendor has its propriety standard) or a network
where IoT endpoints leave and join very frequently, is a good candidate to deploy
this solution. The data consumer endpoints of such networks (e.g a controller or a
server using data from multiple sensors in an office) can have access to the meta-data
of the requested data through Interoperability Server.

5.2. Proposed Future Work 45

5.2 Proposed Future Work

We tried to design the proposed solution to be generic, simple, low network overhead,
low power consumption and easy to adapt. To make this all possible, there are still
improvements and future work required. Following are some key improvements and
future work possibilities we propose.

The solution needs to implement a registration expiry or re-registration mechanism
to remove dead endpoints from the Interoperability Server and Resource Directory.
As mentioned in chapter 4, the solution implements the manual approach to create
a translation. This approach was adopted considering the scope of the thesis and
amount of work required. So, the main improvement and future work required is to
implement an automatic translation creation mechanism. Upon our investigation,
we have found that it can be made possible using the Ontologies. The Ontologies
are already used in Semantic Web for semantic queries. Using the Ontologies with
the machine learning and latest artificial intelligence technologies can produce the
required functionality of automatic translation creation upon request.

46

A. THING DESCRIPTIONS: TEMPERATURE

SENSOR

{
"@context" : [

" http ://w3c . g ithub . i o /wot/w3c−wot−td−context . j s on l d " ,
" http ://w3c . g ithub . i o /wot/w3c−wot−common−context . j s on l d "

] ,
"@type" : " Sensor " ,
"name" : "TempSensor" ,
" u r i s " : [

" coap ://www. example . com:5683/ "
] ,
" p r op e r t i e s " : [

{
"@type" : "Temperature" ,
"name" : "myTemp" ,
"outputData" : {

" un i t " : " c e l s i u s " ,
"valueType" : "number"

} ,
" wr i t ab l e " : false ,
" obse rvab l e " : true ,
" l i n k s " : [

{
" h r e f s " : " temperature " ,
"mediaType" : " app l i c a t i o n / l ink fo rmat "

}
]

} ,
{

Appendix A. Thing Descriptions: Temperature Sensor 47

"@type" : "Temperature" ,
"name" : " th r e sho ld " ,
" wr i t ab l e " : true ,
" obse rvab l e " : false ,
" l i n k s " : [

{
" h r e f " : " th r e sho ld " ,
"mediaType" : " app l i c a t i o n / l ink fo rmat "

}
] ,
"outputData" : {

" un i t " : " c e l s i u s " ,
"valueType" : "number"

} ,
" inputData" : {

" un i t " : " c e l s i u s " ,
"valueType" : "number"

}
}

] ,
" s e c u r i t yD e f i n i t i o n s " : {

"bearerTokenConfig " : {
"scheme" : " beare r " ,
" format " : " jwt " ,
" a lg " : "ES256" ,
" au tho r i z a t i onUr l " : " https : // s e r v i e n t . example . com:8443/ "

}
}

}

48

B. THING DESCRIPTIONS: FAN ACTUATOR

{
"@context" : [

" https : //w3c . g ithub . i o /wot/w3c−wot−td−context . j s on l d " ,
" https : //w3c . g ithub . i o /wot/w3c−wot−common−context . j s on l d "

] ,
"@type" : "Actuator " ,
"name" : "FanActuator" ,
" u r i s " : [

" coap ://www. example . com:5683/ fanActuator "
] ,
" p r op e r t i e s " : [

{
"@type" : "Speed" ,
"name" : " fanSpeed" ,
"outputData" : {

" un i t " : "kmh" ,
"valueType" : "number"

} ,
" wr i t ab l e " : false ,
" l i n k s " : [

{
" h r e f s " : " speed/ value " ,
"mediaType" : " app l i c a t i o n / j son "

}
]

}
] ,
" a c t i on s " : [

{

Appendix B. Thing Descriptions: Fan Actuator 49

"@type" : "Toggle " ,
"name" : " fanOnOff" ,
" inputData" : {

"valueType" : " boolean "
} ,
" l i n k s " : [

{
" h r e f s " : " t ogg l e " ,
"mediaType" : " app l i c a t i o n / j son "

}
]

} ,
{

"@type" : "Speed" ,
"name" : " IncreaseFanSpeed " ,
" inputData" : {

" un i t " : "kmh" ,
"valueType" : " In t eg e r "

} ,
" l i n k s " : [

{
" h r e f s " : " speed/ i n c r e a s e " ,
"mediaType" : " app l i c a t i o n / j son "

}
]

} ,
{

"@type" : "Speed" ,
"name" : "DecreaseFanSpeed" ,
" inputData" : {

" un i t " : "kmh" ,
"valueType" : " In t eg e r "

} ,
" l i n k s " : [

{
" h r e f s " : " speed/ dec r ea s e " ,

Appendix B. Thing Descriptions: Fan Actuator 50

"mediaType" : " app l i c a t i o n / j son "
}

]
}

]
}

51

C. THING DESCRIPTIONS: CONTROLLER

{
"@context" : [

" https : //w3c . g ithub . i o /wot/w3c−wot−td−context . j s on l d " ,
" https : //w3c . g ithub . i o /wot/w3c−wot−common−context . j s on l d "

] ,
"@type" : " Con t r o l l e r " ,
"name" : " Cent ra lCont ro l l e r " ,
" u r i s " : [

" coap ://www. example . com:5683/ c o n t r o l l e r "
] ,
" p r op e r t i e s " : [

{
"@type" : "Temperature" ,
"name" : "Threshold " ,
"outputData" : {

"valueType" : "number" ,
" un i t " : " f ah r enhe i t "

} ,
" wr i t ab l e " : true ,
" l i n k s " : [

{
" h r e f s " : "/ th r e sho ld " ,
"mediaType" : " app l i c a t i o n / j son "

}
]

}
] ,
" a c t i on s " : [

{

Appendix C. Thing Descriptions: Controller 52

"@type" : "Temperature" ,
"name" : "TempAlert" ,
"outputData" : {

"valueType" : "number" ,
" un i t " : " f ah r enhe i t "

} ,
" l i n k s " : [

{
" h r e f s " : "/ tempalert " ,
"mediaType" : " app l i c a t i o n / j son "

}
]

}
]

}

53

D. TRANSLATION: TEMPERATURE

RESOURCE OF TEMPERATURE SENSOR

{
"@context" : [

" http ://w3c . g ithub . i o /wot/w3c−wot−td−context . j s on l d " ,
" http ://w3c . g ithub . i o /wot/w3c−wot−common−context . j s on l d "

] ,
" r e s ou r c e " : " temperature " ,
" r e l a t e dP r op e r t i e s " : [

{
" opera t i on " : {

" h r e f " : "coap :// l o c a l h o s t :5683/ temperature " ,
" wr i t e ab l e " : false ,
"mediaType" : " app l i c a t i o n / l ink−format "

} ,
" re sponse " : {

"name" : "myTemp" ,
"valueType" : "number" ,
" un i t " : " c e l c i u s "

}
}

]
}

54

BIBLIOGRAPHY

[1] P. Suresh, J. V. Daniel, V. Parthasarathy, and R. Aswathy, “A state of the
art review on the internet of things (iot) history, technology and fields of de-
ployment,” in Science Engineering and Management Research (ICSEMR), 2014
International Conference on. IEEE, 2014, pp. 1–8.

[2] Roberto Minerva, Abyi Biru, Domenico Rotondi, “Towards a definition of the
Internet of Things (IoT),” IEEE Internet Initiative, 2015.

[3] ETSI: European Telecommunications Standards Institute. Welcome to the
world of standards. http://www.etsi.org/(last accessed on 15 May 2018).

[4] oneM2M, “Standards for M2M and the Internet of Things,” http://www.
onem2m.org/(last accessed on 15 May 2018).

[5] NIST: Natioanl Institut of Standards, “Cyber Physical Systems,” https://www.
nist.gov/el/cyber-physical-systems(last accessed on 15 May 2018).

[6] Postscapes, “IoT Standards and Protocols,” http://www.postscapes.com/
internet-of-things-protocols/(last accessed on 15 May 2018), February 2017.

[7] IEEE, “IEEE Standard for Low-Rate Wireless Networks,” IEEE Std 802.15.4-
2015 (Revision of IEEE Std 802.15.4-2011), pp. 1–709, April 2016.

[8] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission of
IPv6 Packets over IEEE 802.15.4 Networks,” RFC 4944 (Proposed Standard),
Internet Engineering Task Force, Sep. 2007, updated by RFCs 6282, 6775,
8025. [Online]. Available: http://www.ietf.org/rfc/rfc4944.txt

[9] S. Deering and R. Hinden, “Internet protocol, version 6 (ipv6) specification,”
RFC 8200, Internet Engineering Task Force, July 2017. [Online]. Available:
https://tools.ietf.org/rfc/rfc8200.txt

[10] Z. Alliance, “Zigbee specification (document 053474r20),” ZigBee Alliance: San
Ramon, CA, USA, 2012.

[11] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of bluetooth low
energy: An emerging low-power wireless technology,” Sensors, vol. 12, no. 9,
pp. 11 734–11 753, 2012.

http://www.etsi.org/
http://www.onem2m.org/
http://www.onem2m.org/
https://www.nist.gov/el/cyber-physical-systems
https://www.nist.gov/el/cyber-physical-systems
http://www.postscapes.com/internet-of-things-protocols/
http://www.postscapes.com/internet-of-things-protocols/
http://www.ietf.org/rfc/rfc4944.txt
https://tools.ietf.org/rfc/rfc8200.txt

BIBLIOGRAPHY 55

[12] J. Gozalvez, “New 3gpp standard for iot [mobile radio],” IEEE Vehicular Tech-
nology Magazine, vol. 11, no. 1, pp. 14–20, March 2016.

[13] 3GPP: 3rd Generation Partnership Project, “The Mobile Broadband Standard,”
http://www.3gpp.org/(last accessed on 15 May 2018).

[14] J. Postel, “Internet Protocol,” RFC 791 (INTERNET STANDARD), Internet
Engineering Task Force, Sep. 1981, updated by RFCs 1349, 2474, 6864.
[Online]. Available: http://www.ietf.org/rfc/rfc791.txt

[15] ——, “Transmission Control Protocol,” RFC 793 (INTERNET STANDARD),
Internet Engineering Task Force, Sep. 1981, updated by RFCs 1122, 3168,
6093, 6528. [Online]. Available: http://www.ietf.org/rfc/rfc793.txt

[16] ——, “User Datagram Protocol,” RFC 768 (INTERNET STANDARD),
Internet Engineering Task Force, Aug. 1980. [Online]. Available: http:
//www.ietf.org/rfc/rfc768.txt

[17] R. Hamilton, J. Iyengar, I. Swett, and A. Wilk, “Quic: A udp-based secure and
reliable transport for http/2,” IETF, draft-tsvwg-quic-protocol-02, 2016.

[18] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.2,” RFC 5246 (Proposed Standard), Internet Engineering Task
Force, Aug. 2008, updated by RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627,
7685, 7905, 7919. [Online]. Available: http://www.ietf.org/rfc/rfc5246.txt

[19] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security
Version 1.2,” RFC 6347 (Proposed Standard), Internet Engineering Task
Force, Jan. 2012, updated by RFCs 7507, 7905. [Online]. Available:
http://www.ietf.org/rfc/rfc6347.txt

[20] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer Protocol Version
2 (HTTP/2),” RFC 7540 (Proposed Standard), Internet Engineering Task
Force, May 2015. [Online]. Available: http://www.ietf.org/rfc/rfc7540.txt

[21] E. Rescorla, “HTTP Over TLS,” RFC 2818 (Informational), Internet
Engineering Task Force, May 2000, updated by RFCs 5785, 7230. [Online].
Available: http://www.ietf.org/rfc/rfc2818.txt

[22] A. Banks and R. Gupta, “MQTT Version 3.1. 1,” OASIS standard, 2014.

http://www.3gpp.org/
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc6347.txt
http://www.ietf.org/rfc/rfc7540.txt
http://www.ietf.org/rfc/rfc2818.txt

BIBLIOGRAPHY 56

[23] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” RFC 7252 (Proposed Standard), Internet Engineering
Task Force, Jun. 2014, updated by RFC 7959. [Online]. Available:
http://www.ietf.org/rfc/rfc7252.txt

[24] P. Mockapetris, “Domain names - concepts and facilities,” RFC 1034
(INTERNET STANDARD), Internet Engineering Task Force, Nov. 1987,
updated by RFCs 1101, 1183, 1348, 1876, 1982, 2065, 2181, 2308,
2535, 4033, 4034, 4035, 4343, 4035, 4592, 5936, 8020. [Online]. Available:
http://www.ietf.org/rfc/rfc1034.txt

[25] ——, “Domain names - implementation and specification,” RFC 1035
(INTERNET STANDARD), Internet Engineering Task Force, Nov. 1987,
updated by RFCs 1101, 1183, 1348, 1876, 1982, 1995, 1996, 2065, 2136, 2181,
2137, 2308, 2535, 2673, 2845, 3425, 3658, 4033, 4034, 4035, 4343, 5936, 5966,
6604, 7766. [Online]. Available: http://www.ietf.org/rfc/rfc1035.txt

[26] C. Bormann, Z. Shelby, P. V. der Stok, and M. Koster, “CoRE Resource
Directory,” Internet Engineering Task Force, Internet-Draft draft-ietf-core-
resource-directory-10, Mar. 2017, work in Progress. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-core-resource-directory-13

[27] Lightweight machine to machine technical specification, Open Mobile Alliance,
2016, [URL]http://www.openmobilealliance.org/release/LightweightM2M/
V1_0-20160407-C/(last accessed on 15 May 2018).

[28] M. Sporny, G. Kellogg, M. Lanthaler, W. R. W. Group et al., “Json-ld 1.0: a
json-based serialization for linked data,” W3C Recommendation, vol. 16, 2014.

[29] W. W. W. Consortium(W3C), “Rdf 1.1 concepts and abstract syn-
tax,” W3C Recommendation, 2014, https://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/(last accessed on 15 May 2018).

[30] ——, “Rdf schema 1.1,” W3C Recommendation, 2014, https://www.w3.org/
TR/rdf-schema/(last accessed on 15 May 2018).

[31] S. Staab and R. Studer, Handbook on ontologies. Springer Science & Business
Media, 2013.

[32] M. Sporny, G. Kellogg, M. Lanthaler, W. R. W. Group et al., “Json-ld 1.0: a
json-based serialization for linked data,” W3C Recommendation, vol. 16, 2014.

http://www.ietf.org/rfc/rfc7252.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
https://tools.ietf.org/html/draft-ietf-core-resource-directory-13
http://www.openmobilealliance.org/release/LightweightM2M/V1_0-20160407-C/
http://www.openmobilealliance.org/release/LightweightM2M/V1_0-20160407-C/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/

BIBLIOGRAPHY 57

[33] V. Charpenay, J. Hund, S. Kabisch, and T. Kamiya, WoT Current Prac-
tices, http://w3c.github.io/wot/current-practices/wot-practices.html(last ac-
cessed on 15 May 2018), World Wide Web Consortium.

[34] M. Serrano, P. Barnaghi, F. Carrez, P. Cousin, O. Vermesan, and P. Friess,
“Iot semantic interoperability: Research challenges, best practices, recommen-
dations and next steps,” White Paper of the 4th Activity Chain of the EURO-
PEAN RESEARCH CLUSTER ON THE INTERNET OF THINGS (IERC),
2015.

[35] A. Pras and J. Schoenwaelder, “On the Difference between Information Models
and Data Models,” RFC 3444 (Informational), Internet Engineering Task
Force, Jan. 2003. [Online]. Available: http://www.ietf.org/rfc/rfc3444.txt

[36] B. Silverajan, M. Ocak, and J. Jiménez, “Implementation experiences of seman-
tic interoperability for restful gateway management,” IoT Semantic Interoper-
ability Workshop, 2016.

[37] S. Hachem, T. Teixeira, and V. Issarny, “Ontologies for the internet of things,”
in Proceedings of the 8th Middleware Doctoral Symposium. ACM, 2011, p. 3.

[38] M. Compton, P. Barnaghi, L. Bermudez, R. GarcíA-Castro, O. Corcho, S. Cox,
J. Graybeal, M. Hauswirth, C. Henson, A. Herzog et al., “The ssn ontology of
the w3c semantic sensor network incubator group,” Web semantics: science,
services and agents on the World Wide Web, vol. 17, pp. 25–32, 2012.

[39] M. B. Alaya, S. Medjiah, T. Monteil, and K. Drira, “Toward semantic interop-
erability in onem2m architecture,” IEEE Communications Magazine, vol. 53,
no. 12, pp. 35–41, Dec 2015.

[40] A. S. Foundation. A free and open source java framework for building semantic
web and linked data applications. https://jena.apache.org/(last accessed on 15
May 2018).

http://w3c.github.io/wot/current-practices/wot-practices.html
http://www.ietf.org/rfc/rfc3444.txt
https://jena.apache.org/

	Introduction
	Internet of Things
	Definition of the Internet of Things
	Internet of Things Technologies
	Network/Link Layer
	Internet Layer
	Transport Layer
	Data Protocols
	Discovery
	Device Management
	Semantic

	Interoperability in the Internet of Things
	Technical Interoperability
	Syntactic Interoperability
	Semantic Interoperability
	Proxy Gateway
	Unified Data Models and Frameworks
	Ontologies

	Proposed Semantic Interoperability Solution for IoT
	Endpoint
	Resource Directory
	Interoperability Server
	Apache Jena
	Thing Description Repository
	Semantic Engine
	Manual Approach
	Automatic creation of Translations

	Management Client

	Interfaces
	Peer Interface
	Resource Directory Interface
	Register a Resource
	Update a Resource
	Lookup a Resource

	Interoperability Server Interface
	Register a Thing Description
	Update a Thing Description
	Lookup Translations

	Management Interface
	GET a Thing Description
	Delete a Thing Description
	List All Thing Descriptions
	Register a Translation
	Update a Translation
	Delete a Translation
	Translations Failed-Lookup Log

	Working Principles
	Temperature Sensor, Fan Actuator, and Central Controller registers their Thing Descriptions with Interoperability Server
	Temperature Sensor and Fan Actuator registers their resources with Resource Directory
	Central Controller query Resource Directory for temperature resource
	Central Controller query Interoperability Server for semantic information about temperature resource
	Central Controller request data from the Temperature Sensor

	Conclusion
	Discussion
	Proposed Future Work

	Thing Descriptions: Temperature Sensor
	Thing Descriptions: Fan Actuator
	Thing Descriptions: Controller
	Translation: Temperature Resource of Temperature Sensor
	Bibliography

