TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

ALVARO GARCIA MORCILLO
MULTI-MODAL INTERFACE FOR OFFLINE ROBOT PRO-
GRAMMING

Master of Science thesis

Examiner: Prof. José Luis Martinez
Lastra

Examiner and topic approved by the
Faculty Council of the Faculty of
Engineering Sciences

on 28th March 2018

ABSTRACT

ALVARO GARCIA MORCILLO: Multi-Modal Interface for Offline Robot Pro-
gramming

Tampere University of Technology

Master of Science thesis, 59 pages, 35 Appendix pages

May 2018

Exchange Student

Examiner: Prof. José Luis Martinez Lastra

Keywords: Multi-Modal Interface, Offline programming, Leap Motion Sensor, Robot
Studio, Speech Recognition

This thesis presents an approach for improving robot offline programming using
input methods based on the human natural skills. The approach is focused to teach
basic assembly and manipulation operations using a pair of industrial robots in an
existing simulation environment and is meant to be improved in future works, that

are also proposed in this thesis.

In order to develop this approach, and regarding the available resources, an Add-In
for the simulation and offline programming software RobotStudio was developed.
This Add-In combines human pose, a graphical user interface and optionally speech
to teach the robot a sequence of targets, along with the simulation environment, to

automatically generate instructions.

Two different kinds of sensors, Kinect and Leap Motion Sensor have been evaluated
based on references in order to select the most suitable one for the implementation
of this work.

The executions of the programmed instructions have been evaluated in simulation.

IT

PREFACE

This thesis has been made during an Erasmus grant at Tampere University of Tech-
nology, and will also serve as Final Master Work (TFM) for the Master Degree in

Industrial Engineering at the University of Alcala de Henares.

I hope this work will serve as a base for future students here at FAST-Lab so the

many hours spent on it become fruitful.

I want to thank Professor Lastra for welcoming me to Fast-Lab, and the rest of the

lab members for showing interest in this thesis and telling me how cool it looks.

I also want to thank all the friends I have made here in Tampere, even thou I have

spent more time with this work than you guys.

También agradecer a mis amigos de Espana, esos amores con esas almas tan grandes

que a pesar de decirles que tendrian que haber estudiao les admiro un montoén.

Por dltimo y mas importante a mis padres y mi familia, que después de esto posi-

blemente tengamos que separarnos durante largos periodos.

In Tampere, 06.04.2018.

Alvaro Garcia Morcillo

IIT

CONTENTS

1. Imtroductiono 2
1.1 Motivation 2

1.2 Justificationo 3
1.3 Problem Statement and Research Questions 4
1.4 Scope D
1.5 Limitations)
1.6 Objectives e 6
1.7 Outline. 7

2. Literature Review 8
2.1 Human-Robot Interaction 8
2.1.1 Human-Robot Interaction for controlling 8

2.1.2 Human-Robot Interaction for programming 10

2.2 Multi-Modal Interfaces 12
2.3 Summary of the review 13

3. Proposal for a Multi-Modal interface in an off-line programming environment 15

3.1 Description of the proposal 15
3.2 Tests . . . o 17
4. Implementation 21
4.1 Environment 24
4.2 Design and implementation of the GUT 25
4.3 Configuration of the environment for the interaction 27
4.3.1 Station requirements for minimum use 27
4.3.2 Smart Component for tools and Station Logic 29
4.3.3 Defining pieces L 31
4.4 Motion Sensing Input to RobotStudio Data 32
4.5 Robots Movement 37

4.5.1 State Machine 37

4.5.2 Visualization and movement process 38

4.6 Speech Recognitiono Lo 44
4.7 Generation of instructionso 46

. Results and Analysis 51
5.1 Review of limitations 52

. Conclusions 54
6.1 Openissues e 54
6.2 Future Workso 55
Bibliography 57
APPENDIX A. UML class diagram 60

APPENDIX B. XML code documentation 62

LIST OF FIGURES

2.1 K. Ishii et al.” Robot Control using Laser Gestures 9
2.2 Pérez and Julie content of the objects knowledge base. 12
2.3 Mocan et al.” Multimodal interface framework. 13
24 T/OModes. 14
3.1 Structure of the proposal. 17
3.2 Snap-fit insertion. Lo 18
3.3 Bayonet insertion. 18
3.4 Rubik cube manipulation. 0000000 19
3.5 Roboticcell.o 19
3.6 Testing environment.o 20
4.1 RS while in the Add-In tab. 22
4.2 General overview of the interface internal operation. 23
4.3 GUI of the Add-In. 26
4.4 How to add robots to the station. 28
4.5 How to add a controller containing both robots. 29
4.6 Gripper child smart components. 30
4.7 Gripper smart components design. 31
4.8 Steps for configuring a piece. 32
4.9 Captures of the sensor readings. 33

4.10 Icons of left hand poses.o 34

4.11 Leap Motion Sensor axes.o 35
4.12 Flowchart of the Leap Motion Sensor Input Mode. 36
4.13 State machine for each hand. 0000 39
4.14 Visualization example.o 40
4.15 Alignment state feedback. 0oL 41
4.16 Speech Recognizer structure. 45
4.17 Flowchart of the target recording. 49
6.1 RobotStudio compatibility with VR headsets. 56
A.1 UML class diagram, upper part. 60

A.2 UML class diagram, lower part. 61

LIST OF ABBREVIATIONS AND SYMBOLS

RS
SDK
API
DOF
1/0
GUI
HRI
MMI
AR

<i 9

Robot Studio

Software Development Kit
Application Programming Interface
Degrees of freedom

Input/Output

Graphical User Interface
Human-Robot Interaction
Multi-Modal Interaction
Augmented Reality

Virtual Reality

Leap Motion Sensor transform matrix
Rotation matrix

Translation or direction vector

1. INTRODUCTION

1.1 Motivation

In this section we will give some reasons that motivate the work developed, answering

the question:
"Why Multi-Modal Interface for Offline Robot Programming?"

For years, we have seen many sci-fi movies where robots interact with people and
following their commands in a very natural way, in some others we have seen how not
autonomous robots are controlled imitating the user moves and, nowadays, industrial

robots still lack artificial intelligence.

To program industrial robots, the programmer can use a virtual environment and
teach them the tasks they need to do by showing them targets, making them follow a
path with that targets and some parameters; and transforming that paths into code
along with other instructions that read data from inputs and sets data to outputs;

there is also the opportunity to teach the real robot in other ways.

Some implementations of controlling robots by imitation have been implemented

these last years [1, 2, 3.

If a robot can imitate a person, a person would be able to easily teach a robot,

however, robot movements have something we do not have, high precision.

Movements of humans are always done in a closed loop, we move our articulations, we
see them through our eyes and we correct the position, robots otherwise can do many
tasks with high precision not sensing anything, but needing a correct calibration; a
lack of sensors will, of course, make a robot less flexible, an industrial robot with no
sensors can only work in assembly lines where the pieces are positioned in a known,

precise way.

Assuming that our robot does not have any sensor and it must be working most of

the time, how can we program it to do certain tasks?

1.2. Justification 3

Using an offline environment, we can simulate pieces and robots, then we can sense
the pieces and tell a virtual robot to handle it, anyway, to tell a robot to handle
a piece requires a sensor to sense us, but in this case it will be connected to a

computer, not to a robot.

Robot manipulators are also known as robot arms, and we humans have arms, two of
them, then it is likely to teach two arms how to do an operation. Many research with
artificial intelligence has been made with non-industrial robots to reach what it is
written in the first paragraph of this motivation, but industrial robot manipulators
are not receiving that treatment as much as mobile robots or assisting robots, in
other words, industrial robot manipulators are not being treated in the human-robot

interaction field as much as other types of robots.

Then, this thesis will focus on programming robot tasks using a multi-modal inter-
face, making them imitate our movements and being able to command them with
our voice somehow. In other words, we will apply human-virtual robot interaction

in order to program them.

1.2 Justification

The motivation given for this thesis can be justified regarding both non-recent and
more recent research, this way, the motivation can be proved to have potential

interest in some research directions that are still of interest nowadays:

1. Making a task easier has always been beneficial in many disciplines. Au-
tomation requires a programming process that can be made easier and more
intuitive. Even since 2007, the robot control development importance has
been highlighted, specially in an industrial perspective, Brogardh outlined the
sensor-based human-robot interfaces for intuitive robot programming as a re-

search direction [4].

2. The industry has evolved since its origin through three industrial revolutions,
in 2013, the fourth one was announced. Nowadays, the so known Industry 4.0
has raised the complexity of the procedures inside the automated production
systems. As highlighted by Wittenberg, this rising of complexity also raises
the need for more intuitive interfaces. Moreover, the virtual commissioning
along with the on-field commissioning of systems, takes the work from the

field to the office, helping to save time [5].

3. Robots installed in factories usually require specialized human resources to

take care of the maintenance, calibration, and programming. In small and

1.3. Problem Statement and Research Questions 4

medium enterprises, there are high parametrization and reconfiguration needs,
requiring specialized staff to deal with robot systems [6]. To introduce robotics
in small companies, achieving easier ways to deal with robots may ease their

use and reduce the human resources costs and the availability of operators.

4. Interaction with robots in alternative or more natural ways has been repeat-
edly researched focusing more on assistive or mobility robots |7, 8, 9, 10, 11],
however, there is also related research focusing robot manipulators [1, 2, 3, 12,
13, 14, 15, 16]. Some of these works focus on robot control [1, 2, 12] rather
than in robot programming |3, 13, 14, 15, 16]. None of these approaches in-
tegrate its work in a well-known off-line robot simulation and programming
software, such as RS. Within these references, only the most recent focus on

collaborative manipulators [3, 15].

5. Integrating an interface which introduces new input modes to an already ex-
isting programming environment can make easier to combine the new modes

with the already existing ones.

6. According to the 2016 article [13], literature about Multi-Modal Interaction is

still scarce, then the thesis topic is suitable.

1.3 Problem Statement and Research Questions

Robotics in the industry is still challenging for the SME’s decision on rather invest
in it or not. The return on investment gets worse when a business has to face the
costs of specialized staff to reprogram and reconfigure tasks in a robotic system.
Therefore, new programming interfaces for making robot programming easier and
more intuitive are required for saving time and avoiding the need for specialized

staff, nowadays it is still being researched.

Given the previously exposed problem, an approach for programming robots in a
multi-modal way can be interesting, as well as to ease future works on this complex
task where the literature is still scarce. Regarding the interaction modes proposed,
hand pose imitation and speech along with traditional GUI input/output methods,

the following research questions are prompted:

e How can an input method such as the hands pose can be decided to be inter-
preted or not, avoiding additional inputs?
e How can the hands’ poses and speech can be combined to achieve a better

functionality?

1.4. Scope 5t

e How can we translate our actions given these input modes into code or in-
structions?
e What sensors or devices can make the interaction with the robot more precise,

flexible or intuitive?

1.4 Scope

The implementation of the proposed approach has been developed based on a real
robotic cell installed at FAST-Lab in the Tampere University of Technology. This
cell includes two ABB IRB140 robot manipulators. The material available has both

inspired and limited the implementation developed.

The implementation can be used for ABB robots programming, using the simulation
and offline programming environment RobotStudio (RS), up to two robots can be

programmed at the same time.
Human-motion sensing will be used to extract 3D information and discrete poses.

Regarding the speech recognition, the interface may need the en-US speech recogni-
tion package for Windows. Speech recognized commands allow the user to activate
some buttons of the Graphical User Interface (GUI) for the robots in order to gain

precision or to open and close the grippers.

The virtual station used has already modeled a robotic ABB cell, with a pair of
IRB120 robot manipulators and it has been configured to hold two robot tasks in
the same virtual controller, there is also the same RS Smart Component for both
grippers (Two Smart Components of the same type), anyway, users may create their

own Smart Components and use their own grippers in their simulations.

The pieces that have been assembled using the developed interface have their models

imported to the used RS station, other models can be imported to new stations.
The interface is meant to program some assembly and manipulation basic operations.

The method used for this thesis implementation does not use artificial intelligence.

1.5 Limitations

Limitations of this thesis work are exposed here, not as a result of the development

but as intended limitations.

1.6. Objectives 6

e The proposal is only applicable to off-line robot programming environments
which allow Add-Ins.

e The Add-In is only compatible with RS, and it is only compatible with Win-

dows.

e The implementation is only compatible with the Leap motion sensor as human-

motion input device.

e The implementation does not consider sensors installed in robots or collision

detection.

e Targets will be manually generated in RS by the user by using the human-

motion data.

e Automatic code generation is limited to automatic instructions generation in
RS, using the targets defined by human-motion data.

e Virtual robots tools will only imitate the hand positions when these are closed.

e The points to be reached by the robots have to be taught one by one, there is
no artificial intelligence generating targets automatically, the targets will be

recorded when opening the hands instead.

1.6 Objectives

Now that the reasons for this thesis have been given, we define some objectives we
want to achieve. It is important to highlight that the implementation of this work

is also meant to be a base for possible future works on it.

e Sense some motion of the human body to be used as an input for the robot

programming along with voice commands.

e Being able to represent that input in a virtual environment, at the same time

that the user works with it.

e Get a flexible interface that allows the user to make some configuration and

allows to teach two robots.

e Possibility to restrict some movements to do some precise movements a human

could not easily achieve.

e Keep the code of the project as structured and readable as possible and doc-

ument it to ease future works.

e Being able to program movement, I/O and synchronization instructions.

1.7. Outline 7

1.7 Outline

Now a summary of the contents of this thesis is given.

Chapter 2, analyses related work in different topics related to this work as well as
their relation to it. Chapter 3 presents the theoric proposal of this thesis as well as
the tests to be done for it. Chapter 4 Makes a description of the implementation
of the proposal used to make the tests. chapter 5 makes a review of the behavior

of the program as well as the executions of the programmed tasks.

Finally, chapter 6 presents the conclusions of this work, summarizing the results

and issues, as well as exposing future works.

2. LITERATURE REVIEW

In this chapter, some related works will be summarized, classifying them into sub-
topics and finally, some conclusions of the reviews will be presented. The sub-topics

are prompted as follows:

1. Human-Robot Interaction.

(a) Human-Robot Interaction for controlling.

(b) Human-Robot Interaction for programming.

2. Multi-Modal Interfaces.

2.1 Human-Robot Interaction

The Human-Robot interaction is commonly referred as HRI by researchers. It is
a multidisciplinary field with different contributions such as artificial intelligence,

robotics, and social sciences.

2.1.1 Human-Robot Interaction for controlling

The HRI is typically known as interacting with a robot to make it do some task.
Several methods for achieving a successful interaction have been researched for better
and more natural ways to interact with them. Starting from 2005, we introduce the
gesture-based interface in [17] for a robot competition, with this interface, the user
can control a fighter robot by reading the user movements with a camera that
simply process the skin color of the user and extract the fists and head features.
The interface recognizes the gesture corresponding to the user’s pose, generating a
robot command to move it in a similar way. In this case, we have seen an interface

which transforms pose into gesture and gesture into a command.

It is also important how the robot gives the user information, in 2007, [18| presents

a Networked, Multi-sensored environment for controlling a mobile robot. A PDA

2.1. Human-Robot Interaction

O,

57

N7

%

Delivery Command

-
%

Task Execution

<

;e@

Result

Object Selection

Figure 2.1 K. Ishii et al.” Robot Control using Laser Gestures

is used as the interface device with the robot, being able to see the robot location
through it and giving commands to it. In this case, the interface used does not turn
natural movement to commands but enables the user to better understand the robot

point of view.

Later, in 2009, a brain-robot interface is presented in [19] for controlling a robot
arm. This kind of interfaces still have many limitations, and the related research is
destined to people with severe disabilities. The interface allowed the user to control
each degree of freedom of a robot at a time, still with an error percentage to be
reduced. These brain-robot interfaces require a specialized knowledge out of the

scope of this thesis.

In the same year, another device for interfacing a robot such as a laser pointer has
been used in [7]. The laser point is sensed by a camera and two additional cameras
track the robot and objects in the environment using visual-based tags. The system
recognizes laser stroke gestures such as lasso and stroke gestures for object selection
and commands, an example is given in Figure 2.1 [7, Fig. 1], additionally, the laser
pointer incorporates additional buttons used for canceling movement. For visual
feedback, a projector located in the ceiling is used, it displays the trace of the laser
point on the floor. This system allows to control a robot in a comfortable way but
the system environment is complex and it is limited to a place where the environment
is built.

Five years later, in 2014, [1] addresses the problem of mapping a human arm motion
to a robot arm. A motion capture suit senses the movement of the entire arm and
the end-effector trajectories are reconstructed from the human hand. The article
denotes the importance of replicating the human body motion to transfer knowledge
and experience to a robot. The system operates at real time. In this case, the control

is made by imitation, being more natural than in previous approaches.

The next year, a manipulation system based on tablet PC has been designed in
[12]. Generating a virtual ray from the tablet given its inclination and calculating

the collision with a virtual environment, the interface is designed using Unity and

2.1. Human-Robot Interaction 10

generates visual feedback. In this approach a virtual environment can be found

along with a real system.

In a similar way than [1], we can find another case of imitation in [2], this time
imitating the hand and ignoring the rest of the arm, offering again a natural input
of data, only controlling the position of the end-effector. It uses an Inertial Measure-
ment Unit along with a Kinect camera and two Kalman filters for both position and
orientation. The 3D camera locates the hand and the IMU measures its orientation.
An over-damping method is finally used to soften the hand movement and avoid
undesirable movements, disabling the movement if a violent move is done by the
user. This approach will be similar to ours regarding the hand pose imitation, but

this one is oriented to directly control a manipulator.

The last imitation case we will talk about [20] is done with a cheap human-motion
sensor, this is the Leap Motion Sensor whose software allows the programmer to
easily obtain parameters of the hand such as position, and orientation, of hands and
its fingers. In this approach, they transform position and orientation of the hand

into position and orientation of the end-effector of the robot.

2.1.2 Human-Robot Interaction for programming

Although human-robot interaction is more focused on robot controlling, many arti-
cles for programming them have been reviewed since it will be the main goal of our

approach.

In 2014, the article [16] offers an additional review about human-robot interaction
and proposes an AR-based interface for HRI. It highlights that the industrial robots
have a low level of autonomy, being designed for repetitious tasks in structured envi-
ronments, later denoting how robots are increasingly found in SME’s environments
where a direct interaction between operators and robots is commonly needed. It
also reviews new methods that have been reported by new research efforts in HRI
such as MMI, programming by demonstration, AR and VR. The article proposal
of AR-based interface combines a physical environment with virtual entities, along
with the robot model, a cube marked with vision tags is used as interaction device.
The interface is developed for path-planning. It is important to add that new AR

devices models have been released more recently.

In the next year, [14]| denotes that there is little experience on Teaching by Demon-
stration in industrial use cases despite of many research done in this field. This ar-

ticle proposes to manually specify what action to apply and teach by using gestures

2.1. Human-Robot Interaction 11

the relevant action parameter, removing the uncertainty of what action to perform.
The concept of transformable robots is defined as those robots capable of solving a
variety of tasks by using a certain level of cognitive capabilities. Many related works
are mentioned, we denote that it makes references to some works focused on offline
programming by using CAD models. The robot used in this approach is focused on
industrial applications. Some predefined objects with QR codes are located on the
experimental scenario and a GUI is used to specify the steps to follow when teaching
an action to the robot, a set of five gestures is used, not only tasks can be taught,
they can also be executed, even while teaching them. This approach contemplates
the principal goal of making programming more intuitive and flexible, to be able
to also control a robot to perform a wide set of different tasks while working in a

natural way:.

Recently, on 2017, an interface for off-line teaching collaborative robots is intro-
duced in [3]. It mentions that the ways humans can interact with robots have still
much room for improvement. This approach uses the ABB’s collaborative robot
IRB 14000 (YuMi), and it focuses in assembly tasks. The first teaching step is to
manually specify the type of task to be performed, e.g. folding or insertion, models
of the pieces have to be uploaded. The uploaded pieces are identified in the work
environment and a RGBD camera records the demonstration by the user. The next
step extracts key frames of the operation, with the possibility to manually modify
or add information to them. After this phase, gripper fingertips on a 3D model
are automatically generated depending on the pieces dimensions. Finally, in the
training phase, the taught assembly can be simulated or executed. This approach
achieves a natural demonstration with the robot by replicating the steps done by

the user while assembling a set of pieces.

In the same year we find a proposal that also uses a dual-arm robot and extracts
keyframes, additionally, it uses a set of geometric constraints [15], in this case, it is
applied to manipulation tasks instead of assembly ones. A constraint used in this
proposal is to compare the three rotational degrees of freedom of the end-effector to
those of an object, an orientation constraint is created if a close difference is found,
this is similar to the snapping feature found in CAD design programs. Then if this
constraint is present in two consecutive keyframes, the move-in-line constraint is
also applied. It uses a knowledge base for motions as seen in Figure 2.2 [15, Fig. 3.
This proposal uses a GUI for teaching, not other methods based on human motion
or speech.

2.2. Multi-Modal Interfaces 12

List of known List of modes Set of keyframes Set of constraints
objects TSR

w KF1 { Parallel
v Move in line
TSR reduced tolerance
KF2 Parallel

0>

Figure 2.2 Pérez and Julie content of the objects knowledge base.

2.2 Multi-Modal Interfaces

When different kinds of communication channels are found in an interaction we can

talk about Multi-modal Interaction.

The goal of effective interaction between user and robot assistant makes it essential
to provide a number of broadly utilizable and potentially redundant communication
channels.|21] Regarding the last citation, MMI will be necessary to achieve an effec-
tive HRI.

Most of the works found are focused on assistive robots rather than manipulators or
robots meant for industrial applications, in 2012 [8] combines speech and gestures
recognized through a Kinect camera to interact with a robo-receptionist. It also
highlights that priming (or long-term interaction) is an important consideration for

robotic systems.

More recently in 2016 [13] presents a framework for an industrial robot, introducing
nowadays robots as difficult to program for end users as well as typically unaffordable
for SME’s. It also speaks about current off-line programming software problems for
robots whose tasks need frequent changes, what is commonly found in SME’s. They
exemplify the effectiveness of MMI by combining hand gestures from a sensed glove
to operate a gripper, text programming from a computer, and a GUI, illustrated in
Figure 2.3 [13, Fig. 2|, the work is under development.

2.3. Summary of the review

Robot movements obscrvation

13

Sensors readings & Robot parameters

L3
USER l ¥ :
Multimodal Actions Prioritized Industrial Robot
Interaction Interpretation Execution Moduale C
AModule Muodule
Voice DB * Semantic @ Robot Eg
DB } - task DB
Cresture i "
DR Multimodal Primitive DB
grammar r Motor
DB ?
Program # Sensors
DB .
Exccution | 8. DBreaks

(h]
Robot Code Generator Module (ex. RAPID)

== |
MlEE g Multimodal Application Ll

Robot controller

_Robot feedback t
Figure 2.3 Mocan et al.” Multimodal interface framework.

2.3 Summary of the review

The most recent approaches found in this review achieve alternative ways to program
robots than those used in many industrial cases. SME’s interest for implementing
robotics but the flexibility and reprogramming issues are a main concern on most

of cases.

Many of the human-robot interaction techniques extract gestures from the human
pose, some others extract the tridimensional information such as positions or rota-
tions, it is typical to use the Kinect camera as the main sensor for this task, the
use of alternate or additional devices such as pointers can make the development
of the interaction easier, making detection easier and more robust, not necessarily

reducing intuitiveness since humans are used to this kind of tools.

The last articles reviewed for HRI for programming denoted the importance of using
CAD models in off-line interaction with virtual robots, these models are supposed
to be the same as the pieces to be manufactured, and therefore those models should

be available for the enterprise manufacturing them.

It is also mentioned how much effort is academic research given to HRI while it is
rarely found in industrial practices, therefore an interest for these methods should be
awaken in robot manufacturers for adapting their off-line programming environments

facilitating HRI and flexible programming using their programs.

2.3. Summary of the review 14

@

Eye movement
N\
Gestures @

Touchscreens L_i‘hl

e B

commands

Virtual/Augmented

reality devices
‘))) ." 3D Vision

Voice information

Vision on computer
& screens

Force, Temperature, etc.

Feedback Mouse, track-balls, joysticks é

Keyboards

Figure 2.4 1/0 Modes. A mixture of modes, even potentially redundant, can improve
intuitiveness of the interaction.

Regarding MMI, many I/O methods have been used for HRI, combining them can
improve robustness or reliability, as well as compensate the weak points of each
other, using many different devices may also raise the need for an standard for
MMI, many of the possible I/O methods that could be combined for a Multi-modal

interaction are gathered in Figure 2.4.

15

3. PROPOSAL FOR A MULTI-MODAL
INTERFACE IN AN OFF-LINE PROGRAMMING
ENVIRONMENT

3.1 Description of the proposal

After the literature review, proposals based in implementing computer vision or
automatic learning algorithms will be discarded in favor of achieving a programming
method capable of imitating positions a human gives to a not specific robot, this

way we ensure the scope of this thesis to do not mean a work overload.

Similarly as done in [13|, a proposal for MMI interaction for robot programming
will be given. In our case, focused on industrial robots, we propose improving an
existing off-line programming environment by adding other interaction

modes.

The MMI should implement a base GUI, to be added to the current off-line pro-
gramming environment, allowing to select and/or configure which elements in the
virtual environment will be commanded. In addition, some configuration features
of the instructions and /or code generation can be added into the GUI. Additionally,
the GUI can generate higher level commands than those allowed by the environment

to ease its use.

Each additional interaction mode should implement a GUI ribbon added
to the off-line programming environment GUI along with the GUI’s of other modes.
Each mode can include its own configuration in the GUI or other options as con-

straints for the data they offer.

The reason for implementing configuration in GUI is contradictory with the intu-
itiveness that a MMI is meant to achieve but as previously remarked, literature
about MMI is still scarce [13], therefore further investigation should be done for
erasing the need of configurations, anyway, the most appropriate configuration can
be used by default.

3.1. Description of the proposal 16

Additionally, each input mode should be able to interact with the GUI, as
well as with the elements incorporated in the virtual environment of the off-line

programming environment, as pieces and robots.

As proposed in [15], CAD constraints will also be considered for this proposal as
transforms in the virtual pieces of the environment. These transforms can be used
to directly position a gripper to a piece, a held piece to another piece, to align a
gripper to a piece, etc... The concept of keyframes is also used, in our proposal,
keyframes will be created given a specific command, automating their generation to

improve intuitiveness is not implemented in this thesis.

Regarding motion-based input modes, our proposal is not to use a gesture-
based input but a pose based instead, meaning that the position and orientation of
parts of the human body can be taken into account instead of only discrete gesture
commands. This specific proposal is meant to achieve a robot-human imitation,
directing further research to improve how robots can perform complex operations

that humans can do on their own.

Additionally, to pose input modes, some gestures can be recognized with the same
mode, they can either execute certain commands or to constrain the input data in
function of the virtual environment (Pieces, Robots), like constraining the movement
aligning the robot to an element or moving robots keeping their distance between

end-effectors.

Regarding speech-based input modes, our proposal is to use speech for giving
discrete commands, even being able to interact with other modes configuration or
constraints on their inputs. This mode has a great potential and can be later
improved with CAD information of the pieces to be manipulated or assembled, this
way it is possible to give very high-level commands to robots. Anyway, our proposal

is limited regarding speech, and only some simple commands will be implemented.

Given that the proposal aims for integrating modes into an existing off-line program-
ming environment, there should exist an API for such environment. The API might
use its own data formats for position, orientation, and 3D information of imported
CAD models. For each input mode interacting with these elements, the data must

be adapted to the same type as the one the environment uses.

Adding interaction modes to an existing off-line programming environment is possi-
ble by generating Add-Ins, if some input modes are meant to be fused they should

be incorporated in the same Add-In.

3.2. Tests 17

Off-line programming environment

GUI for Multi-Modal interaction
GUI for specific GUI for specific
input mode output mode
| ¥ | |
Configuration Feedback A Configuration
ctions
Input mode Output mode
Input device Virtual Output device
. —» Robotic H
Data Event System A
ettt
iltering an P
I —>: 1ering a |] Compatibilization of data
| |_compatlblllzatlon of data |
e ———— S
| Unfiltered Filtered Leamiman T
|
| . State X
: Interpretation of data Interpretation of data
| A Modify A
|
|
| | Visualization data
I _: A
R .
I 1 Virtual elements of Generation -
| L layout | of I - Vlsuall'zatlon of
: ———————————— Targets & Robotic system
| P | Instructions
| . .
L= Virtual Input device | b
I r—--""="""="=—="="==

Figure 8.1 Structure of the proposal.

A graphic summarizing the proposal can be found in Figure 3.1.

3.2 Tests

The tests to be performed consist on programming procedures for a pair of robot
manipulators, the execution of both procedures should be sucessful and therefore
synchronized. The generated procedures will be RS instructions and they will be

mainly generated by the additional input modes and the interface.
The next types of operations will be tested:
e Pick and place.

e Insertion using snap-fit (see Figure 3.2).

e Insertion using a bayonet mount (see Figure 3.3).

3.2. 'Tests 18

Figure 3.2 Snap-fit insertion.

Hb 4

-

Figure 3.3 Bayonet insertion.

e Manipulation of an articulable piece such as a Rubik cube (see Figure 3.4).

Results of the tests are discussed at Chapter 6.
A virtual station has been prepared to test an implementation of the proposal.

The virtual station used for testing belongs to one of the robotic ABB cells of
FAST-Lab at Tampere University of Technology that can be seen at Figure 3.5.
The final look of the virtual station has been adapted for this work and it is the
same as in Figure 3.6, this environment simulates a table with some pieces located
in designated places. In the center, it is located a thrash bin, which is supposed to

cross the table.

3.2. Tests 19

Figure 3.4 Rubik cube manipulation.

Figure 3.5 Robotic cell. The virtual model of this cell will be used for developing and
testing the interface.

3.2. Tests 20

Figure 3.6 Testing environment used for making the programs using the interface.

21

4. IMPLEMENTATION

In this chapter, the developed implementation of the proposal will be exposed in

detail. The details of the environments can be found summarized in section 4.1.

Two input modes are incorporated to the interface, one of them is speech recognition,
which will use the default audio input device of the computer, for this the Microsoft
Speech Platform SDK 11. The other mode segments the hands of the user through
a motion sensing device, the device chosen is the Leap Motion Sensor, its C# SDK

is also used.

The proposed interface incorporates a GUI allowing to make some basic configura-
tion as well as constraining the input from the motion sensing device to be used,
enabling speech recognition or interact with the tools of the robots in the RS sta-
tion, the GUI also provides additional output for the operator about the speech
recognition and the hands pose segmentation, as well as their rotation and position

in the equivalent virtual station.

The interface allows to jog up to two robots with the hands and specify targets in
the station, as well as precisely align to objects in the station given their frame in
order to make precise movements. The interface requires Smart Components in the
station to provide all the output it can offer, the required configuration before using
the interface will be detailed ahead.

A functionality to automatically generate path procedures, including synchroniza-

tion points and output commands for tool action is also added.

It is important to highlight that more multi-modality is achieved when combining
the input modes offered by this interface with the interaction modes already provided
by RS.

The look of the RS software along with the proposed Add-In is shown in Figure
4.1.

About how the interface internally works, a general overview of the data flow can

4. Implementation 22

V9 -~ CellMMI - ABB RobotStudio 6.06.01 x
Home Modeling Simulation Controller ~ RAPID | Add-Ins ‘ @
= = .) ° N
5 l Enabled k!J ‘W &, ;& Alowpitch b 5_\ 7 Ry < ‘51 > B
i] Allow Yaw L o=C ¢ [ZA =0 R
Community RobotWare ~Gearbox Speech Hand | Allow | Allow _ Add Leap | State machine Close Left Selecta Left Relative Right Selectthetask Close Right Statemachine | Start Stop Copy code
- - Heat Recognition Control |Translation| Rotation | Allow Roll Frame for Left Gripper validtask Hand position Hand for the Rightarm Gripper for Right to clipboard
Gearbox Heat Prediaion‘ On/Off input modes | State of Robots and hands | Motion Recorder
Add-Ins = x|/ celmmrviewt x | s
[Add-Ins
[PowerPacs H
[General

[Installed Packages

© ¥ RobotWare 6.05

© ¥ RobotWare 6.05.02
i ¥ RobotWare 6.06.01

Figure 4.1 RS while in the Add-In tab. A preliminary look of the station can be seen

be seen in Figure 4.2, this one is just an orientative graph, a UML class diagram
of the Add-In new classes can be found in Appendix A.

4. Implementation 23

Robot Studio

Multi-Modal Interface

Station Speech Recognized

Event

Virtual Controller Gul

Left Task Leap Motion Sensor

New Frame Event

>
Task 1

@ »(_ Right Task

Workobject

Hands
Targets)«
Gripper
@‘]

Filter

L,

|

State Machines
Task 2 —
: A 4 A 4
_Galculation
A 4
Layout @—
Part1
—
: ' Visualization

Figure 4.2 General overview of the interface internal operation. This is just an indicative
graph.

4.1. FEnvironment 24

4.1 Environment

In the next lines, a justification for the choice of the components to develop the

implementation is given, as well as a summary of the environment.

In order to command specific positions in space with a non-classical input mode, the
position of a hand in space could be useful for the robot and natural for a human,
some kind of positioning sensor will be required, but some devices like the Kinect
camera, the Leap Motion Sensor or the controllers used in VR devices can already

give this detection.

Regarding the available material, in the case of human-motion sensors, we dispose
of a Kinect camera and a Leap Motion Sensor. We can find a brief comparison
between both of them below.

Whilst Leap Motion is more suitable for computer input due to its closer range, and
it also has higher precision [22], we choose this device instead of the Kinect camera.

Moreover, Leap Motion has several API’s:

JavaScript
Unity

C#

o CH++

e Java
Python
Objective-C

Additionally, the Leap Motion documentation explains how to configure Microsoft

Visual Studio to compile a program using their dynamic library.

In the case of off-line programming environments, we dispose of a Robot Studio
license and the model of an existing station. RS is a specialized off-line program-
ming environment for industrial robots and ABB also makes available an SDK for

developers.

The Developer Kit offered for free by ABB contains the next SDK’s:
e RobotStudio SDK: Allows the development of custom applications or Add-
Ins to add new features to RobotStudio.

e PC SDK: Allows the creation of customized operator interfaces for an ABB

robot controller over a network as independent applications.

4.2. Design and implementation of the GUI 25

e Robot Web Services: Exposes different APIs facilitating platform indepen-

dent and language communication with the robot controller.

e FlexPendant SDK: Allows the development of custom applications for the
FlexPendant. Limited support.

On the one hand, choosing the PC SDK would require developing an interface from
scratch, on the other hand, the RS SDK offers us a well-known interface and allows

us to add modes to the already existing ones of the off-line environment.

As the RS SDK only supports C#. We should use the C# programming language
and the respective Leap Motion API. This high-level language is easy to use and
disposes of the .NET framework widely used in Windows applications. RS is only
available for Windows and needs the Microsoft Visual Studio software to use its
code templates. The documentation offers additional guidance in the configuration
of the environment, as this is the most supported IDE that Microsoft supports, it is

a good choice.

Finally, in the case of speech recognition, given that we are going to use the .NET
framework, which also allows language interoperability, a good choice for speech
recognition is the Microsoft Speech Platform SDK 11, which can be installed in
addition to the .NET framework.

To summarize, the Add-In will be programmed using the RS SDK in the Visual
Studio IDE along with the .NET framework, adding it the Microsoft Speech Platform
SDK 11 and the en-US speech recognition package. The Leap Motion SDK for the
Leap Motion Sensor is also required. The Add-In will be executed, debugged and
tested executing it in RS. Everything will be programmed in C#. As devices, a

laptop with an embedded microphone and the Leap Motion Sensor will be used.

4.2 Design and implementation of the GUI

The GUI that implements the interface is shown in Figure 4.3.

The buttons of the Add-In GUI, as well as their icons, can dynamically change,
depending on speech input or the filtered data from the Leap Motion Sensor, these

changes will be explained later along the remaining sections of this chapter.

Now we will explain the function of each button:

4.2. Design and implementation of the GUI 26

ntroller RAPID | Add-Ins > @

L!) W $)St Allow Pitch % l:lﬁ etc é L?C)_ ? OKG 5 > -;

Allow Yaw
Speech Hand Allow Allow Add Leap | State machine Close Left Selecta Le Right Selectthe task Close State machine | Start Sto
Recognition Control |Translation| Rotation ame for Left Gripper valid task Ha osition Hand for the Rightarm G fo

©n/Off input modes State of Robots and hands Motion Recorder

Allow Rell "

Figure 4.3 GUI of the Add-In. A checked button and disabled buttons are visualized

e Speech Recognition: This button enables and disables the speech recogni-
tion, it can be clicked anytime.

e Hand Control: This button enables when to consider the input given by the
Leap Motion Sensor or not, it can be clicked anytime but depending on many
factors it may not activate and instead of it, it will prompt a message asking
for additional configuration actions.

e Allow Translation: This button constrains the position of the manipulator’s
tool in space, meaning that it can be translated depending on the position of
the user’s hands, it is useful when a precise turning with no translation must
be performed.

e Allow Rotation: This button constrains the rotation of the manipulator’s
tool, it works in the same way that Allow Translation but with the rotations
of the hands instead of their location. Clicking this button will activate pitch,
yaw, and roll of the tool or disable all of them.

e Allow Pitch (Roll, Yaw): Each of these three checkboxes can be indepen-
dently activated, when all are unchecked the allow rotation button will also be
unchecked if at least one of these is checked, the Allow Rotation button will
also be checked.

e Add Leap Frame: This button aids configuration of the station, first, it
will check if there is a frame in the station called LeapFrame, if not, it will
create a new one, in any case, it will prompt the user to align the frame axes
correctly so they correspond to the Leap Motion Sensor location, the frame
will correspond to the frame of a virtual Leap Motion Sensor in the station,
more information about this can be found in section 4.4.

e Close Left (Right) Gripper: By clicking it the gripper attached to the robot
will open or close, it requires a smart component as a tool and to configure a
station logic.

e Select Left (Right) Task: Each button displays a combobox to select among
the tasks in the station to tell the interface which manipulator is going to be
moved with the left or right hand. Moreover, they will indicate their own
robot alignment state since the RS API does not implement indicators.

e Left (Right) Hand: These buttons serve just as indications, their image will

change depending on the detected hand pose, more information can be found

4.3. Configuration of the environment for the interaction 27

on section 4.4.

e Relative Position: This button is intended to constrain the relative position
between the tools of both manipulators, but it is not implemented yet.

e Start: Starts the motion recorder, as well as it creates a new procedure in
both tasks named by a timestamp, targets recorded with the interface will be
chained in a path procedure, as well as in a vector with additional alignment
information about this, check section 4.5.

e Stop: Stops the motion recorder, new targets recorded will not chain to the
path procedure that was being programmed.

e Copy code to clipboard: Intended to copy the RAPID code for both tasks
to the clipboard once the motion recorder is stopped, it is not implemented

yet.

4.3 Configuration of the environment for the interaction

4.3.1 Station requirements for minimum use

In order to use the Add-In, it requires an RS station, containing a controller with

two robots in it, it can be easily done by following these steps in the RS GUI:

1. In a new RS station, import two robots of your choice from ABB library, as
in Figure 4.4.

2. Position them as wanted using the RS GUI.

3. Create a new Robot system from layout, as in Figure 4.5. Give it a name and
select the RobotWare package of your choice. Finally, select the mechanisms

to be included in the controller.

Additionally, to use hand input, a LeapMotionFrame must be included, this serves
as a virtual Leap Motion Sensor in the virtual station. The Add-In GUI can be used
for placing it, the corresponding button will generate the frame and give instructions
to the user on how to position the frame. If the frame is not well positioned, the
user will figure it out by moving the hand and checking that the hand movement

does not correspond with the movement in the RS station.

Finally, it is required to select a task for each hand using the buttons for selecting
tasks, both tasks must be selected, in case there is only one robot to be programmed,
the same task can be assigned for both hands, then, it does not matter what hand

to use.

4.3. Configuration of the environment for the interaction

Home Modeling Simulation Controller RAPID

- e W b Fef

o

ABB Ifhport Robot Import Frame Target Path
Library ~| Liprary =~ System = Geometry ~ = o -

Add-Ins
ﬁ E Teach Target
Other g .
- View Robot at Target

— o~
E i

oy

L
:-
&

IRB 5300 IRB 5350 IRB 5320

Positioners

= @

¥

IRB 120 IRE 1200 IRB 140 IRB 1410 IRE 1600

7
.
7
(i

Ll

.
(il-y
=
-
ik

IRB 152010 IRB 166010 IRB 2400 IRB 2600 IRB 260010

“
@-7
“7
T

IRB 4400 IRE 4600 IRB 6620 IRB 6640 IRB 664010

IRE 6640 LeanlD IRB 66505 IRB 6660 IRB &700 IRE 7600

“
“7
{' 4
“7
2

IRB 8700 IRB 260 IRB 460 IRB 660 IRB 760

P
ng
P
=

IRB 360 IRE 14000 IRB 910SC Other..
Paint Robots
IRB 52 IRB 5400 IRB 5500 IRB 580

- 5

Figure 4.4 How to add robots to the station, using the RS GUI and their library.

28

This minimum configuration allows the user to use the hand inputs, record move-

ment and use the speech for constraining hand inputs. It does not allow automatic

generation of synchronization points or to simulate how pieces are attached during

the recording process of the interface.

In case there is a robot with less than 6 DOF, some of the GUI constraints need to

4.3. Configuration of the environment for the interaction 29

D9 -~

m Home Modeling Simulation Controller RAPID Add-In
' - fo &
\J TQ' @ oY | =

ABE Import Import Frame Target Path Other
Library = Libra Geometry ~ = = T
From Layout...) | Path
Layout | Paths&Tal f Create a systemn based on an existing -
-) layour.
24 GenercMMISta New System...
Mechanisms i] Create a new system and add it to the
o8 IRB260_30_ station.
u;ﬁ IRB260_30_ [[' Existing System...
i -] Add an existing system to the station.

Figure 4.5 How to add a controller containing both robots, more tasks can be later included
if needed.

be applied, so the hand rotation does not make it impossible for the robot to reach
it.

4.3.2 Smart Component for tools and Station Logic

To use more features of the interface, specially commanding and recording tool
actions, the tools attached to each robot must be Smart Components. Using a
Smart Component as a tool allows it to, for example, attach pieces of the station to
it.

In order to program assembly or manipulation operations, it is necessary for the
Add-In to know when a piece is being attached to the robot or detached. It is also
needed some way to leave a piece attached to the other robot gripper when it is
detached by one robot and the other is still holding it, in other words, when both

robots were holding a piece.

An example of Smart Component for a parallel mechanical friction gripper with two
fingers with a unique signal for closing and opening is given, it senses if it also senses
if it is opened or closed, Figure 4.6 gathers all the child components of the gripper

and Figure 4.7 represent the logic these components follow.

The Add-In functionalities should work correctly as long as the user configures a

Smart Component capable of attaching, detaching, and giving the attached piece of

4.3. Configuration of the environment for the interaction 30

CellMMEView 1 SC_Gripper TROB1 X

@Y SC_Gripper_ TROBT

Compose Properties and Bindings Signals and Connections Design

Child components Add component Edit parent
Smart Components
:' = CloseGripper
:' = OpanGripper
D LogicGate [NOT)
@ PlanaSensor
il
:-'a Attacher
' Detacher

@ ClosestObject

e
:-'a Attacher
‘!7 = JointSansor

al=p COmparer

Other

£ Gripper

Figure 4.6 Gripper child components. FEach of these components works as a function
block in the Smart Component design, it also includes the gripper mechanism.

a robot to the other with some logic.

The input and output signals of the Smart Component also need to be configured
to be matched to inputs and outputs of the Add-In. For this, the Add-In helps the

user by automatically generating the inputs or outputs it requires in the RS station.

The Add-In generates inputs CloseLeft, CloseRight and CheckGrippers, and the
outputs IsClosedLeft and IsClosedRight in the station logic, these I/O must be linked
to the tools in a logic way, additional components can be added to the station if the
user Smart Components 1/O do not correspond to the I/O generated by the Add-In,
for example, to invert a boolean value or set/reset a signal. An analogy for vacuum
grippers can be also done from mechanical ones, the closure can be understood as

suction.

The use of these I/O created by the Add-In is to be able to connect the GUI buttons
for tool commanding to the tools in the station, therefore it serves for simulating

the pieces movement when programming a task with the Multi-modal interface.

4.3. Configuration of the environment for the interaction 31

CellM:View! | Station Logic | S€_Gripper TROB1 X
@ SC_Gripper TROB1 [Descrgion —
Compose. Propeties and Bindings Signals and Connactons. Desgn
SC_Gripper_TROB1 "]
Properties [+]
Inputs - Outputs
Coss 4" CloseGripper T Jortsersor IsClossd
CheckGrippers. Ly Properties al=b Comparer

Mechanism (G
ochanism (Gripper) Mechanism (Grippe) Proparties

Relative (False)
41(0.00 mm) ValueA (0)

Duration (1,05)

J1(24,00 mm)

/0 Signals.
GetCurent Execuled
Execule ~=---n Executing
Pause > Paused
Cancal

10 Signals Oporator (%)
Update Values (0)

10 Signals
Oulput

) Aftacher
Properios
Parent (Gripper)
Flange (Gripper_1)
Child)
Mount (False)

Offset (10,00 0,00 0,00] mm)
Orientation (10,00 0,00 0,00] deg)
10 Signais
Exooute + Execttad

'DrLogicGate [NOT]

" OpenGripper
Proparties
Mechanism (Giipper)
Relative (False)
Duration (1,0's)
J1(0,00 mm)

10 Signals
GelCurrent Executed
Execute - » Executing
Pauss s paused
Cancel

Properies
Operator (NOT)
Delay (0,05)
10 Signals
InputA > Ouput
InputB

ClosestObject

3
Detacher Properties

) Attacher
Properties.
Parent)
Fiange ()

Properties ReferenceObiect ()
chilg RofarencePaint (10,00 0,00 0,00] mm)
KeopPostion (True) Rootobject
V0 Signals ClosestObject
Execute » Execuled ClosestPart
Distance (0,00 mm)
110 Signals
Exeoute » Execuled

i PlaneSensor
Properties
Origin (111,15 35,90 35,10].)

#ous1 ([23,000,000,00] mm) Ghid ()

Mount (False)

Offsat ([0,00 0,00 0,00] mm)
Orientation (10,00 0,00 0,00} deg)
10 Signals
Execute » Executod

As2 (0,000,00.34,00] mm)
SensedPart)

7] Show Bindings [Show Connections [} Show unused Zoom:

Figure 4.7 Gripper smart components design. Connections between the components and
their properties define the behaviour of the gripper with the rest of the station.

4.3.3 Defining pieces

In order to define a piece and to use the align feature that the developed interface

implements, it is not enough to just import a CAD geometry in RS.

Unfortunately, RS does not allow to define some frames into a piece, only attaching
frames of the station to them, this issue is not consistent with the RS SDK API,
which gives access to a collection of frames in each graphic component, there is not,

at least intuitive, way to add frames to a Part in RS.

There is a way to define a frame for the part, it is defining its local origin, that
local origin orientation is going to be used for alignments, for this, the piece must

be configured as follows:

1. Create an empty part as in figure 4.8(a).
2. Link it your CAD geometry as in figure 4.8(b), a file browser will appear.
3. Edit its local origin in order to do it, do as in figure 4.8(c), making its rotation

to be the same as the tool, as visualized in figure 4.8(d).

4.4. Motion Sensing Input to RobotStudio Data 32

Dd9 -~
Home Simulation Controller
Layout| Physics | Tags v x
@ ﬁ GenericMMIStation*
Mechansms
Component} Empty Smart Import Frame Tag " gi IRE260_30_150_02
Group omponent Geometry ~ = = b IRB260_30_150_ 02 2
Components
(@ Part_1 ‘
Layout | PH & cu CtrleX
|— Empt)' faat I— 223 Copy Crr+C
ji Create a Part node in the Layout M e crlov |
Mechanly prowser. : S?veAslwaaW‘..
I 5 IRE2
5 Part refers to any physical object in _}E Fer ceamen-
r IRB2 : N . Linked Geometry > -m
N RobotStudio. Part contains bodies such = !‘"bli"’
Coomipo " isible Delete Link
LOmEorn & solid, surface or curve. = - I o
ﬁ Part | i e — Select the CAD file to link o,
0 Press F1 for more help. S\ Linexamine Update L
& setasucs
"W Position L3
(a) Creating an empty part. (b) Linking the CAD geometry.
Components
&P ray & cu Cirlex
53 copy Ctri+C
B e
g save As Library...

@ Export Geometry_

Linked Geometry

[#] visible p—

& Examine
T setasucs
™ | Position 3
~—2| 7 podify »| o setcolor..
L Physics +|@ Graphic Appearance.
& wirror » Set Local Origin
P 2o * | Remove CAD geam Set Local Origin
0 amachto » | @) Defeature _
8| pets @ remove inermal g :{us:i:;;::lm|uu|mmd.n.m-,y,mn
& s » |8 Recreate graphics @ Press 1 for more help.
(¢c) Editing the local origin. (d) Tool aligned to local origin of the piece.

Figure 4.8 Steps for configuring a piece.

4.4 Motion Sensing Input to RobotStudio Data

The Leap Motion Sensor is an inexpensive and small plug and play device. The
manufacturer offers a developer SDK for it in their webpage. The sensor incorporates
two cameras and three infrared LEDs and has a software embedded to make a

segmentation of the hands.

Their API is simple and easy to use, it provides an event that will be triggered each
time a new pair of camera frames has been processed, and this event is the one to
be attended if it has been specified to attend it in the GUI, sample images taken

from their program Leap Motion Visualizer are displayed on Figure 4.9.

The information to be extracted from the hand will be the next:

4.4. Motion Sensing Input to RobotStudio Data 33

(a) Opened hands. (b) Closed and "thumb up" hand.

(¢) Misdetection when hands are put together.

Figure 4.9 Captures of the sensor readings. Different situations are displayed.

Translation vector of the hand palm.

Unitary vectors of the palm direction and the palm normal.

Determine whether the hand is a left or a right one.

Determine whether the hand is in one of these poses:

— Opened.
— Closed.
— Making the thumb up sign.

— None of the mentioned.

All the features mentioned above can be easily obtained using the API. The frame
data has to be interpreted and it will also be filtered, the steps to follow are shown

below:

1. Check the number of hands in the frame if zero or more than two ignore the
frame.

2. Determine which fingers are extended to get the hand pose.

3. Discard the hand if there are fingers extended making a non-implemented
gesture.

4. Filter the palm position, the palm direction, the palm normal and its pose

with a low-pass filter along with n — 1 previous samples, regarding if the hand

4.4. Motion Sensing Input to RobotStudio Data 34

=% o0

(a) Icon of opened (b) Icon of closed (c) Icon of hand in (d) Icon of unknown
hand pose. hand pose. the thumb "up" pose. hand pose or not de-
tected hand.

Figure 4.10 Icons of left hand poses. One icon for each hand will be displayed in the
interface, they will be horizontally flipped for the right hand

is the left or the right one.

The low-pass filter helps to stabilize the value of these features, avoiding noise in
the detection, it just consists on calculating the mean value of n samples, for the
translation vector of the palm and its direction vectors, for these last ones, the value

of the summatory of the vector will be normalized instead of divided by n.

In the case of the hand pose filtering, the last n samples have to be the same in
order to change to a new pose, meaning that fast changes of pose or momentary
misdetections will be ignored, instead of them the last valid pose will be considered,
when the hand is not found in the frame there is an exception, the filtered pose will

automatically be set as Gone.

In order to give feedback to the user, each time that the filtered position changes
an event is raised to refresh an indicator in the GUI, the image varies depending on
the filtered hand pose, the icons used for this visual feedback are shown in Figure
4.10, note that the thumb up pose will be really pointing horizontally, if not, the

thumb will not be seen by the sensor.

Coordinates of the hand will be obtained referred to the Leap Motion Sensor frame;
since now, understand frame as XYZ axes, not as a camera frame; this frame is

defined by default, as seen in Figure 4.11.

In order to refer the values given by the sensor to the RS station, we will add a
frame to the station using the GUI, giving instructions to the user on how to direct

its axes in the virtual robot cell.

Currently, the interface does not implement a sensibility parameter for the hand

pose reading, meaning that the same amount of movement of the real hands will be

4.4. Motion Sensing Input to RobotStudio Data 35

A
Up [+Y

to the monitor

-7

Figure 4.11 Leap Motion Sensor axes. Values given by the sensor are referred to these
azxes.

transmitted to the RS virtual station.

The operation to refer the vectors V to the world frame coordinates, given the

transform L of the sensor frame is shown in equation 4.1.

Voo = LYW, (4.1)

Finally, when values are filtered, the output data of the filter is transformed to the
data types used by RS, as well as the raw data used as input for the filter.

To summarize, the filtering process along with the consecutive process of command-
ing and visualization that will be explained in section 4.5 is depicted as a flowchart

in Figure 4.12.

4.4. Motion Sensing Input to RobotStudio Data 36

M Input device

v

Sensor Data

M Filtering and

Compatibilization of data filtering? End

: Filter
Le=p Wisiiten And refer to RS
Frame -
Station
M Interpretation of data 1
(For each hand)
Any thread
commanding?
Calculate target Alignment
transform data
Iterate the state
machine
isualize——— ST —Imitate
Visualize poses
Command Keep position & Jog robot to
Visualize target position
destination & Show opened Visualize if not
I_ reachability possible _]

Figure 4.12 Flowchart of the Leap Motion Sensor Input Mode. Interpretation stage is
done for each hand, with different state machines. Feedback sent to the GUI is excluded in
this representation.

4.5. Robots Movement 37
4.5 Robots Movement

Now that we have positioned the user hands on the virtual station, some feedback has
to be given to the user as well as determine whether to use that position to move the
robots or not and how to record data for the desired program. The process is briefly

summarized along with the filtering in Figure 4.12, excluding data generation.

4.5.1 State Machine

In order to make easier what to do with the extracted hands information a state
machine has been implemented, not only the positions of the hands will be important
but also how a pose is changed to another. The same state machine class will be
used to create two objects for each hand, so they will run independently from each
other. Transitions for the state machine are retrieved from the filtered pose and the

unfiltered pose, also called instant pose of the hand.

The main states will be named as follows, their explanation is also given:

e Show opened hand: The hand was not found in the filtered pose that in this
case equals the instant one.

e Opened: The hand was found as opened in the instant pose.

e Closed: The hand was found as closed in the filtered pose, meaning that a
closed hand cannot be directly used.

e Align: This is a boolean flag rather than a state, each time a rising edge of
thumb up pose is read from the filter output it will be toggled, more informa-

tion is about this is given later.

As it can be seen, the machine jumps to the opened state with an instant pose,
this is done because when preceded by a filtered closed state an event to record the
current position will be launched and while opening/closing the hand, the rotation

and position read by the sensor tends to vary more than usual.

As well as each one of the state machines is associated with their respective hand, the
reference of the corresponding task (robot) selected with the GUI will be associated

with the same state machine object.

Different actions will be done with opened or closed states, an opened state will
visualize if a position is reachable by the robot while a closed state will perform
movement to the target position of the hand in the station, as long as it is possible to

make it, more information about visualization and movement is given in section4.5.

4.5. Robots Movement 38

The state machine also does special actions when some transitions are given:

e From Closed to Opened: An event is raised, this event is used to record the
target corresponding to the current position of the robot if the motion recorder
is active, see section 4.7.

e From Opened to Closed: Raises an event, but no handler has been imple-
mented for it.

e Point pulse: A rising edge of a filtered pose of thumb up, reads the robot

current position to find an object in the virtual station to align with.

The state machine graph for each of the hands is represented in Figure 4.13.

4.5.2 Visualization and movement process

After filtering and iterating the state machine, depending on the machine state and
the readings from the sensor, actions may be performed in the elements of the virtual
RS station. The end of using a state machine allows the user to have some control
avoiding involuntary behaviors. The movement provoked by the user’s hand on the

robots is called imitation, and it will work as follows:

Opened state: A big RS frame will be displayed on the station to give the user
feedback of its position. In addition, the frame will be linked with an arrow to the
robot’s tool end-effector, the color of the line will be green if the position is reachable
with any configuration and red otherwise. The colors of the frame axes will follow
the color code used in RS, RGB for XYZ, red for X, green for Y and blue for Z. The

coordinate system is dextro-rotatory.

Closed state: In case we show the sensor an opened hand and given the visual
feedback we close it, we will drag the corresponding manipulator to the target posi-
tion, a different approach where opening and closing the hands would have opened
and closed the grippers instead of controlling when to move or not the robots could
have been done, but this action has been relieved to the GUI or the speech because
the precision needed for successful manipulation is not easily achieved by the sensor.

An example of this display and the moved robot is given in Figure 4.14.

Alignment state: A parallel state that is combined with the previous one, this
state makes the robot or the target frame visualization to be constrained to the
Z-axis of the frame of a piece in the station. Making a thumb up pose with the hand

will enable or disable this mode, it provides more precision to engage a piece with a

4.5. Robots Movement 39

SHOW
OPENED

Pose is gone

Visualize target

VISUALIZE
transform Not aligned

True Filtered pose is closed
Hand

closed
Hand Point pulse Point pulse

opened L /////
Instant pose
is opened
N rd

IMITATE Attemp to move Store geometry

robot Aligned reference to align
with

Figure 4.13 State machine for each hand. Lightning symbols represent triggered events.

gripper and also to align both manipulators when each of them is holding a piece.
When this state is enabled the corresponding task button of the GUI will incorporate
a chain. Additionally, the visualization will show a dark cyan line between the target
position and the aligned piece. The difference of icons and the visualization of the

alignment can be seen in Figure 4.15.

Now that the visualization feedback regarding the movement of the robots has been
explained, how this movement is calculated and executed is going to be explained.
First, the states of the state machine are read, the difference between an opened

state and a closed state is just the robot movement as explained before.

For making a movement we need to know the active work object of the RS task
and the active tool data. If any options are available they can be changed manually
using the RS GUI, the Add-In does not implement other ways to do it.

In the first place, it is necessary to calculate the target destination. Along with the
filtered sensor data, we add some constraints specified in the GUI, these ones can
constraint the translation and the rotation of the manipulator tool, we can detail

the calculations of each type of movements.

4.5. Robots Movement 40

DE9-™-= CellMMI - ABB RobotStudio 6.06.01 . %
Home Modeling ~ Simulation Controller ~ RAPID | Add-Ins

- @
RN TN [k Rt X XA W Nl
4 ¥ Allow Yaw o=C (%54 >0 R
RobotApps | Install Migrate Gearbox Speech | Hand || Allow | Allow | Add Leap State machine Close Left Selected: Left Relative Right Selected: Close Right State machine ~ Start Stop Copy code
Package RobotWare~ — Heat ition |Control i ion| ¥ Allow Roll Frame forleft Gripper T_ROB1 Hand position Hand T_ROB2 Gripper for Right to dlipboard
Cc\mmunity‘ RobotWare Gearbox Heat Prediction On/off i odes State of Robots and hands | Motion Recorder
Add-Ins s x| c x <
Add-Ins
D, i o » *
[PowerPacs N a o A b ¥
v [General

[Installed Packages \b

© 1) RobotWare 6,05
© ¥ RobotWare 6.05.02
© 19 RobotWare 6.06.01

X
Output ‘
(a) Visualization of a destination with an opened hand.
VE9 -~ CellMMI - ABB RobotStudio 6.06.01 . x
Home Modeling ~ Simulation Controller ~ RAPID | Add-Ins & o
@ m 0, Sl F enabied @) W £y |) aowpicn - [Showopenec 5 T /s 0 ‘\5 < I e S
; 4 $ G L tc G O B ob R
RobotApps | Install Migrate | Gearbox Speech | Hand | Allow || Allow | AddLeap State machine Close Left Selected: Left Relative Right Selected: Close Right Statemachine Start Stop Copy code
Package RobotWare~| Heat ition |Control. i ion| ¥ Allow Roll Frame for Left Gripper T_ROB1 Hand positon Hand T.ROB2 Gripper for Right to dlipboard
Communi ‘ RobotWare Gearbox Heat Prediction On/Offinput modes State of Robots and hands | Motion Recorder
Add-Ins i
[Add-Ins
[PowerPacs
v [General

[Installed Packages

v ¥ RobotWare 6.05

v ¥ RobotWare 6.05.02
> (I3 RobotWare 6.06.01

(b) Robot moved to a destination with closed hand, the robot moves as long as the hand is closed.

Figure 4.14 Visualization example.

4.5. Robots Movement 41

V9 -~ -+ CellMMI - ABB Robotstudio 6.06.01
Home Modeling Simulation Controller ~ RAPID | Add-Ins @
@ m _37 ;5 R enabled) W $)& I Alowpitch } [ShowOpened 5‘ T ;5 0 f) < ‘a Sieromved [y |
Y Y = = 6 ==
= Allow Yaw L &= (% ! &> R
RobotApps | Install Migrate Gearbox Speech | Hand | Allow | Allow AddLeap State machine Close Left Selected: Left Rel Right ~Selected: Close Right State machine ~ Start Stop Copy code
Package RobotWare~ | — Heat Recognition |Control||Translation| Rotation | Allow Roll Frame forleft Gripper T_ROB1 Hand pos jand T.ROB2 Gripper for Right to dlipboard

Community RobotWare | Gearbox Heat Prediction On/Off input modes State of Robots and hands Motion Recorder
Add-Ins = x|| ceimmrviews x|
[Add-Ins

[PowerPacs

> [General

[Installed Packages

v ¥ RobotWare 6.05

© 19 RobotWare 6.05.02
v ¥ RobotWare 6.06.01

(¢) Visualization of alignment.

Figure /.15 Alignment state feedback. The icon will change whenever the target frames
are aligned to a piece. A dark cyan line is added to the aligned piece.

Rotation matrix of the hand is extracted given its palm normal and its palm direc-
tion. There is an analogy between the hand and the gripper. When closing a hand
with all its fingers pointing to the same direction a piece can be taken from parallel
faces, palm direction will be the translation axis of the gripper fingers. Then, the
palm normal will be the direction which a gripper approaches a piece. As specified
in the gripper axes requisites in section 4.3, in this case, Z-axis is the palm nor-
mal N , Y-axis is the palm direction D and the remaining X-axis is the common
perpendicular, Dx N fulfilling the dextro-rotatory system criteria.

e In aligned state:

— Translation is allowed: In case the translation is allowed, we calculate

4.5. Robots Movement 42

the target frame translation as the nearest point to the hand of the Z-
axis of the piece which the robot is aligned with. So it becomes a "closest
distance point to line" problem, in this case, we calculate the point of the
line which makes the distance lower. Being V the translation vector of
the hand, P the translation vector of the piece to align with and R, its
Z-axis direction, we calculate the closest point to the line translation T

as in equation 4.2.

— Translation is not allowed: In this case, it does not mean that the
robot won’t move, actually, the robot will be positioned aligned to the
piece but the hand translation will be ignored. Equation 4.2 can also be

applied but changing the hand translation for the end-effector translation.

— Rotation is allowed: In case we allow rotation we will use the hand
rotation instead of the one of the target piece. Roll, yaw, and pitch can
be independently constrained or not. For the calculation, we take the
Euler XYZ angles of the hand rotation as well as those from the piece.
Roll corresponds to the Z-axis of the tool, yaw with Y and pitch with X.
In case the rotation is constrained, the target frame corresponding Euler
angle will be fixed to the piece’s one, if not, it will imitate the hand’s one.
These Euler XYZ angles are directly extracted using the RS APIL.

— Rotation is not allowed: If all rotations are constrained we will directly
copy the piece rotation to the target frame, this would be the best option

to pick or place a piece.

e In not aligned state:

— Translation is allowed: Translation of the target frame equals the
translation of the hand.

— Translation is not allowed: Translation of the target frame equals the
current translation of the end-effector.

— Rotation is allowed: As explained in the same case for the aligned
state, if unconstrained, Euler angles of hand rotation will be applied to
the target frame.

— Rotation is not allowed: Otherwise, the current angle of the end-

effector will remain in the target frame.

Finally the target frame T', which is defined in world coordinates, needs to be referred
to the active workobject of the RS task, being its frame W,;, the conversion is done

as in equation 4.3.

— — —

T=({V—-P)—(V-P)-R.)oR.. (4.2)

4.5. Robots Movement 43
Twonj = Wop; 'T. (4.3)

Now that the target frame has been calculated, the reachability of the position needs
to be checked. Because of this, the RS SDK API provides methods for calculating
it on an asynchronous and a fast way. In order for these methods to work, an RS
target needs to be built and added to the task. This RS target requires the creation
of an RS RobTarget, containing information of the transform. Later, it is required to
add the RS RobTarget the task data declarations. Finally, an RS Target is created
combining the RobTarget and the active WorkObject of the RS task, this target
needs to be added to the task.

When a target is added to a task in RS it will appear in the "Path&Targets" tab
and in the RS GUI, with the API we can specify the target to be invisible and do

not interfere with other visualizations.

The before-mentioned target procedure is necessary to do not make the reachability
checking and movement functions of the RS API to fail internally. This issue is not
specified in the ABB official API documentation.

Another procedure consisting on calculating the inverse kinematics of the task mech-
anism has been tested before solving the before-mentioned problem, however, this
method did not take in consideration all the possible configurations that can be used
to reach a point, highly limiting the reachability and resulting in a cumbersome pro-

cedure to move the arms.

To check reachability and to command the movement, which is instantly performed
as a "jump to pose" operation, the API uses asynchronous methods which allow the
GUTI to be refreshed in parallel.

After the movement is performed, the previously added target is erased from the

task and the task data declarations, how targets are recorded will be explained later.

The actions to be done with this target are the next ones:

e Target position is not reachable: A red line between the end-effector and the

target frame is displayed.
e Target position is reachable:

— State is opened hand: A green line between the end-effector and the

target frame is displayed.

4.6. Speech Recognition 44

— State is closed hand: Robot will move its end-effector to the target

frame.

Additionally, all the performed movements can be undone and redone using the RS
GUI, it must be specified in the code of the Add-In what changes in the station are

being considered in an undo step.

4.6 Speech Recognition

Speech Recognition has been added to the Add-In as another input mode but this
is not the most focused of the modes. Although speech recognition is a powerful
tool that allows implementing very high-level commands, in our case it is mainly
used to allow the user to virtually press the buttons in the interface or execute an

alignment to a piece.

The Microsoft Speech Platform SDK 11 has been used to implement the recogni-
tion in this thesis. The en-US speech recognizer must be installed in Windows in
order to be able to use this feature, it can be easily downloaded from the Windows

configuration.

All the speech commands that can be given are shown below:

e Allow translation.

e Allow rotation.

e Allow roll.

e Allow pitch.

o Allow yaw.

e Open left gripper.

e Open right gripper.

e Close left gripper.

e Close right gripper.

e Align left to name of piece.
e Align right to name of piece.
e Misalign.

From the speech commands mentioned above, most of them just make the same
action as pressing an interface button, for the ones which press the gripper-related

buttons, the corresponding action (Open/Close) desired must be mentioned.

4.6. Speech Recognition 45

Finally, the alignment-related commands make the alignment as if it would be done
by the corresponding hand gesture but choosing which piece to align with instead

of the closest piece. If the piece name is somehow readable, it can be recognized.

In order to build speech commands, some grammars must be built for the recognizer,
appending words or choices of words. An example of choice is all the different
commands that have the "Allow" word prepended. The structure of the speech

recognizer is depicted in Figure 4.16.

In this implementation case, a unique speech recognizer with a set of grammars is
initialized at once, the speech recognition can also be a process where a recognizer
with certain grammars activate others after recognizing certain commands, this way,
a more than one step recognition could have been implemented.

4 Speech Recognizer
Grammar Grammar
Choices Choices
Choices Name of part 1 Translation

Rotation

Pitch

Name of part n

Yaw

Grammar

Choices Choices Grammar

o

Close

A 4

Figure 4.16 Speech Recognizer structure.

To conclude about speech recognition it is important to highlight that the used
language is not the same as the author’s native one, it has been checked that the

pronunciation of the words drastically affects the success of a recognition. Moreover,

4.7. Generation of instructions 46

the speech recognizer can be trained using the Windows speech recognition voice

training.

4.7 Generation of instructions

At this point it has been explained how the robots are moved using the Leap Motion
Sensor and the RS tasks defined in the station, in order for these actions to aid
programming, events will be activated to request recording orders from the state

machine and the speech recognizer as explained before.

The motion recorder object developed for generating RS instructions will not only
record Move instructions given their targets, it will use the alignment informa-
tion when a target is requested to be recorded to find out if the path to be done
needs to follow a joint or linear trajectory. It also will record instructions for
activating outputs for controlling both grippers of the robots and figure out when

the movements of the manipulators need synchronization points.

The motion recorder will store the reference to both left and right robot tasks in
order to be able to create synchronization instructions, a boolean flag determines if

it is recording or not.
Starting the recorder:

When the motion recorder is started using the GUI, it adds two path procedures to
each RS tasks, these are named with a character for each task, L for left, and R for
right, and a time-stamp giving the day of the year (from 1 to 366), the local hour,
minute and second. For example, if start recording is pressed on 3rd of February at
13:22:08, the path procedure for the left task will be named like PathL 34 132208.
Additionally, the CheckGrippers signals will be pulsed to refresh the actual state of

the grippers, just in case if some changes have been done in simulation.
Recording actions:

The recorder provides methods for adding targets and gripper actions. In the
case of gripper actions, we consider grippers that can be commanded to be opened
or closed but it is not possible to know when these actions are already performed,

therefore we consider waiting one second after each action is done.

As before-mentioned, when a closed hand moving a robot is opened it will launch
an event, this event is used to record a target. To avoid recording a movement, the

user can either press undo or take the hand out of sight of the sensor.

4.7. Generation of instructions 47

When the recorder is told to add a gripper order (close or open), it generates
three RS instructions, first a SetDO followed by a SetDO and another WaitTime
instruction. The first one is used to wait until the robot has completed its pre-
vious movement, otherwise, the signal will be executed when the robot is not yet
positioned. The second one changes the corresponding output signal to command
the gripper, in the implementation it uses the name of our signals, these cannot be
configured before-hand. Finally, the third one gives time for the grippers to open
and close since no real sensor is used to tell us when they finish to open or close.
More configuration options for specifying the name of the Virtual controller signal
to be changed could be added in minor changes of future works. The generated

instructions are added to their corresponding path procedure.

Gripper orders are recorded clicking in the Add-In GUI to open/close them, or via
speech, the reasons why it was not implemented by making a gesture with the
hand is that the Leap Motion Sensor lacks confidence on this kind of detections,

mainly because of it only tracks the hands from a single point of view.

When the recorder is told to add a target order, the alignment parameter will
also be needed, this one tells if the target was ordered to be recorded while the
manipulator was aligned to a piece or not. Alignment information is added as an

attribute to the target, an attribute consists of key-string and value.

Knowing that this Add-In is oriented to assembly and manipulation, some rules can
be abstracted to automatically determine when to synchronize the movement of the

robots or not, as well as to follow a linear trajectory or not.

The steps for generating a new Move instruction given the target to be
recorded are detailed as follows, additionally, Figure 4.17 complements the ex-

planation with other details:

1. Add the target of the current task pose to the task, the same naming
procedure followed for paths will be applied for targets, but adding an extra

number in case more than one is recorded in a second.

2. Determine whether the Mowve instruction needs to be done as joint

or linear:

The Add-In does not use any path planner or collision avoidance algorithm,
instead, when programming a task, the user must considerate what keyframes
will be needed. In the case of engaging a piece with a gripper, it must first be

set over the piece, then approached and closed to take the piece.

4.7. Generation of instructions 48

The alignment feature helps the user to locate the end-effectors in suitable
positions, then a target recorded with alignment which its previous one was
also recorded with alignment will need to be reached making a linear trajectory.
In addition to the previous condition, when two consecutive aligned targets
have different piece targets, the linear trajectory will not be needed, therefore

a joint trajectory will be performed in that case.

3. Determine when a Mowve instruction needs to be preceded by a syn-

chronization point:

As it has been explained until now, the Add-In is meant to program collab-
orative manipulators, up to two of them can be programmed, but their
movements would need some kind of synchronization. Both arms will need
to be synchronized when the pieces they are manipulating are going to be

assembled or they both manipulate the same piece.

In order to establish when this synchronization is needed, one of the con-
ditions needed is that the movement to be done is linear, linear movements
are needed to approach a piece, as explained before, or taking it from where
it was deposited. When the manipulator is aligned to a piece held by the
other manipulator, before that movement, a synchronization point has to be
inserted in both tasks procedures to ensure that the recorded movements of

the other manipulator are already done.

The first synchronization to start manipulation of a piece, or the first
assembly operation between two pieces is met. But more synchronization

points are needed during manipulation or finishing it.

After the first synchronization point, each time a different manipulator
starts performing an action a synchronization point must be added. Once
none of the manipulators are aligned to the others piece, the manipulation is

finished and no more synchronization points are added.

4. Create the synchronization instructions for both procedures if necessary

and the move instruction.

If there are errors during recording, the last instructions can be undone, this
undoes the instructions in the task and therefore in the RS GUI, thanks to em-
bedding the alignment information into the target, this information is also handled.
The recorder does not store extra information that cannot be located somehow in
the RS GUL

The motion recorder is not implemented to allow redo operations while record-

ing, besides, using both hands at a time is not recommended because although

4.7. Generation of instructions

<

v
Reco

Yes

Task
position,
tool and

Wobj data

Create robTarget

Is reachable?

Il Iy — No—p| End
v

Add robTarget to the task data declarations, create target ,add

Motion type is

Aligned and no
piece handled yet?

Assign piece as
the handled one

Synchro counter
> 0?

Set synchro flag,

increase counter,

set synchro reset
ED]

alignment attributes and add target to the task

Last target
aligned to
the same
piece
than this?

Synchro flag?

Add WaitSyncTask

Instruction with counter value, reset
counter if synchro reset flag

Add the correspondent Move

instruction

Motion type is

Aligned
to the piece handle
by the other
robot?

Set synchro flag,
increase counter

49

Figure 4.17 Flowchart of the target recording. Flags are reset on every order.

4.7. Generation of instructions 50

seeming more intuitive, precision alignments make it more cumbersome to try to

command both manipulators at the same time.
Stopping the motion recorder:

Once the recording finishes, the recorder can be stopped using the GUI, each in-
struction generated is automatically stored in the corresponding task procedure and
can be seen with the GUI. If no instructions have been added to a path procedure
it is deleted.

Additionally, data declarations of variables and persistent data needed for the syn-
chronization are added to both tasks. For this, a task list with both tasks is added
to each task. Iterating through all the synchronization instructions added creates
synchronization variables. After synchronizing, these data declarations are auto-
matically added to the RAPID code as follows:

PERS tasks task_list{2}:=[["T_ROB1"],["T_R0OB2"]];

VAR syncident syncl;

VAR syncident sync2;
VAR syncident sync3;

After recording a program:

The programmed procedure can be tested using the RS GUI and synchro-
nized to RAPID as classically done in RS. If there are instructions not generated as
expected, or targets that would require modification, they can be easily tuned using
the RS GUI until the procedure behaves as expected. Moreover, the configurations

of the target can be optimized using the auto-configuration wizard.

o1

5. RESULTS AND ANALYSIS

In order to be able to program the procedures exposed in section 1.6, the trial and
error methodology has been followed until the programming of all the task could
have been achieved. Some videos have been recorded to demonstrate how the Add-In

works.

The results obtained with this implementation are qualitatively described since the
result is the implementation itself and how it works, no survey has been done to test

the interface, given that the complexity of this work it is still difficult to use.

Regarding its utility for jogging robots, the interface works as it could be expected,
the visualization fluently follows the position given by the user unless the CPU is

overloaded with other processes such as screen video recording.
In the case of the snap-fit insertion task, no singular problem can be found.

In the case of the bayonet mount, making an alignment to the piece holded by the
other robot can make a "rotation problem" after assembling, meaning that if the
manipulator is aligned to the piece which is attached to the piece holded by the robot,
it will change its position each time the robot tries to align to it. This singularity
happens because the manipulator is moving the piece it wants to align with in every

movement, anyway it does not mean a big problem while programming.

In the case of the Rubik cube manipulation, since it is simulated as a single piece, the
programming processed resulted significantly non-intuitive, and the visual feedback
confusing. It would be necessary to model the Rubik cube as a mechanism to be able
to program its manipulation in a good way, this last step has not been performed

and the implementation does not regard handling pieces behaving as mechanisms.

It has been checked that it is better to continue programming if a mistake has
been done in the process instead of undoing the last actions, the undo command is

implemented in a way that the synchronization correctness can be lost.

5.1. Review of limitations 52

5.1 Review of limitations

In this section, the limitations found during the implementation development are ex-
plained, limitations have affected both easiness of the implementation development

as well as the quality of the implementation.

Regarding the use of the Leap Motion Sensor, its limitations mainly affect the im-

plementation quality:

e Occasionally, a left hand may be confused with a right hand.

e The rotation of the palm becomes less precise as the palm normal is not point-
ing to the camera of the sensor.

e When both hands are being used at the same time, keeping them close to each
other may cause the detection to fail completely.

e When the palm looks upwards, the sensor is more likely to understand that it
is a palm facing downwards instead.

e Discerning rotation becomes more difficult while the hand is closed.

e Gesture recognition is not available in the last release of the Software Devel-
opment Kit (SDK)

Limitations found in RS and RS SDK made more difficult the development of the

interface:

e Examples for using the RS SDK are limited to simple tasks.

e While using the Add-In tab, the PathéfTargets menu is not visible.

e Bad use of the SDK may trigger internal errors on the API whose error text
messages do not give a hint of the real problem.

e Assistance found in ABB forums is limited, and is not as wide as, for example,
.NET one.

e The way that the attachment information is stored on RS (in the station
instead of in each object) makes difficult to discern what object is holding

each robot, making the programming flexibility of the Add-In more limited.

Final limitations of the interface created:

e The interface only allows to align the robots to a single frame per piece, in
other words, it is not possible to align the position of the robot to different

places of a big piece.

5.1. Review of limitations 53

e The points to be reached by the robots have to be teached one by one, there
is no artificial intelligence generating targets automatically, the targets will be
recorded when opening the hands instead.

e This last limitation makes the programming much less intuitive.

e Configuration and use of an appropriate smart component are necessary to

use all the functionalities.

o4

6. CONCLUSIONS

The proposal of this thesis has been proved to be both limitated and aided by the
capabilities of the off-line programming environment it is added in, in this case,
on the one hand, RobotStudio aids the implementation by generating instructions
instead of directly code, errors done during the programming process can be easily
edited and visualized. On the other hand, the modeling capabilities of RobotStudio
make difficult to make an implementation based on the information that can be

extracted from a virtual piece.

The developed implementation can either be used for jogging or automatic code gen-
eration. Even if the automatic generation of commands does not result as expected

it is easier to edit instructions than generating them from scratch.

6.1 Open issues

The complexity of this work has meant to finish with some open issues not solved

yet.

In order to program an assembly operation, the programming procedure needs to
be done at once, if not, the synchronization instructions won’t be automatically

generated.

The speech recognition has been implemented in English, instead of the author
native language Spanish, it has been checked that a correct pronunciation while
commanding is essential to obtain the expected behavior. There is a significant

presence of false positives, false negatives and mistakes between commands.

The speech recognition can require opening the program as administrator depending

on the permissions used when installing it.

Detection of the handled piece for synchronization is made based on the first target
with alignment recorded instead of the actual piece attached to the robot, meaning
that no mistaken targets can be recorded before aligning to the piece that is going

to be manipulated.

6.2. Future Works 55

After a while using the hand control, the Add-In starts becoming slower.

Data declarations regarding synchronization cannot be visualized in the RS tasks.

6.2 Future Works

The implementation of this Add-In can serve as a base for future works.
Improvement of the filter:

The implemented low-pass filter is quite simple, some other methods like an extended
Kalman filter, or other ways to discern the hand pose instead of relying in the Leap
Motion API high-level functions can be implemented to make the rest of the Add-In
more precise and powerful. Moreover, some kind of logic filtering like a delay of the
input data regarding position but no delay on pose could maintain a more stable

position when opening the hand for recording.
Improvement by adding a complex algorithm or artificial intelligence:

The target of Multi-modal interfaces is making interaction more intuitive, in this
case, programming. Our implementation has been limited to teaching key-frames

or key-targets and generating instructions with them automatically.

A goal to accomplish in the future would be to automatically generate this targets
along with the instructions by showing the software a set of positions, commands,
movements of the hands or any other input mode and use all the possible information
of the virtual station to generate the teached program in an optimal way, and using
the aperture of the hands as a closing/opening input command, not needing any

constraint.

For this work, the motion recorder should be re-implemented and the state machines

would not be necessary.
Giving a "programming aid" focus:

The development of this interface was mainly focused on automating instructions
generation but multi-modes can also offer assistance to make programming easier
without directly programming. More functions could be aided by using gestures as

inputs to execute commands easing traditional programming in RS.

Implementation of more I/O modes:

6.2. Future Works

V-5 CellMMI - ABB RobotStudio 6.06.01

Home Modeling Simulation G APID Add-Ins | View | Edit

od ontroller R Edi
ﬁ [T Projection - f: Q \/ =) @ © dEnm @ Create Viewpoint (< Create Markup
e (@ Representation - —_

Setiings Advanced Show/ _Automatic Satistics | Virtual | (o) & (3}

ew
View k¢ Frame size - Lighting Hide = Transparency |Reality

View v off vigate Markups
Layout | Graphies = x|| cenmmivi o
X cemmre

Lights

‘ Warld

Create TQ

Clip Plane

Clip Planes| Freehand

Figure 6.1 RobotStudio compatibility with VR headsets.

"

Close
Graphics

Close

56

Of the many possible ways of interaction, one of the most popular could be the

virtual or augmented reality. These devices commonly include controllers which

can be located in the 3D space with high precision. This controllers have many

buttons that can be used to implement a set of commands, like the alignment used

in this thesis implementation and activation or deactivation of tools. These devices

also can visualize a virtual environment surrounding the user. This mode could be

implemented in RS, it has compatibility with VR devices as the Oculus Rift and

HTC Vive headsets as can be seen in Figure 6.1.

o7

BIBLIOGRAPHY

1]

3]

5]

17l

F. Ficuciello, A. Romano, V. Lippiello, L. Villani, and B. Siciliano, Human
Motion Mapping to a Robot Arm with Redundancy Resolution. Cham:
Springer International Publishing, 2014, pp. 193-201. [Online]. Available:
https://doi.org/10.1007/978-3-319-06698-1 21

G. Du, Y. Lei, H. Shao, Z. Xie, and P. Zhang, “A human-robot interface
using particle filter, kalman filter, and over-damping method,” Intelligent
Service Robotics, vol. 9, no. 4, pp. 323-332, Oct 2016. |Online|. Available:
https://doi.org/10.1007 /s11370-016-0202-9

C. Papadopoulos, I. Mariolis, A. Topalidou-Kyniazopoulou, G. Piperagkas,
D. Ioannidis, and D. Tzovaras, An Advanced Human-Robot Interaction
Interface for Teaching Collaborative Robots New Assembly Tasks. Cham:
Springer International Publishing, 2017, pp. 180-190. [Online|. Available:
https://doi.org/10.1007/978-3-319-66471-2 20

T. Brogardh, “Present and future robot control development—an industrial
perspective,” Annual Reviews in Control, vol. 31, no. 1, pp. 69 — 79,
2007. |Online|. Available: http://www.sciencedirect.com/science/article/pii/
S1367578807000077

C. Wittenberg, “Cause the trend industry 4.0 in the automated industry to new
requirements on user interfaces?” in Human-Computer Interaction: Users and
Contexts, M. Kurosu, Ed. Cham: Springer International Publishing, 2015, pp.
238-245.

Interface Devices and Systems. Boston, MA: Springer US, 2007, pp. 173-223.
[Online|. Available: https://doi.org/10.1007/978-0-387-23326-0 4

K. Ishii, S. Zhao, M. Inami, T. Igarashi, and M. Imai, Designing Laser
Gesture Interface for Robot Control. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 479-492. |Online|. Available: https://doi.org/10.1007/
978-3-642-03658-3 52

T. Kollar, A. Vedantham, C. Sobel, C. Chang, V. Perera, and M. Veloso,
A Multi-modal Approach for Natural Human-Robot Interaction. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 458-467. [Online|. Available:
https://doi.org/10.1007/978-3-642-34103-8 46

https://doi.org/10.1007/978-3-319-06698-1_21
https://doi.org/10.1007/s11370-016-0202-9
https://doi.org/10.1007/978-3-319-66471-2_20
http://www.sciencedirect.com/science/article/pii/S1367578807000077
http://www.sciencedirect.com/science/article/pii/S1367578807000077
https://doi.org/10.1007/978-0-387-23326-0_4
https://doi.org/10.1007/978-3-642-03658-3_52
https://doi.org/10.1007/978-3-642-03658-3_52
https://doi.org/10.1007/978-3-642-34103-8_46

BIBLIOGRAPHY 58

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J. G. Victores, F. R. Canadillas, S. Morante, A. Jardon, and C. Balaguer,
Assistive Robot Multi-modal Interaction with Augmented 3D Vision and
Dialogue. Cham: Springer International Publishing, 2014, pp. 209-217.
|Online|. Available: https://doi.org/10.1007/978-3-319-03413-3 15

N. Rudigkeit, M. Gebhard, and A. Gréaser, A Nowel Interface for Intuitive
Control of Assistive Robots Based on Inertial Measurement Units. Cham:
Springer International Publishing, 2016, pp. 137-146. [Online]. Available:
https://doi.org/10.1007/978-3-319-26345-8 12

E. Tamura, Y. Yamashita, Y. Ho, E. Sato-Shimokawara, and T. Yamaguchi,
Robot Control Interface System Using Glasses-Type Wearable Devices. Cham:
Springer International Publishing, 2016, pp. 247-256. [Online|. Available:
https://doi.org/10.1007/978-3-319-43518-3 24

Y.-H. Su, C.-C. Hsiao, and K.-Y. Young, Manipulation System Design
for Industrial Robot Manipulators Based on Tablet PC. Cham: Springer
International Publishing, 2015, pp. 27-36. |[Online|. Available: https:
//doi.org/10.1007/978-3-319-22876-1 3

B. Mocan, M. Fulea, and S. Brad, Designing a Multimodal Human-
Robot Interaction Interface for an Industrial Robot. Cham: Springer
International Publishing, 2016, pp. 255-263. [Online|. Available: https:
//doi.org/10.1007/978-3-319-21290-6 26

M. R. Pedersen and V. Kriiger, “Gesture-based extraction of robot skill
parameters for intuitive robot programming,” Journal of Intelligent &
Robotic Systems, vol. 80, no. 1, pp. 149-163, Dec 2015. [Online|. Available:
https://doi.org/10.1007/s10846-015-0219-x

C. Pérez-D’Arpino and J. A. Shah, “C-learn: Learning geometric constraints
from demonstrations for multi-step manipulation in shared autonomy,” in 2017
IEEE International Conference on Robotics and Automation (ICRA), May
2017, pp. 4058-4065.

H. C. Fang, S. K. Ong, and A. Y. C. Nee, “A novel augmented reality-based
interface for robot path planning,” International Journal on Interactive Design
and Manufacturing (IJIDeM), vol. 8, no. 1, pp. 3342, Feb 2014. [Online].
Available: https://doi.org/10.1007/s12008-013-0191-2

H. S. Park, E. Y. Kim, and H. J. Kim, Robot Competition Using Gesture
Based Interface. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp.
131-133. [Online|. Available: https://doi.org/10.1007/11504894 20

https://doi.org/10.1007/978-3-319-03413-3_15
https://doi.org/10.1007/978-3-319-26345-8_12
https://doi.org/10.1007/978-3-319-43518-3_24
https://doi.org/10.1007/978-3-319-22876-1_3
https://doi.org/10.1007/978-3-319-22876-1_3
https://doi.org/10.1007/978-3-319-21290-6_26
https://doi.org/10.1007/978-3-319-21290-6_26
https://doi.org/10.1007/s10846-015-0219-x
https://doi.org/10.1007/s12008-013-0191-2
https://doi.org/10.1007/11504894_20

Bibliography 59

[18]

[19]

[20]

[21]

22]

H.-G. Lee, Y.-G. Kim, H.-D. Lee, J.-H. Kim, and G.-T. Park, Human Interface
for the Robot Control in Networked and Multi-sensored Environment. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 928-935. [Online|. Available:
https://doi.org/10.1007/978-3-540-73281-5 101

E. Tanez, M. C. Furio, J. M. Azorin, J. A. Huizzi, and E. Fernandez,
Brain-Robot Interface for Controlling a Remote Robot Arm. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 353-361. [Online|. Available:
https://doi.org/10.1007/978-3-642-02267-8 38

P. Gonzélez, A. Brumovsky, and M. Anigstein. (2015, April) Implementacion
de un control gestual para robots. |Online|. Available: http://www.secyt.frba.

utn.edu.ar/gia/trabajosviiijar /jar8 submission 12.pdf

P. D. E. Prassler, D. A. Stopp, M. Hégele, I. Iossifidis, D. G. Lawitzky, D. G.
Grunwald, and P. D.-I. R. Dillmann, 1 Multi-modal Robot Interfaces. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 5-7. [Online|. Available:
https://doi.org/10.1007/978-3-540-31509-4 1

D. Walter. (2014, April) Product comparison — kinect and
leap motion. [Online|]. Available: http://ashlandtech.org/2014,/04,/02/

product-comparison-kinect-and-leap-motion/

https://doi.org/10.1007/978-3-540-73281-5_101
https://doi.org/10.1007/978-3-642-02267-8_38
http://www.secyt.frba.utn.edu.ar/gia/trabajosviiijar/jar8_submission_12.pdf
http://www.secyt.frba.utn.edu.ar/gia/trabajosviiijar/jar8_submission_12.pdf
https://doi.org/10.1007/978-3-540-31509-4_1
http://ashlandtech.org/2014/04/02/product-comparison-kinect-and-leap-motion/
http://ashlandtech.org/2014/04/02/product-comparison-kinect-and-leap-motion/

APPENDIX A. UML CLASS DIAGRAM

MMiIClass

-buttonCopyCode:CommandBarButton
-buttonHand:CommandBarButton
-buttonMic:CommandBarButton
-buttonLeapFrame:CommandBarButton
-buttonTranslate:CommandBarButton
-buttonRotate:CommandBarButton
-buttonRoll:CommandBarButton
-buttonPitch:CommandBarButton
-buttonYaw:CommandBarButton
-buttonGripperLeft:CommandBarButton
-buttonGripperRight:CommandBarButton
-buttonStart:CommandBarButton
-buttonStop:CommandBarButton
-comboBoxLeftArm:CommandBarComboBox
-comboBoxRightArm:CommandBarComboBox
-station:Stations.Station
-controller:Leap.Controller

filter:Filter

-ignoreFilter:Threadlignorer
-ignoreHandler:Threadlgnorer
-indicatorLeftHand:CommandBarButton
-indicatorRightHand:CommandBarButton
-leapMotionFrame:Stations.Frame
-leftTask:RsTask

-rightTask:RsTask
-leftVisualizer:GraphicVisualizer
-rightVisualizer:GraphicVisualizer
-sre:SpeechRecognitionEngine
-stateMachineLeft:StateMachine
-stateMachineRight:StateMachine

Filter

+AddInMain():void
-ButtonCopyCode_ExecuteCommand:void
-ButtonGripperLeft_ExecuteCommand:void
-ButtonGripperRight_ExecuteCommand:void
-ButtonHand_ExecuteCommand:void
-ButtonLeapFrame_ExecuteCommand:void
-ButtonMic_ExecuteCommand:void
-ButtonRotate_ExecuteCommand:void
-ButtonStart_ExecuteCommand:void
-ButtonStop_ExecuteCommand:void
-ButtonTranslate_ExecuteCommand:void
-CalculateTargetGMatrix:Matrix4
-CancelSpeechRecognition():void
-ComboBox_DropDownCommand():void
-ComboBox_SelectionChangedCommand():void
+ImitateHandAsync():Task
+InitializeSpeechRecognition:void
-NewFrameHandlerAsync():void
-OnLeftAlignmentChanged():void
OnPoseChanged():void
OnRightAlignmentChanged():void
OnSpeechRecognized():void
Project_ActiveProjectChanged():void
-StartSpeechRecognition():void
-Station_l0SignalValueChanged():void
-UndoContext_Undone():void

-framePosel:Pose

-framePoseR:Pose

-currFiltPoseL:Pose
-currFiltPoseR:Pose
-fingerL:Leap.Finger
-fingerR:Leap.Finger
-frameln:Leap:Frame
-frameOut:Leap:FrameAndPoselLeap
-handL:Leap.Hand

-handR:Leap.Hand
-posesL:Queue<Pose>
-posesR:Queue<Pose>
-palmDirectionsL:Queue<Leap.Vector>
-palmDirectionsR:Queue<Leap.Vector>
-palmNormalsL:Queue<Leap.Vector>
-palmNormalsR:Queue<Leap.Vector>
-pointDirectionsL:Queue<Leap.Vector>
-pointDirectionsR:Queue<Leap.Vector>
-positionsL:Queue<Leap.Vector>

|
Figure A.1 WML class diagram.

been omitted, 4s well as somq

unused m

<<uses>> _ _ _ _ | -positionsR:Queue<Leap.Vector>
: +Newlnput():int
| +GetFrameFilteredLeapFormat:FrameAndPoseleap
: +GetFrameFilteredRsFormat:FrameAndPoseRs
| +FilterAll()
| -PosefFiltering():Pose
: -AnglesFiltering():Vector
v/ -PositionFiltering():Vector
<<Enumerationss -FloatFiltering():Vector
T 1
Pose b
StateMachine : :
+CLOSED [
+GONE +alignment:Alignment : :
+OPENED +inputRobot:RsTask ' Lo
+POINTING +curState:StateMachine.StateName (I
+OpenedHandEvent:EventHandler [
+ClosedHandEvent:EventHandler : :
+GoneHandEvent:EventHandler |
2 -pointingBefore:bool [
-pointPulse:bool == ’:— -
<<uses>> -robotButton:CommandBarButton |
| +StateMachine() :
Y +OnHandGone():void |
<<Enumeration>> +OnHandOpened():void |
StateName +OnHandClosed():void :
+OnHandPointing():void |
+ShowOpenedHand +0nAlignFromSpeech():void :
+Visualize +OnMisalignFromSpeech():void |
+Imitate +Iterate():StateName |
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|

Clas

es of the RS, Leap Motion and .NET|ARI.
ethods or fields. .

|
|
|
|
|
|
|
|
|
|
|
|
|
| |
~
T
|
|
|
|
|
|
|
|
|
|
|
|
|

60

APPENDIX A. UML class diagram 61

2 GraphicVisualizer

-station:Stations.Station
-graphicFrame:TemporaryGraphic
-graphicLine:TemporaryGraphic
-graphicLineToPiece:TemporaryGraphic

+GraphicVisualizer()
+EraseGraphic():void
2 +VisualizeFrame():void

Threadlgnorer

-count:int

-recording:bool

+targetComponent:GraphicComponent
-leftTask:RsTask

c -align:bool
-rightTask:RsTask -targetMatrix:Matrix4
-currentPathL:RsPathProcedure "

+Align:bool

-currentPathR:RsPathProcedure
-handlingLeft:GraphicComponent
-handlingRight:GraphicComponent
-lastTargetLeft:RsTarget
-lastTargetRight:RsTarget Y
-synchroCounter:uint
-synchroCounterMax:uint

. <<creates>>

-maxCount:int

+Threadlgnorer() ottt TTTT T

+ProtectCodeStart():bool \"/

+ProtectCodeEnd():void

FrameAndPoseleap FrameAndPoseRs
[S e] e —————— b S 4
": <<creates>> +left:HandAndPoselLeap +left:HandAndPoseRs <<creates>>
RecordTargetOrderEventArgs
+alignment:Alignment 2 2
+task:RsTask

/E\ HandAndPoseleap HandAndPoseRs
| y +iltPose:Pose
I <<receives>> +filtPose:Pose b)
| +instantPose:Pose +mstant_Post-:‘.Po.se
: +palmDirection:Leap.Vector +pa|mD|rect|o.n.Vector3
| +palmNormal:Leap.Vector +pa|rf1!ﬂormal.Vector3
| +position:Leap.Vector pposition:yectord
| +Rotation:Matrix3
! 1
|
|
l .
: MotionRecorder Alignment
| 1
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N X |
\1/ +right:HandAndPoseleap +right:HandAndPoseRs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<<creates>> :

<<receives>> | RecordGripperOrderEventArgs

+IsRecording() +isClosingOrder:bool
+MotionRecorder() +task:RsTask
+StartRecording()

+StopRecording()
+AddGripperOrderOnExternalEvent()
+AddTargetOrderOnExternalEvent()

Figure A.2 UML class diagram, lower part. Classes of the RS, Leap Motion and .NET
APIs have been omitted, as well as some unused methods or fields.

62

APPENDIX B. XML CODE DOCUMENTATION

This code XML documentation can be visualized in XML visualizers, it includes

all the code that was left in the final implementation including unused fields or
methods.

Program B Code XML documentation

3

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

1 <?xml version="1.0"7>
2 <doc>

<assembly>
<name>MultiModallnterface</name>
</assembly>
<members>
<member name="T:MMI. MMIClass'">
<summary>
Main class of the Add—In
< /summary>
< /member>
<member name="F:MMI.MMIClass.sre">
<summary>
Speech recognizer for the Add—In speech commands
< /summary>
< /member>
<member name="F:MMI. MMIClass.sreYesNo">
<summary>
Speech recognizer for Yes/No acknowledge commands
< /summary>
< /member>
<member name="M:MMI. MMIClass. InitializeSpeechRecognition">
<summary>
Initializes the speech recognition, configuring the
recognizers and the grammars for commands. But does
not start the recognition
</summary>
< /member>
<member name="M:MMI. MMIClass. StartSpeechRecognition">
<summary>
Starts the recognizer so the user can start speaking to
the computer
< /summary>
< /member>
<member name="M:MMI. MMIClass. OnSpeechRecognized (System .
Object ,System . Speech.Recognition .
SpeechRecognizedEventArgs) ">

<summary>

APPENDIX B. XML code documentation

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

The event handler for general recognition
</summary>
<param name="sender"> Not used </param>
<param name="e"> Contains information about the
recognized speech </param>
< /member>

<member name="M:MMI. MMIClass. OnSpeechHypothesized (System .

Object ,System . Speech. Recognition .
SpeechHypothesizedEventArgs)">
<summary>
The event handler for debugging recognized speech
hypotheses
< /summary>
<param name="sender"> Not used </param>
<param name="e"> Contains information about the
hypothesized speech </param>
< /member>
<member name="M:MMI. MMIClass.OnYesNoRecognized (System .
Object ,System . Speech. Recognition .
SpeechRecognizedEventArgs) ">
<summary>
The event handler for yes/no recognition
< /summary>
<param name="sender"> Not used </param>
<param name="e'"> Contains information about the
recognized speech </param>
< /member>
<member name="F:MMI. MMIClass. left Visualizer ">
<summary>
Object for visualizing the left robot destination
target and reachability .
< /summary>
< /member>
<member name="F:MMI. MMIClass. rightVisualizer ">
<summary>
Object for visualizing the right robot destination
target and reachability.
</summary>
< /member>
<member name="M:MMI. MMIClass. ButtonMic ExecuteCommand (

System . Object ,ABB. Robotics.RobotStudio. Environment .

ExecuteCommandEventArgs) ">

<summary>

Handler for clicking the microphone button, starts
cancels the speech recognition.

</summary>

<param name="sender"> Not used. </param>

or

63

APPENDIX B. XML code documentation 64

68

69

70

71

72

73

74

75

76

T

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

<param name="e"> Not used. </param>
< /member>
<member name="M:MMI. MMIClass.ButtonHand ExecuteCommand (
System . Object ,ABB. Robotics.RobotStudio. Environment .
ExecuteCommandEventArgs) ">
<summary>
Handler for clicking the Hand control button,
initializes everything needed for reading hands or
prompts if some configuration is still missing.
</summary>
<param name="sender"> Not used. </param>
<param name="e"> Not used. </param>
< /member>
<member name="M:MMI. MMIClass.ButtonTranslate ExecuteCommand
(System . Object ,ABB. Robotics.RobotStudio.Environment .
ExecuteCommandEventArgs) ">
<summary>
Handler for clicking the Allow translation button,
allows translation or not.
</summary>
<param name="sender"> Not used. </param>
<param name="e¢"> Not used. </param>
< /member>
<member name="M:MMI. MMIClass. ButtonRotate ExecuteCommand (
System . Object ,ABB. Robotics.RobotStudio. Environment .
ExecuteCommandEventArgs) ">
<summary>
Handler for clicking the Allow rotation/pitch/yaw/roll
buttons, the rotation is disabled if every
subrotation is disabled
and it is enabled if any subrotation is enabled.
< /summary>
<param name="sender"> Used to check what button has
been clicked. </param>
<param name="e"> Not used. </param>
< /member>
<member name="M:MMI. MMIClass . ButtonLeapFrame ExecuteCommand
(System . Object ,ABB. Robotics.RobotStudio.Environment .
ExecuteCommandEventArgs) ">
<summary>
Handler for clicking the Add Leap Frame button, if the
Leap frame does not exist it creates a new one and
prompts how to position it, if it does exists it
prompts how to position it.
< /summary>
<param name="sender"> Not used. </param>

<param name="e"> Not used. </param>

APPENDIX B. XML code documentation

98

99

100

101

102

103

104

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

65

< /member>
<member name="M:MMI. MMIClass .
ButtonGripperLeft ExecuteCommand (System . Object ,ABB.
Robotics. RobotStudio . Environment . ExecuteCommandEventArgs
)"
<summary>
Handler for the Left gripper button, toggles the
CloseLeft gripper signal value.
< /summary>
<param name="sender"> Just takes the refernce of the
button. </param>
<param name="e"> Not used. </param>
< /member>
<member name="M:MMI. MMIClass .
ButtonGripperRight ExecuteCommand (System . Object ,ABB.
Robotics. RobotStudio. Environment . ExecuteCommandEventArgs
)u>
<summary>
Handler for the Right gripper button, toggles the
CloseRight gripper station signal value.
</summary>
<param name="sender"> Just takes the reference of the
button. </param>
<param name="e"> Not used. </param>
< /member>
<member name="M:MMI. MMIClass. ButtonStart ExecuteCommand (
System . Object ,ABB. Robotics.RobotStudio. Environment .
ExecuteCommandEventArgs) ">
<summary>
Starts the motionRecorder so a new path procedure is
created and actions performed with hands or gripper
commands will be recorded.
</summary>
<param name="sender"> Just takes the reference of the
button. </param>
<param name="e"> Not used. </param>
< /member>
<member name="M:MMI. MMIClass . ButtonStop ExecuteCommand (
System . Object ,ABB. Robotics.RobotStudio. Environment .
ExecuteCommandEventArgs) ">
<summary>
Handler for clicking the button stop. Stops the
motionRecorder, so stops recording actions and stops
using the same path procedure.
< /summary>
<param name="sender"> Just takes the reference of the
button. </param>

APPENDIX B. XML code documentation 66

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

<param name="e"> Not used. </param>
< /member>
<member name="M:MMI. MMIClass . ButtonCopyCode ExecuteCommand (
System . Object ,ABB. Robotics.RobotStudio. Environment .
ExecuteCommandEventArgs) ">
<summary>
Handler for clicking the copy code to clipboard button.
Not implemented yet.
< /summary>
<param name="sender "></param>
<param name="e"></param>
</member>
<member name="M:MMI. MMIClass . ComboBox DropDownCommand (
System . Object , System . EventArgs) ">
<summary>
Handler for clicking the Select left/right task buttons
Searchs for tasks in the station and add them as
items of the dropbox.
</summary>
<param name="sender"> Just takes the reference of the
button .</param>
<param name="e'"> Not used.</param>
< /member>
<member name="M:MMI. MMIClass .
ComboBox _SelectionChangedCommand (System . Object , System .
EventArgs)">
<summary>
Handler for clicking a selection of the combobox for
selecting Left/Right task. Changes the caption of
the comboBox with the selected task.
< /summary>
<param name="sender">Takes the reference of the

comboBox. Allows to know which combobox are we using

.</param>
<param name="e¢"> Not used.</param>
< /member>
<member name="F:MMI.MMIClass. station ">
<summary>

Reference to the active station of RS, that contains
everything the user can see in the RS GUI (
mechanisms, parts, tasks).

</summary>

</member>
<member name="F:MMI.MMIClass. leftTask">

<summary>

Reference to the left task for the MM control, to be
assigned when selected with the Add—In GUI.

APPENDIX B. XML code documentation 67

156

157

158

159

160

161

162

163

164

165

167

168

169

170

171

172

173

174

175

176

177

178

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

</summary>
< /member>
<member name="F:MMI.MMIClass.rightTask">
<summary>
Reference to the right task for the MM control, to be
assigned when selected with the Add—In GUI.
</summary>
< /member>
<member name="F:MMI. MMIClass.leapMotionFrame">
<summary>
Frame of the virtual Leap Motion Sensor to be ubicated
in the virtual station.
< /summary>
< /member>
<member name="F:MMI. MMIClass. filter ">
<summary>
Filter for the leap Motion Sensor.
< /summary>
< /member>
<member name="F:MMI. MMIClass. stateMachineLeft ">
<summary>
State Machine for the left arm.
< /summary>
< /member>
<member name="F:MMI.MMIClass.stateMachineRight ">
<summary>
State Machine for the right arm.
</summary>
< /member>
<member name="F:MMI. MMIClass. motionRecorder">
<summary>
Recorder of commands given by the hand control or some
speech commands,
records gripper actions and targets given the hands
positions ,
automatically generating path procedures.
</summary>
< /member>
<member name="F:MMI.MMIClass. controller ">
<summary>
Controller of the Leap Motion Sensor.
</summary>
</member>
<member name="M:MMI. MMIClass. AddinMain ">
<summary>
Entry point of the MultiModal interface Add—In. The GUI

is created as well as event handlers are assigned.

APPENDIX B. XML code documentation 68

199

200

201

202

203

204

205

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

</summary>
< /member>
<member name="M:MMI. MMIClass. Project ActiveProjectChanged (
System . Object , System . EventArgs) ">
<summary>
Event handler that assigns the station, creates the Add
—In I/0 and assigns some event handlers depending on
the current project.
< /summary>
<param name="sender"> Object sending the event, not
used </param>
<param name="e'"> Arguments sent by the object sending
the event, not used </param>
< /member>
<member name="M:MMI. MMIClass. UndoContext Undone(System .
Object , System . EventArgs) ">
<summary>
This delegate is meant to be executed whenever we do or
undo, checking how the state of the buttons should
be corrected
</summary>
<param name="sender"> Not used </param>
<param name="e"> Not used </param>
< /member>
<member name="M:MMI. MMIClass. Station I10SignalValueChanged (
System . Object ,ABB. Robotics.RobotStudio. Stations.
I0SignalChangedEventArgs) ">
<summary>
This delegate is meant to be executed whenever a
station I/O signal has changed its value. Refreshes
the state of the gripper buttons whenever
CheckGrippersSignal changes.
</summary>
<param name="sender "></param>
<param name="e"></param>
< /member>
<member name="F:MMI. MMIClass.ignoreFilter">
<summary>
Object for not executing a piece of code twice and
leaving the the method instead of waiting.
</summary>
< /member>
<member name="F:MMI. MMIClass.ignoreHandler ">
<summary>
Object for not executing a piece of code twice and
leaving the the method instead of waiting.

</summary>

APPENDIX B. XML code documentation 69

231

232

233

234

235

236

237

238

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

< /member>
<member name="M:MMI. MMIClass. OnPoseChanged (System . Object ,
System . ComponentModel . PropertyChangedEventArgs) ">
<summary>
Handler for property change of the filter , executed
whenever a filtered hand pose changes
</summary>
< /member>
<member name="MMMI. MMIClass. OnLeftAlignmentChanged (System .
Object , System . ComponentModel . PropertyChangedEventArgs) ">
<summary>
Handler for changing the alignment state of left robot.
Changes the image of the left robot.
< /summary>
<param name="sender"> A boolean indicating the
alignment state.</param>
<param name="e"> Not used.</param>
< /member>
<member name="M:MMI. MMIClass. OnRightAlignmentChanged (System
.Object , System . ComponentModel . PropertyChangedEventArgs)"
>
<summary>
Handler for changing the alignment state of right robot
Changes the image of the right robot.
</summary>
<param name="sender"> A boolean indicating the
alignment state.</param>
<param name="e"> Not used.</param>
< /member>
<member name="M:MMI. MMIClass . NewFrameHandler Async (System .
Object ,Leap . FrameEventArgs) ">
<summary>
Handler for actions to be done with a new Leap Motion
Frame.
< /summary>
<param name="sender "></param>
<param name="e"></param>
< /member>
<member name="M:MMI. MMIClass. ImitateHandAsync (ABB. Robotics.
Math. Matrix4 ,ABB. Robotics . RobotStudio. Stations .RsTask,
MMI. GraphicVisualizer ,MMI. Alignment , System . Boolean) ">
<summary>
ImitateArmAsync imitates the position of your hands in
the simulator, allowing movement without grabbing
gesture , this method
cannot be safe for direct control of the robot and

requires orienting and positioning the leap motion

APPENDIX B. XML code documentation 70

261

262

263

264

265

266

267

269

270

271

272

273

274

275

277

278

279

280

281

282

283

284

285

287

288

289

290

291

292

frame .
Choose either this function or MoveArmAsync instead
</summary>
<param name="targetGMatrix"> The destination global
matrix. </param>
<param name="task'"> The task of the corresponding robot
</param>
<param name="graphVis"> The corresponding visualizer </
param>
<param name="alignment"> The alignment state and data <
/param>
<param name="move"> True if the arm needs to be moved</
param>
<returns></returns>
< /member>
<member name="M:MMI. MMIClass. CalculateTargetGMatrix (MMI.
HandAndPoseRs ,ABB. Robotics . RobotStudio. Stations .RsTask,
MMI. Alignment) ">
<summary>
CalculateTargetGMatrix returns the matrix that
represents the hand position seen by the Leap Motion
sensor in the world coordinates of the RsStation.
< /summary>
<param name="hand"> The hand to be calculated. </param>
<param name="task"> The corresponding task. </param>
<param name="alignment"> The alignment data. </param>
<returns>A global matrix with the target transform. </
returns>
< /member>
<member name="T:MMI. MotionRecorder">
<summary>
This class allows to record the consecutive targets
created by the MultiModal Interface Add—In
</summary>
< /member>
<member name="M:MMI. MotionRecorder.#ctor (ABB. Robotics.
RobotStudio. Stations .RsTask ,ABB. Robotics . RobotStudio .
Stations.RsTask)">
<summary>
Constructor needs the robots specified to allow to
record both of them positions
</summary>
<param name="leftRobot"></param>
<param name="rightRobot"></param>
< /member>
<member name="P:MMI. MotionRecorder.IsRecording">

<summary>

APPENDIX B. XML code documentation 71

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

Getter to obtain the recording field , meaning it is
read—only
</summary>
< /member>
<member name="M:MMI. MotionRecorder. StartRecording ">
<summary>
Initializes the motion recorder, pulses the
CheckGrippers signal to refresh the state of
grippers in the Add-—In GUI and creates the paths to
be recorded for both tasks
</summary>
</member>
<member name="M:MMI. MotionRecorder.StopRecording">
<summary>
Stops the motion recorder, finishes the recorded paths,
erases a path if empty, adds the data declarations
related to synchronization if necessary
< /summary>
< /member>
<member name="M:MMI. MotionRecorder .
AddGripperOrderOnExternalEvent (ABB. Robotics . RobotStudio.
Environment . CommandBarButton ,MMI.
RecordGripperOrderEventArgs) ">
<summary>
Adds gripper instructions to the environment if the
motion recorder is recording
< /summary>
<param name="sender"> Not used </param>
<param name="e"> Event args containing the task to add
the instructions to and whether it is a closing
order or not </param>
< /member>
<member name="M:MMI. MotionRecorder .
AddTargetOrderOnExternalEvent (System . Object , System .
EventArgs) ">

<summary>

</summary>
<param name="sender"> Object sending the event which
triggers this method </param>
<param name="e'"> Event args containing the information
neccesary , of the type RecordTargetOrderEventArgs </
param>
< /member>
<member name="T:MMI. ThreadIgnorer">
<summary>

Class for leaving methods if another thread is already

APPENDIX B. XML code documentation 72

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

in a given piece of code.
</summary>
< /member>
<member name="F:MMI. Threadlgnorer.count">
<summary>
Number of threads which started protecting code using
this object.
</summary>
< /member>
<member name="F:MMI. Threadlgnorer .maxCount">
<summary>
Maximum number of threads which can enter a protected
zone instead of leaving the current method.
< /summary>
< /member>
<member name="M:MMI. ThreadIgnorer.#ctor (System.Int32 ,System
.Int32)">
<summary>
Constructor of the thread ignorer.
</summary>
<param name="initiallnside"> Initial number of threads
inside considered .</param>
<param name="maxInside"> Maximum number of threads
allowed in a protection.</param>
< /member>
<member name="M:MMI. ThreadlIgnorer.ProtectCodeEnd">
<summary>
Specify the end of the piece of code to protect
</summary>
</member>
<member name="M:MMI. ThreadlIgnorer.ProtectCodeStart">
<summary>
Specify the beggining of the piece of code to protect
</summary>
< /member>
<member name="T:MMI. GraphicVisualizer">
<summary>
Class for visualizing specific temporary graphics in
the RS Visualization of the station.
< /summary>
< /member>
<member name="F:MMI. GraphicVisualizer.graphicLine">
<summary>
Graphics for line and frame and line to piece in case
of alignment .
</summary>
< /member>

APPENDIX B. XML code documentation

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

73

<member name="F:MMI. GraphicVisualizer.graphicFrame">
<summary>
Graphics for line and frame and line to piece in case
of alignment .
< /summary>
< /member>
<member name="F:MMI. GraphicVisualizer.graphicLineToPiece">
<summary>
Graphics for line and frame and line to piece in case
of alignment .
</summary>
</member>
<member name="F:MMI. GraphicVisualizer.station">
<summary>
Station reference.
</summary>
< /member>
<member name="M:MMI. GraphicVisualizer.#ctor (ABB. Robotics.
RobotStudio. Stations. Station)">
<summary>
Constructor , needs the station reference.
< /summary>
<param name="station'"> Station reference.</param>
< /member>
<member name="M:MMI. GraphicVisualizer.EraseGraphic">
<summary>
Deletes the graphics if they already exist
</summary>
< /member>
<member name="M:MMI. GraphicVisualizer.EraseGraphic(System.
Object ,System . EventArgs) ">
<summary>
Deletes the graphics if they already exist, can handle
events
< /summary>
<param name="sender"> Object sending the event, not
used </param>
<param name="e"> Event arguments, not used</param>
< /member>
<member name="M:MMI. GraphicVisualizer. VisualizeFrame (ABB.
Robotics.Math. Vector3 ,ABB. Robotics . Math. Matrix4 , System .
Double , System . Double , System . Double , System . Drawing . Color ,
MMI. Alignment) ">
<summary>
Draws a new pair of line—frame graphics.
</summary>

<param name="from"> Where the line starts. </param>

APPENDIX B. XML code documentation 74

400 <param name="to"> Where the line ends and the frame is
located . </param>

401 <param name="size"> Size of the frame. </param>

402 <param name="lineWidth"> Width of the line. </param>

403 <param name="frameWidth"> Width of the frame lines. </
param>

404 <param name="color"> Color of the line. </param>

405 <param name="alignment'"> Alignment state and data</
param>

406 < /member>

407 <member name="T:MMI. RecordGripperOrderEventArgs">

408 <summary>

409 EventArgs that will be sent from gripper buttons,
containing whether it is commanded to close or open
them .

410 </summary>

411 < /member>

412 <member name="F:MMI. RecordGripperOrderEventArgs.task">

413 <sumiary>

414 Task corresponding to the gripper order.

415 </summary>

416 </member>

a17 <member name="F:MMI.RecordGripperOrderEventArgs.

isClosingOrder ">

418 <suminary>

419 Specifies if isClosingOrder with 1, 0 otherwise.

420 < /summary>

421 </member>

422 <member name="M:MMI. RecordGripperOrderEventArgs.# ctor (ABB.

Robotics.RobotStudio. Stations .RsTask, System . Boolean)">

423 <sumimary>

424 Constructor for RecordGripperOrderEventArgs.
425 </summary>
426 <param name="task'"> Task corresponding to the gripper

order. </param>

427 <param name="isClosingOrder"> Specifies if
isClosingOrder with 1, 0 otherwise. </param>

428 </member>

429 <member name="T:MMI. RecordTargetOrderEventArgs">

430 <sumimary>

431 Event args sent by the state machine for target
recording ,

432 includes task sending the event and alignment data

433 < /summary>

434 </member>

435 <member name="F:MMI. RecordTargetOrderEventArgs.task">

436 <suminary>

APPENDIX B. XML code documentation 75

437 Task sending the event

438 </summary>

439 </member>

440 <member name="F:MMI. RecordTargetOrderEventArgs.alignment ">
441 <sumimary>

442 Alignment data

443 </summary>

444 < /member>

445 <member name="M:MMI. RecordTargetOrderEventArgs.# ctor (ABB.

Robotics.RobotStudio. Stations.RsTask ,MMI. Alignment) ">

446 <suminary>

447 Constructor of the event args

448 < /summary>

449 <param name="task"> Task sending the event </param>

450 <param name="alignment"> Alignment data </param>

451 </member>

452 <member name="T:MMI. Alignment ">

453 <sumimary>

454 Class containing alignment data

455 </summary>

456 < /member>

457 <member name="E:MMI. Alignment . PropertyChanged">

458 <sumimary>

459 Event handler for sending events each time the
alignment changes

460 < /summary>

461 </member>

462 <member name="F:MMI. Alignment . targetComponent ">

463 <suminary>

464 Target part of the alignment

465 < /summary>

466 < /member>

467 <member name="P:MMI. Alignment . TargetOrientation">

468 <suminary>

469 Property to get the object orientation , the same as the
part orientation

470 </summary>

471 </member>

472 <member name="P:MMI. Alignment.ObjectTranslation">

473 <sumimary>

474 Property to get the object translation

475 </summary>

476 < /member>

477 <member name="P:MMI. Alignment . Align">

478 <sumimary>

479 Property to get if the state is aligned, and set it

invoking the align change when necessary

APPENDIX B. XML code documentation 76

481

482

483

484

485

486

487

488

489

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

</summary>
< /member>
<member name="M:MMI. Alignment.#ctor (System .Boolean ,ABB.
Robotics.Math. Matrix4) ">
<summary>
Constructor of the Alignment class
</summary>
<param name="doAlign"> Align or not </param>
<param name="targetMatrix"> TargetMatrix of where to
align </param>
< /member>
<member name="T:MMI. StateMachine">
<summary>
This state machine class allows to monitor the states
driven by the pose of the hand and when allignments
commands are given by pointing with a hand
</summary>
< /member>
<member name="F:MMI. StateMachine.OpenedHandEvent">
<summary>
Event handlers for when the hand opens, closes or
disappears
< /summary>
< /member>
<member name="F:MMI. StateMachine . ClosedHandEvent">
<summary>
Event handlers for when the hand opens, closes or
disappears
</summary>
</member>
<member name="F:MMI. StateMachine . GoneHandEvent">
<summary>
Event handlers for when the hand opens, closes or
disappears
< /summary>
< /member>
<member name="F:MMI. StateMachine.inputRobot">
<summary>
Task of the robot that this state machine commands
< /summary>
< /member>
<member name="F:MMI. StateMachine.alignment ">
<summary>
Alignment state and data of the state machine
< /summary>
< /member>
<member name="F:MMI. StateMachine.curState">

APPENDIX B. XML code documentation 77

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

<summary>
Current state of the state machine
</summary>
< /member>
<member name="T:MMI. StateMachine.StateName">
<summary>
Enumerated states names
</summary>
< /member>
<member name="F:MMI. StateMachine . StateName.ShowOpenedHand ">
<summary>
When hand is not located, it must be shown opened
before movement
< /summary>
< /member>
<member name="F:MMI. StateMachine .StateName. Visualize ">
<summary>
When shown opened, only visualization
</summary>
< /member>
<member name="F:MMI.StateMachine.StateName.Imitate">
<summary>
When finally closed, there is movement
</summary>
< /member>
<member name="M:MMI. StateMachine.# ctor (ABB. Robotics.
RobotStudio. Stations . RsTask ,ABB. Robotics. RobotStudio .
Environment . CommandBarComboBox) ">
<summary>
Constructor of the state machine
< /summary>
<param name="inputRobot"> Task of the robot to command
</param>
<param name="buttonToChangelmg"> Button of the
interface for debugging state </param>
< /member>
<member name="M:MMI. StateMachine . OnHandGone">
<summary>
Method to be executed when hand disappears, invoking an
event
</summary>
< /member>
<member name="M:MMI. StateMachine . OnHandOpened">
<summary>
Method to be executed when hand opens, invoking an
event

</summary>

APPENDIX B. XML code documentation 78

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

< /member>
<member name="M:MMI. StateMachine . OnHandClosed (MMI.
HandAndPoseRs ,ABB. Robotics. RobotStudio. Stations . RsTask)"
>
<summary>
Method to be executed when hand closes, invoking an
event
</summary>
<param name="hand"></param>
<param name="robot "></param>
< /member>
<member name="M:MMI. StateMachine . OnHandPointing (ABB.
Robotics. RobotStudio. Stations.RsTask ,ABB. Robotics.Math.
Matrix4) ">
<summary>
This method searches along geometries in the station
around the end effector and tries to align it to the
nearest geometry frame.
Therefore the robot enters a state where it should be
aligning to the axis of that object.
Pointing will switch between align or dealign the robot
to the object.
< /summary>
< /member>
<member name="M:MMI. StateMachine.OnAlignFromSpeech (System .
String)">
<summary>
Method to be executed when an alignment to an specific
piece is requested, instead of finding the nearest
one.
< /summary>
<param name="pieceName"> strin of the part as it
appears in the RS GUI.</param>
</member>
<member name="M:MMI. StateMachine . OnMisalignFromSpeech">
<summary>
Method for unaligning the arm from speech, directly
sets alignment.Align to false , meaning that there is
no alignment
< /summary>
< /member>
<member name="M:MMI. StateMachine . Iterate (MMI. HandAndPoseRs,
ABB. Robotics . Math. Matrix4) ">
<summary>
Iterates according to hand pose, jumping through states
</summary>

<param name="inputHand"> HandAndPose in RS format </

APPENDIX B. XML code documentation 79

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

param>
<param name="targetGMatrix"> Global matrix of the hand
position in RS </param>
<returns></returns>
< /member>
<member name="T:MMI. Pose">
<summary>
Enumerated type for hand poses
< /summary>
< /member>
<member name="F:MMI. Pose .GONE">
<summary>
Tag meaning that the hand is not in the frame or no
condition of the other tags is found
</summary>
</member>
<member name="F:MMI. Pose .CLOSED">
<summary>
Tag meaning that the hand has no finger extended
</summary>
</member>
<member name="F:MMI. Pose . POINTING">
<summary>
Tag meaning that the thumb is extended
</summary>
< /member>
<member name="F:MMI. Pose .OPENED">
<summary>
Tag meaning that the hand has all the fingers extended
</summary>
< /member>
<member name="T:MMI.Hand AndPoseLeap">
<summary>
Class for structuring the data of the Leap motion hand.
< /summary>
< /member>
<member name="F:MMI.HandAndPoseLeap. position">
<summary>
Position of the hand in the 3D space (X,Y,Z) taking as
reference the Leap Motion Sensor and its axes
</summary>
< /member>
<member name="F:MMI.HandAndPoseLeap .palmNormal">
<summary>
Direction of the unitary normal vector from the hand
palm taking as reference the Leap Motion Sensor and

its axes

APPENDIX B. XML code documentation 80

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

</summary>

< /member>

<member name="F:MMI.HandAndPoseLeap.palmDirection">
<summary>
Direction of the unitary vector parallel to the palm

direction , pointing to the center part of the

fingers , taking as reference the Leap Motion Sensor
and its axes
< /summary>
< /member>

<member name="F:MMI.HandAndPoseLeap.pointDir">
<summary>
Direction of the extended finger if the hand is
pointing , as unitary vector, taking as reference
the Leap Motion Sensor and its axes
</summary>
< /member>
<member name="F:MMI.HandAndPoseLeap. filtPose ">
<summary>
Filtered pose
</summary>
< /member>
<member name="F:MMI.HandAndPoseLeap.instantPose">
<summary>
Raw pose found in this frame
< /summary>
< /member>
<member name="M:MMI. HandAndPoseLeap.# ctor ">
<summary>
Constructor of the class initializing empty vectors and
GONE poses
< /summary>
< /member>
<member name="M:MMI. HandAndPoseLeap.# ctor (Leap. Vector , Leap.
Vector ,Leap. Vector ,Leap. Vector ,MMI. Pose ,MMI. Pose) ">
<summary>
Constructor of the class, initializing the internal
values with given values
</summary>
<param name="position"> Position of the hand in the 3D
space (X,Y,Z) taking as reference the Leap Motion
Sensor and its axes </param>
<param name="palmNormal"> Direction of the unitary
normal vector from the hand palm, taking as
reference the Leap Motion Sensor and its axes </
param>

<param name="palmDirection">Direction of the unitary

APPENDIX B. XML code documentation 81

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

vector parallel to the palm direction, pointing to
the center part of the fingers, taking as reference
the Leap Motion Sensor and its axes </param>
<param name="pointDir"> Direction of the extended
finger if the hand is pointing, as unitary vector,
taking as reference the Leap Motion Sensor and its
axes </param>
<param name="filtPose"> Filtered pose </param>
<param name="instantPose"> Raw pose found in this frame
</param>
< /member>
<member name="T:MMI.HandAndPoseRs">
<summary>
Class for structuring the data of the Leap Motion hand,
with the data types supported by the RS methods.
</summary>
< /member>
<member name="F:MMI.HandAndPoseRs. position">
<summary>
Position of the hand in the 3D space (X,Y,Z) with
coordinates transformed to the RS world according to
the LeapMotion frame located in the station
</summary>
< /member>
<member name="F:MMI.HandAndPoseRs.palmNormal">
<summary>
Direction of the unitary normal vector from the hand
palm, transformed to the RS world according to the
LeapMotion frame located in the station
</summary>
< /member>
<member name="F:MMI.HandAndPoseRs. palmDirection">
<summary>
Direction of the unitary vector parallel to the palm
direction , pointing to the center part of the
fingers , transformed to the RS world according to
the LeapMotion frame located in the station
</summary>
< /member>
<member name="F:MMI.HandAndPoseRs. pointDir">
<summary>
Direction of the extended finger if the hand is
pointing , as unitary vector, transformed to the RS
world according to the LeapMotion frame located in
the station
</summary>
< /member>

APPENDIX B. XML code documentation 82

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

<member name="F:MMI.HandAndPoseRs. filtPose ">
<summary>
Filtered pose
< /summary>
< /member>
<member name="F:MMI.HandAndPoseRs. instantPose">
<summary>
Raw pose found in this frame
< /summary>
< /member>
<member name="M:MMI. HandAndPoseRs.#ctor ">
<summary>
Constructor of the class initializing empty vectors and
GONE poses
</summary>
</member>
<member name="M:MMI. HandAndPoseRs.# ctor (ABB. Robotics . Math.
Vector3 ,ABB. Robotics.Math. Vector3 ,ABB. Robotics.Math.
Vector3 ,ABB. Robotics . Math. Vector3 ,MMI. Pose ,MMI. Pose) ">
<summary>
Constructor of the class, initializing the internal
values with given values
< /summary>
<param name="position"> Position of the hand in the 3D
space (X,Y,Z) transformed to the RS world according
to the LeapMotion frame located in the station </
param>
<param name="palmNormal"> Direction of the unitary
normal vector from the hand palm, transformed to the
RS world according to the LeapMotion frame located
in the station </param>
<param name="palmDirection">Direction of the unitary
vector parallel to the palm direction, pointing to
the center part of the fingers , transformed to the
RS world according to the LeapMotion frame located
in the station </param>
<param name="pointDir"> Direction of the extended
finger if the hand is pointing, as unitary vector,
transformed to the RS world according to the
LeapMotion frame located in the station </param>
<param name="filtPose"> Filtered pose </param>
<param name="instantPose"> Raw pose found in this frame
</param>
< /member>
<member name="P:MMI.HandAndPoseRs. Rotation">
<summary>
HandRotation: Gets the rotation matrix of the hand

APPENDIX B. XML code documentation 83

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

74T

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

based on its fields data

</summary>

< /member>

<member name="T:MMI.FrameAndPoseLeap">
<summary>
A class containing the pair of hands
</summary>

< /member>

<member name="F:MMI. FrameAndPoseLeap.left ">
<summary>
Left hand data
</summary>

< /member>

<member name="F:MMI.FrameAndPoseLeap.right ">
<summary>
Right hand data
</summary>

< /member>

<member name="T:MMI. FrameAndPoseRs">
<summary>
A class containing the pair of hands in RS format.
< /summary>

< /member>

<member name="F:MMI.FrameAndPoseRs. left ">
<summary>
Left hand data
< /summary>

< /member>

<member name="F:MMI.FrameAndPoseRs. right ">
<summary>
Right hand data
< /summary>

< /member>

<member name="F:MMI.FrameAndPoseRs.bothPointing">
<summary>
Boolean reserved for future use.
</summary>

< /member>

<member name="T:MMI. Filter ">
<summary>
Filter class, implements the INotifyPropertyChanged for

notifying changes in pose

</summary>

< /member>

<member name="E:MMI. Filter . PropertyChanged">
<summary>

Event for change of a property.

APPENDIX B. XML code documentation

769

770

771

772

773

774

775

776

77

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

</summary>

< /member>

<member name="T:MMI. Filter.FloatToFilter">
<summary>
Enum for specifying what value to filter
</summary>

</member>

<member name="F:MMI. Filter .POSE DEQUE SIZE">
<summary>
Number of frames for pose filtering.
</summary>

</member>

<member name="F:MMI. Filter .POSITION DEQUE SIZE">
<summary>
Number of frames for position filtering.
</summary>

< /member>

<member name="F:MMI. Filter .PALMNORMAL DEQUE SIZE">
<summary>
Number of frames for palm normal filtering.
</summary>

< /member>

<member name="F:MMI. Filter .PALMDIRECTION DEQUE SIZE">

<summary>
Number of frames for palm direction filtering.
< /summary>

< /member>

<member name="F:MMI. Filter . POINTDIRECTION DEQUE SIZE">

<summary>

Number of frames for direction of the pointing finger

filtering , not used in the implementation.
< /summary>
< /member>
<member name="P:MMI. Filter .CurrFiltPoseL ">

<summary>

84

Property for the current filtered pose of the left hand

</summary>
< /member>
<member name="P:MMI. Filter . CurrFiltPoseR ">

<summary>

Property for the current filtered pose of the right

hand
</summary>
< /member>
<member name="M:MMI. Filter .NewlInput (Leap.Frame)">

<summary>

Sets the frame to filter , if there is no frame in the

APPENDIX B. XML code documentation 85

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

filter , filtering methods will return invalid data,
use this method with each new frame, if not the last
added frame
will have more weight.
< /summary>
<param name="frame"> Leap Motion Frame from the sensor.
</param>
<returns> 0 if error, 1 if everything is Ok. </returns>
< /member>
<member name="M:MMI. Filter .GetFrameFilteredLeapFormat">
<summary>
Returns the filtered frame data with the data format of
Leap Motion
< /summary>
< /member>
<member name="M:MMI. Filter . GetFrameFilteredRsFormat (ABB.
Robotics.RobotStudio. Stations . Transform) ">
<summary>
Returns the filtered frame data with the data format of
Robot Studio. Needs the Leap Motion frame added to
the RS station
< /summary>
<param name="leapFramelnRs"> The transform of the leap
motion frame required in the RS station </param>
< /member>
<member name="M:MMI. Filter . Filter All">
<summary>
Executes all the other filter methods
note that executing a filtering method more than once
will add more weight to the
current input frame

< /summary>

<returns> 0 if error, 1 if everything is Ok </returns>
</member>
<member name="M:MMI. Filter . FilterLeft">

<summary>

Filters left hand.

</summary>

<returns> 0 if error, 1 if everything is Ok </returns>
< /member>
<member name="M:MMI. Filter . FilterRight">

<summary>

Filters right hand.

< /summary>

<returns> 0 if error, 1 if everything is Ok </returns>
< /member>
<member name="MMMI. Filter.FilterPoses">

APPENDIX B. XML code documentation

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

<summary>
Filter poses of both hands.

</summary>

86

<returns> 0 if error, 1 if everything is Ok </returns>

< /member>

<member name="M:MMI. Filter . FilterPointDirections">
<summary>
Filters the point direction of both hands
< /summary>

<returns> 0 if error, 1 if everything is Ok </returns>

< /member>
<member name="M:MMI. Filter . FilterPalmPositions">

<summary>

Filters the spatial position of both hands(X, Y, Z)

(Left, Right)

</summary>
<returns></returns>
< /member>
<member name="M:MMI. Filter . FilterAngles">
<summary>
Filters the palm normal and direction of the hands
< /summary>
<returns></returns>
< /member>
<member name="M:MMI. Filter . FilterPoseLeft">
<summary>
Filters the left pose
</summary>
<returns> Returns 1 </returns>
</member>
<member name="M:MMI. Filter . FilterPoseRight ">
<summary>
Filters the right pose
</summary>
<returns> Returns 1 </returns>
< /member>
<member name="M:MMI. Filter.FilterPalmPositionLeft">
<summary>
Filters the left palm position
< /summary>
<returns> Returns 1 </returns>
< /member>
<member name="M:MMI. Filter .FilterPalmPositionRight">
<summary>

Filters the right palm position
</summary>

<returns> Returns 1 </returns>

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

APPENDIX B. XML code documentation

< /member>

<member name="M:MMI. Filter . FilterPointDirectionLeft">
<summary>
Filters the left pointing direction of the finger
< /summary>
<returns> Returns 1 </returns>

</member>

<member name="M:MMI. Filter . FilterPointDirectionRight">
<summary>
Filters the right pointing direction of the finger
</summary>
<returns> Returns 1 </returns>

< /member>

<member name="M:MMI. Filter . FilterAnglesLeft">
<summary>

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

Filters the palmNormal and palmDirection of the left
hand
< /summary>
<returns> Returns 1 </returns>
< /member>
<member name="M:MMI. Filter .FilterAnglesRight">
<summary>
Filters the palmNormal and palmDirection of the right
hand
</summary>
<returns> Returns 1 </returns>
< /member>
<member name="T:MultiModallnterface.Properties.Resources">
<summary>
A strongly —typed resource class, for looking up
localized strings, etc.
< /summary>
< /member>
<member name="P:MultiModallnterface.Properties.Resources.
ResourceManager ">
<summary>
Returns the cached ResourceManager instance used by
this class.
</summary>
< /member>
<member name="P:MultiModallnterface.Properties.Resources.
Culture">
<summary>
Overrides the current thread’s CurrentUICulture
property for all
resource lookups using this strongly typed resource
class.

87

APPENDIX B. XML code documentation 88

937 < /summary>
938 < /member>
939 <member name="P:MultiModallnterface.Properties.Resources.

CheckGrippersSignal">

940 <summary >

941 Looks up a localized string similar to CheckGrippers.
942 </summary>

943 < /member>

944 <member name="P:MultiModallnterface.Properties. Resources.

CloseLeftGripperSignal">

945 <suminary>

946 Looks up a localized string similar to CloseLeft.
947 < /summary>

948 < /member>

949 <member name="P:MultiModallnterface.Properties.Resources.

CloseRightGripperSignal">

950 <summary>

951 Looks up a localized string similar to CloseRight.
952 < /summary=>

953 < /member>

954 <member name="P:MultiModallnterface.Properties.Resources.

imageCopy">

955 <summary >

956 Looks up a localized resource of type System.Drawing.
Bitmap .

957 < /summary>

958 < /member>

959 <member name="P:MultiModallnterface.Properties.Resources.

imageGoneLeft">

960 <summary>

961 Looks up a localized resource of type System.Drawing.
Bitmap .

962 </summary>

963 < /member>

964 <member name="P:MultiModallnterface.Properties. Resources.

imageGoneRight">

965 <summary>

966 Looks up a localized resource of type System.Drawing.
Bitmap .

967 < /summary>

968 < /member>

969 <member name="P:MultiModallnterface.Properties.Resources.

imageGripperLeft">

970 <summary>
971 Looks up a localized resource of type System.Drawing.
Bitmap .

972 </summary>

APPENDIX B. XML code documentation

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

000

001

002

003

004

005

006

< /member>

<member name—="P:MultiModallnterface.

imageGripperRight">
<summary >
Looks up a localized resource
Bitmap .
</summary>
< /member>

<member name="P:MultiModallnterface .

imageHandClose">
<summary>
Looks up a localized resource
Bitmap .
< /summary>
< /member>

<member name="P:MultiModallnterface.

imageHandCloseFlip">
<summary>
Looks up a localized resource
Bitmap .
< /summary>
< /member>

<member name—"P:MultiModallnterface.

imageHandOff">
<summary >
Looks up a localized resource
Bitmap .
< /summary=>
< /member>

<member name="P:MultiModallnterface.

imageHandOpen">
<summary>
Looks up a localized resource
Bitmap .
< /summary>
< /member>

<member name—"P:MultiModallnterface.

imageHandOpenFlip">
<summary>
Looks up a localized resource
Bitmap .
< /summary>
< /member>

<member name="P:MultiModallnterface .

imageLeapFrame">
<summary>

Looks up a localized resource

89

Properties . Resources.

of type System.Drawing.

Properties. Resources.

of type System.Drawing.

Properties. Resources.

of type System.Drawing.

Properties. Resources.

of type System.Drawing.

Properties. Resources.

of type System.Drawing.

Properties . Resources.

of type System.Drawing.

Properties. Resources.

of type System.Drawing.

APPENDIX B. XML code documentation

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

Bitmap .
< /summary>
< /member>

<member name="P:MultiModallnterface .

imageLeft">
<summary>
Looks up a localized resource
Bitmap .
< /summary>
< /member>

<member name="P:MultiModallnterface.

imageLeftAligned">
<summary >
Looks up a localized resource
Bitmap .
</summary>
< /member>

<member name—"P:MultiModallnterface .

imageLinked">
<summary>
Looks up a localized resource
Bitmap .
< /summary=>
< /member>

<member name—"P:MultiModallnterface.

imageMicOff">
<summary>
Looks up a localized resource
Bitmap .
< /summary>
< /member>

<member name—"P:MultiModallnterface.

imageMicOn">
<summary >
Looks up a localized resource
Bitmap .
< /summary=>
< /member>

<member name="P:MultiModallnterface.

imageNoLinked">
<summary>
Looks up a localized resource
Bitmap .
< /summary>
< /member>

<member name—="P:MultiModallnterface.

imageNoRotate">

90

Properties. Resources.

of type System.Drawing.

Properties . Resources.

of type System.Drawing.

Properties. Resources.

of type System.Drawing.

Properties. Resources.

of type System.Drawing.

Properties . Resources.

of type System.Drawing.

Properties. Resources.

of type System.Drawing.

Properties. Resources.

APPENDIX B. XML code documentation

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

<summary >
Looks up a localized resource
Bitmap .
< /summary>
< /member>

<member name—="P:MultiModallnterface.

imageNoTranslate">
<summary>
Looks up a localized resource
Bitmap .
< /summary>
< /member>

<member name="P:MultiModallnterface .

imagePoint">
<summary>
Looks up a localized resource
Bitmap .
< /summary>
< /member>

<member name—"P:MultiModallnterface.

imagePointFlip">
<summary >
Looks up a localized resource
Bitmap .
</summary>
< /member>

<member name—"P:MultiModallnterface .

imageRight">
<summary >
Looks up a localized resource
Bitmap .
< /summary=>
< /member>

<member name="P:MultiModallnterface.

imageRightAligned">
<summary>
Looks up a localized resource
Bitmap .
< /summary>
< /member>

<member name—"P:MultiModallnterface.

imageRotate">
<summary >
Looks up a localized resource
Bitmap .
</summary=>
< /member>

91

of type System.Drawing.

Properties . Resources.

of type System.Drawing.

Properties. Resources.

of type System.Drawing.

Properties . Resources.

of type System.Drawing.

Properties. Resources.

of type System.Drawing.

Properties. Resources.

of type System.Drawing.

Properties. Resources.

of type System.Drawing.

APPENDIX B. XML code documentation 92

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

<member name="P:MultiModallnterface.Properties.Resources.
imageStart">
<summary >
Looks up a localized resource of type System.Drawing.
Bitmap .
</summary>
< /member>
<member name="P:MultiModallnterface.Properties. Resources.
imageStop">
<summary>
Looks up a localized resource of type System.Drawing.
Bitmap.
< /summary>
< /member>
<member name="P:MultiModallnterface.Properties.Resources.
imageTranslate">
<summary>
Looks up a localized resource of type System.Drawing.
Bitmap .
< /summary>
< /member>
<member name="P:MultiModallnterface.Properties. Resources.
IsClosedLeftGripperSignal">
<summary>
Looks up a localized string similar to IsClosedLeft.
< /summary>
< /member>
<member name="P:MultiModallnterface.Properties.Resources.
IsClosedRightGripperSignal">
<summary>
Looks up a localized string similar to IsClosedRight.
< /summary=>
< /member>
<member name="P:MultiModallnterface.Properties.Resources.
LeapFrameName'">
<summary>
Looks up a localized string similar to LeapFrame.
< /summary>
< /member>
<member name="P:MultiModallnterface.Properties. Resources.
UndoStepCloseGripperLeft">
<summary>
Looks up a localized string similar to Close Left
Gripper.
< /summary>
< /member>

<member name="P:MultiModallnterface.Properties.Resources.

APPENDIX B. XML code documentation

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

131

132

133

134

135

136

137

138

140

141

142

143

144

UndoStepCloseGripperRight">
<summary>
Looks up a localized string similar to Close Right
Gripper.
< /summary>
< /member>

<member name="P:MultiModallnterface.Properties.Resources.

UndoStepLeapFrame">
<summary>
Looks up a localized string similar to Leap Frame.
< /summary>
< /member>

<member name="P:MultiModallnterface.Properties.Resources.

UndoStepMovement ">
<summary>
Looks up a localized string similar to Movement.
< /summary>
< /member>

<member name="P:MultiModallnterface.Properties.Resources.

UndoStepOpenGripperLeft">
<summary>
Looks up a localized string similar to Open Left
Gripper.
< /summary>
< /member>

<member name="P:MultiModallnterface.Properties.Resources.

UndoStepOpenGripperRight">
<summary>
Looks up a localized string similar to Open Right
Gripper.
< /summary>
< /member>

<member name="P:MultiModallnterface.Properties.Resources.

UndoStepRecordMovement">
<summary >
Looks up a localized string similar to Record
Movement .
< /summary>
< /member>

<member name="P:MultiModallnterface.Properties. Resources.

UndoStepStartRecording">
<summary>
Looks up a localized string similar to Start
Recording.
< /summary>
< /member>
</members>

93

APPENDIX B. XML code documentation 94

k145 </doc> I

	Introduction
	Motivation
	Justification
	Problem Statement and Research Questions
	Scope
	Limitations
	Objectives
	Outline

	Literature Review
	Human-Robot Interaction
	Human-Robot Interaction for controlling
	Human-Robot Interaction for programming

	Multi-Modal Interfaces
	Summary of the review

	Proposal for a Multi-Modal interface in an off-line programming environment
	Description of the proposal
	Tests

	Implementation
	Environment
	Design and implementation of the GUI
	Configuration of the environment for the interaction
	Station requirements for minimum use
	Smart Component for tools and Station Logic
	Defining pieces

	Motion Sensing Input to RobotStudio Data
	Robots Movement
	State Machine
	Visualization and movement process

	Speech Recognition
	Generation of instructions

	Results and Analysis
	Review of limitations

	Conclusions
	Open issues
	Future Works

	Bibliography
	APPENDIX A. UML class diagram
	APPENDIX B. XML code documentation

