

VILLE MYLLYNEN

DESIGN AND IMPLEMENTATION OF A MESSAGE STANDARDI-

ZATION TOOL

Master of Science thesis

Examiner:
professor Hannu-Matti Järvinen
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 11th November 2017.

i

ABSTRACT

VILLE MYLLYNEN: Design and implementation of a message standardization
tool
Tampere University of Technology
Master of Science thesis, 54 pages
June 2018
Master’s Degree Programme in Information Technology
Major: Software Engineering
Examiner: professor Hannu-Matti Järvinen

Keywords: XML, message standardization, automation system, Qt framework,
concurrent saving.

This thesis describes designing and implementing an extension to an existing standardi-

zation tool that allows configuring and saving diagnostic messages of an automation sys-

tem and allows the users to save their changes concurrently with each other. The existing

tool is a PC application that has been implemented with the Qt framework and is used to

configure and save XML template configurations. The XML configurations contain def-

initions that are similar between automation system configurations, and which are im-

ported to them, reducing the amount of repetitive work. The standardization tool has lim-

itation with saving the changes to standards, when more than one user tries to save their

changes to the same standard version. New saving logic is to be created to allow more

than one user to edit the same standard version at the same time.

The thesis starts by introducing the target system and the usage of the tool. In addition,

the structure and usage of messages are introduced. Then the goals of the thesis are pre-

sented. Following the goals, the concurrency issues are viewed, and current saving logic

is presented. Two solutions for improved logic are described and a solution is chosen for

further design and implementation. The design of the Messages standardization tool and

the new saving logic are introduced next and the architecture is presented. Using the de-

signed architecture and solution, implementation is done, and the result is evaluated

against the set goals. In addition, further implementation ideas are presented. Last, the

conclusion of the thesis is described.

The result application is still under development, but a test version including the new

saving logic and initial Messages standardization tool has been made available to the cus-

tomer of Wapice Ltd. that ordered the work. Implementation work will be continued with

further features and possible bug fixes as the users use the test version.

ii

TIIVISTELMÄ

VILLE MYLLYNEN: Viestien standardointisysteemin suunnittelu ja toteutus
Tampereen teknillinen yliopisto
Diplomityö, 54 sivua
Kesäkuu 2018
Tietotekniikan koulutusohjelma
Pääaine: Ohjelmistotuotanto
Tarkastaja: professori Hannu-Matti Järvinen

Avainsanat: XML, Viestien standardointi, automaatiojärjestelmä, Qt-sovelluske-
hys, rinnakkainen tallennus

Tässä työssä kuvataan standardointityökalun laajennuksen suunnittelu ja toteutus. Työ-

kalua käytetään luomaan automaatiojärjestelmien diagnostiikkaviestejä ja tallentamaan

tehtyjä standardeja rinnakkain muiden käyttäjien kanssa. Olemassa oleva työkalu on PC-

ohjelma, joka on toteutettu Qt-sovelluskehyksen avulla, ja jota käytetään XML-konfigu-

raatioiden luomiseen ja tallentamiseen. XML-konfiguraatiot sisältävät määritelmiä, jotka

ovat samankaltaisia erilaisissa automaatiojärjestelmien konfiguraatioissa, ja jotka voi-

daan ottaa käyttöön niissä vähentäen manuaalisen työn määrää. Standardointityökalussa

on todettu ongelmia tallennuslogiikassa, kun useampi käyttäjä yrittää tallentaa muutoksia

samaan standardiversioon. Uusi tallennuslogiikka suunnitellaan ja toteutetaan, jotta voi-

daan sallia usean käyttäjän tekemä samanaikainen tallentaminen.

Työn alussa esitellään kohdejärjestelmä ja työkalun käyttö. Lisäksi esitellään viestien ra-

kenne ja käyttötarkoitus. Tämän määritellään jälkeen työn tavoitteet. Tavoitteiden jälkeen

kuvataan tallennuslogiikka ja sen rinnakkaisuusongelmat. Kaksi ratkaisuvaihtoehtoa rin-

nakkaisuuteen esitellään ja niistä valitaan toinen jatkosuunnittelua ja -kehittämistä varten.

Standardointityökalun ja tallennuslogiikan suunnittelu käydään tarkemmin läpi seuraa-

vaksi, ja esitellään kokonaisuuden arkkitehtuuri. Suunnittelun jälkeen kuvaillaan työn to-

teutusta. Työn tuotosta verrataan asetettuihin tavoitteisiin, jonka jälkeen esitellään jatko-

kehitysideat toteutukselle. Lopuksi työn johtopäätökset käydään läpi.

Wapice Oy:n asiakkaalle on toimitettu testiversio, joka sisältää uuden tallennusmekanii-

kan ja alustavan viestien standardointilaajennoksen. Kehitystyötä jatketaan uusilla omi-

naisuuksilla ja mahdollisilla korjauksilla, kun käyttäjät kokeilevat testiversiota.

iii

PREFACE

This thesis and the related work was designed and implemented during the years 2017

and 2018 for the Department of Pervasive Computing in the Tampere University of Tech-

nology (TUT). The work was designed during the year 2017, and implementation was

started during the same year and finished during 2018. The project was moved from active

development to maintenance where minor bug fixes and code refactoring was continued

after the official project was finished. The initial idea for the tool came from the customer

and during the design phase it became clear that the project could be a subject for a thesis.

I would like to thank Otto Bothas (Wapice Ltd.) for guidance with the thesis project and

the architectural issues in the project, and my project coworkers Ville Tienvieri and

Tuomo Heikkilä for their help in designing and implementing the overall project from

which this thesis was made. I would also like to thank Hannu-Matti Järvinen who acted

as the examiner of this thesis and provided a considerable help with the thesis process and

the thesis itself.

Tampere, 21.05.2018

Ville Myllynen

iv

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. BACKGROUND AND ENVIRONMENT .. 3

2.1 Standardization tool.. 3

2.2 XML, schemas and XPath queries ... 6

2.3 Standardization tool server ... 6

2.4 The predecessor of the message standardization tool 8

2.5 The purpose and usage of the messages ... 8

3. GOALS OF THE THESIS .. 10

3.1 The basic functionalities... 10

3.2 Effects on the existing system .. 12

3.3 Concurrent saving of the standards .. 12

4. CONCURRENCY ISSUES AND SOLUTIONS ... 14

4.1 Current standard saving .. 15

4.2 Existing solutions ... 17

4.2.1 The Git rebase .. 17

4.2.2 XML merge with versioned tree and identifiers 19

4.2.3 XML diff with context fingerprints ... 21

4.3 Rebase on the client side .. 22

4.4 Rebase on the server side ... 26

4.5 Choosing solution for design and implementation 30

5. ARCHITECTURE AND DESIGN ... 32

5.1 Standardization tool.. 32

5.2 Messages standard support ... 34

5.2.1 Classes of the message standard support 34

5.2.2 Functionality of the messages standard ... 36

5.3 Rebasing data ... 39

5.3.1 Writing changes to XML ... 40

5.3.2 Comparing nodes ... 41

5.4 Sending data to the server .. 43

6. IMPLEMENTATION AND EVALUATION .. 46

6.1 Changes to the design. .. 46

6.2 Realized goals .. 47

6.3 Advantages and disadvantages of the solution ... 49

6.4 Future implementation ... 51

7. CONCLUSIONS ... 53

REFERENCES .. 55

v

LIST OF ABBREVIATIONS AND SYMBOLS

API Application Programming Interface

DLL Dynamic Link Library [8]

EAP Enterprise Application Platform [11]

Git Version control system [15]

GUI Graphical User Interface

ID Identifier

IDE Integrated Development Environment

JBoss Application server [11]

LCS Longest common subsequence [13, 16]

MB Megabyte

MVC Model-View-Controller [6]

PC Personal Computer

PostgreSQL Object-Relational database management system [18]

QMap Template class with a red-black-tree-based dictionary in Qt [20]

Qt Cross-platform application framework for C++ [21]

SGML Standard Generalized Markup Language [28]

SOAP Single Object Access Protocol [24]

STT Standard Template Tool

STTID Standard Template Tool Identifier

SVN Apache Subversion, software versioning and revision control system

[17]

TUT Tampere University of Technology

UI User Interface

UID Unique identifier

URL Uniform Resource Locator

VS Visual Studio

Widget Small application embedded in the UI

W3C World Wide Web Consortium [25]

XML Extensible Markup Language [26]

XPath XML Path Language [28]

XSD XML Schema Definition [27]

.

1

1. INTRODUCTION

Automation systems are complex structures where separate machinery pieces are con-

trolled with electronics and software. These systems are widely used in the industrial field

and vary widely from production lines to power production systems. To control these

systems with software, they must be represented in some way. The systems could be pro-

grammed into the control software directly, but this will tie the systems to specific appli-

cations. A more typical approach is to create a configuration representing the system

which the software then interprets.

To configure the systems, a dedicated desktop application, hereafter the configuration

tool, has been created. There are different kinds of automation systems, which can be

represented with it, and their contents vary. Despite the variance in the configurations,

they will contain similar data structures to each other: Parameters, Measurement details

and Communication setup configurations. These can have different values, but the overall

data structures and how they are represented are similar. The Parameters contain defini-

tion for generic data structures like unit systems (e.g. C Celsius, rpm rounds per minute).

One of the goals of creating automation systems, is to improve efficiency, and this goal

can be extended to creating the system configurations. To reduce the amount of repetitive

work, a standardization tool is used to create XML standards or templates that contain the

Parameters, Measurement details and Communication setups. These standards and tem-

plates can then be imported to the configuration by using the dedicated configuration tool.

The goal of this thesis is to design and implement a message standardization extension to

the existing standardization tool. The messages are a way for different parts of the system

to inform the whole of changes in them. The main research topic that this thesis addresses

is the concurrent usage with multiple users. The current functionality allows only one user

to edit a single standard version at the time. To solve this issue, the new extension must

support the concurrent saving of the template files if the edits do not conflict with each

other. In addition, the concurrency must be designed and implemented in a way that is

extensible to the other standard types of the existing tool.

The chosen method for this thesis is constructive research. First the background of the

system is introduced. Then the goals for the solution are presented. Next, the problem,

existing solutions and proposed solutions are described. Based on these a design for the

solution is created which is then implemented. Finally, the created solution is compared

against the set goals and future implementations are presented.

2

Chapter 1 contains the introduction to this thesis and its structure. The basic idea of the

standardization tool is introduced.

Chapter 2 presents the background of the system and the existing application. The purpose

of the application and usage is also presented.

Chapter 3 describes the goals of the thesis, basic functionalities, effects on the existing

system and the new saving logic.

Chapter 4 describes the concurrency issues the current system has and presents solutions

for it. Finally, a solution is chosen for further design and implementation.

Chapter 5 presents the design for the new saving algorithm and the Messages standardi-

zation tool.

Chapter 6 covers the implementation of the new system and saving logic. In addition, the

goals of the thesis are evaluated. The future implementation ideas are described at the

end.

Chapter 7 contains the conclusion of this thesis.

3

2. BACKGROUND AND ENVIRONMENT

The configuration tool of which the standardization tool is an extension to, is used to

create and monitor an automation system. The application is used to create the extensible

markup language (XML) configuration which represents the system, the modules in it,

their connections and parameters [26]. This configuration along with the individual ap-

plication binaries for each module can be downloaded to the modules with the configura-

tion tool.

In addition to creating and configuring the automation systems, the configuration tool

offers monitoring capabilities. The monitoring is enabled by connecting to the system

through the gateway access point. The modules can broadcast essential diagnostics de-

tails, such as states and alarms, as messages to the configuration tool. The diagnostic data

is based on the configuration and the control software running in them. The configuration

tool monitors these messages from the system and can translate and display them for the

user.

The messages send by the modules to the configuration tool, like other parts of the system,

must be defined in some way. To reduce the amount of repetitive work, a standardization

tool has been created. The tool is an extension to the configuration tool. If a user has the

appropriate access rights to the application, the standardization tool is available. The user

can view and modify the different standard types in the standardization tool. The number

of users of the standardization tool was several tens of people and usage was from weekly

to monthly. The number of users will increase considerably with the addition of the new

Messages standard type support.

The tool is described in more detail in Section 2.1 for the client-side. XML and its usage

are presented in Section 2.2. Section 2.3 contains information about the server-side. Cur-

rently, the standardization tool does not support creating standards for the messages. An

older standardization tool is currently used to create the messages standards. It is intro-

duced in greater detail in Section 2.4 with reasons why it is being replaced. Section 2.5

presents the message structure and usage.

2.1 Standardization tool

The existing standardization tool is an extension to the configuration tool that is used to

create the automation system configurations. The standardization tool is not available to

broader audience, but rather to specific users with the proper user account profile. The

profiles are currently divided into two different types: developers and viewers. Both have

the access rights to login to the standardization tool and read the configured standards in

4

the application. In addition, the developers have the right to make edits to existing stand-

ards and publish new ones.

The standards are saved to a JBoss 6.1 Enterprise application platform (EAP) server

which utilizes PostgreSQL version 8.4.20 database for storing the standards [11, 18].

Standardization tool will load the existing standard version from the server, creates a local

copy of the data and shows it to the user. The server will be introduced in Section 2.3.

The standardization tool has three distinct views, one for each supported standard type:

Parameters, Measurement details and Communication setups. Each view has the selec-

tion to view and edit a specific standard version. The version is controlled with a separate

drop-down menu located in the lower part of the view. The standard navigation view is

shown in Figure 1.

Figure 1: Standard view and version navigation.

The users can open tree items from the system explorer tree which will open the config-

urable items of the standard. Some items also have the option in their context menu to

add children elements and copy or delete the item itself. When the user opens the tree

item by left clicking it, a view is constructed from configured view XML. The view XML

defines the view elements which are created. The view is populated with data from the

XML configuration. The user can edit the standard items and finally save the edits by

saving the data (if editing the Work version) or publishing a new standard revision (editing

published standard).

Each standard view has its own standard versions which are divided into two categories:

published standards and single work version. An example of the standard versions can be

seen in Figure 2. The work version is always the newest version and is not a published

standard version. The users can publish the work standard, at which point the standardi-

zation tool will create a new major standard revision branch from the work version. The

users are also able to edit the existing standards and publish a new revision of the standard

5

branch (e.g. 3.0 → 3.1), but the published standard branches have no dirty or work ver-

sion. This means that each further edit to an existing standard requires publishing a new

revision of the standard. The publishing is limited to the latest revision of each standard

branch, meaning that if standard branch 3.x has standards 3.0, 3.1 and 3.2, only 3.2 can

be edited and a new standard revision 3.3 can be published from 3.2 version.

Figure 2: Standard version tree.

The standards can have dependencies between them. The Measurement details standard

type has a dependency to the Parameters standard type. This means that the Measurement

details standards refer to values configured to some published Parameters standard, such

as the unit system values. Communication setup standard type has a dependency to Meas-

urement details standard type, and by extension to Parameters standard type. The values

configured to the Measurement details standard version to which the dependency is to,

are available for the configuration in the Communication setup standard. The values con-

figured to the Parameters standard, to which the Measurement details standard has a de-

pendency to, are available as well. The dependencies can be changed by changing the

standard version to which the dependency is to. In case of Communication setup, the

secondary dependency to Parameters is changed according to the new dependency to

Measurement details standard.

Publishing a new standard revision or saving work version sends the local version of the

XML standard document to the server where it is saved to the database. Creating a new

standard version or saving the work is only possible if the standard has not changed on

the server. This means that if User A is editing standard 3.0 and tries to publish standard

3.1, but User B has already published his changes as standard 3.1, the User A cannot

publish his changes. The only way the User A can make their changes and publish them,

is to reload the standard data from the server and in the process, remove all the local

changes they have made. Then the User A can make the changes again and try to publish

them as new standard revision. The same is true for the work version of the standards.

6

2.2 XML, schemas and XPath queries

The internal data representation of the standardization tool is in the form of XML docu-

ment. XML is a restricted form of the Standard Generalized Markup Language (SGML).

In XML documents, some of the characters in an XML document are elements of the

XML and form the structure of the document. Some are the actual data which is stored

into the elements or nodes. [26]

The structure of the XML documents can be restricted with XML schema language. The

schema of the XML documents is written as its own document and the schema is referred

to in the XML document. This way in addition to checking the well-formedness of an

XML document, the validity can also be checked against the schema. The schema defines

the elements that can be used in the XML document, the hierarchy of the elements re-

stricting the locations where the elements can be used, and to offer documentation that is

both human and machine readable. [27]

Elements of the XML document can be accessed by using a XPath query language. XPath

defines the elements and/or attributes that should be traversed to reach a node. The lan-

guage is further expanded by supporting conditions which allow matching and compari-

son with the queries. XPath models the XML document as a tree of nodes that can be

traversed. There are different node types, of which relevant to this thesis are: the element,

the attribute and the text nodes. [28]

While XML is meant to be both machine and human readable [2], XML configurations

with 10000 to 100000 lines if formatted for humans to read, means that the human read-

ability suffers. To help the user, the standardization tool abstracts the configuration work

to creating, editing and deleting items such as unit systems. In addition to the size of the

document, the users of the standardization tool may not know the underlying XML, and

therefore the tool should abstract the data. This design is extended from the configuration

tool, where the users work on higher abstraction level.

The standardization tool abstracts the XML data model from the user, but the underlying

logic uses the XML to store the data of the configuration. XPath queries are used to read

and write data to the configuration, and schemas are used to create new nodes that are to

be added to the configuration.

2.3 Standardization tool server

Standards are stored on a remote server that has a JBoss server application running, which

uses PostgreSQL database to store the data [11, 18]. The standardized XML configura-

tions are stored as whole XML documents to the database with relations to other tables

where the standard schemas, view IDs, versions and comments are stored [27]. Editing a

standard and the server communication is depicted in Figure 3.

7

Figure 3: Server communication.

The server is stateless and is considered thin with a fat client application [29]. The client

sends requests to the server, such as save a standard or get all standard versions. The

server only parses the request message and reads necessary values from it. For saving a

work version of a standard the values are the view ID, the version, the comment and the

data. The data will then be written to the database according to the other values given in

the request.

The server offers an address to which requests can be made and according to the param-

eters, the server performs a requested action, such as saving a standard or retrieving a

specific schema. A response is then generated and returned to the client. The clients send-

ing requests to the server can be divided into two main groups: 1. standardization tool

instances that are loading the data for viewing and editing, and 2. configuration tools that

are importing standards to the system configurations.

The server code is legacy code that has not received major upgrades in several years [5].

Over time small modifications have been made, but the Java library dependencies have

not been maintained over time. This has caused deprecation in the code base which is an

issue to consider when designing and implementing code into the server itself.

The server handles requests concurrently, by creating a separate service thread for each

of them. This implementation has a problem that currently there is no proper concurrency

control implemented into the server. Because of this, there is a risk that a change written

by one user to the work version of a specific standard is overwritten by another user’s

write, if the save operations are performed near simultaneously. The risk has not realized

so that it would have been noticed, because the issue exists only for the Work version of

8

each standard and the user amounts are so low, that the chance of data overwriting is

minimal. Therefore, the issue is not further considered in this thesis.

2.4 The predecessor of the message standardization tool

Currently, the users use a separate Java application to standardize the messages [10]. The

application is specific to the messages and uses a separate server and database for data

writing and reading. Each different standard type has its own application with which to

create and edit the standards. The applications are accessible through a website from

which the user can download the applications if they have proper credentials. Some of

the applications have been deprecated as the standards have been moved to the new stand-

ardization tool which is an extension to the configuration tool (from Section 2.1).

The old tool has the configurable messages as actual database entries and as such the

standards are not stored as whole XML documents in the database. The users can create,

edit and delete messages in the old standardization tool. To edit or delete existing mes-

sages, the user must enter the edit mode for the single message. This allows multiple users

to edit the same standard if the edits do not target the same messages. This is a function-

ality that is currently missing from the newer standardization tool.

The old standardization tools are no longer maintained and are in production use. The

new extension designed in this thesis will replace the old Messages standardization tool

and enable the user to use the same application to edit several different standard types.

The old standardization tools have issues where the created standards are too limited in

structure. An example of this is the messages standard, where the maximum group depth

is only two, whereas the new implementation will allow the user to configure the group

depth limit to each standard. In addition, the work flow for older standards when creating

new systems is to export a file where the values are found. To make use of the data, the

user had to manually move the file to correct location and import it. The new standardi-

zation tool offers greater integration, where the configuration tool can directly import the

chosen data from the server, and the integration process is thus more automated. The

integration is also visible between the standard types. With the new tool, the user can first

create or modify parameters standard. Then they can take that standard into use with

measurement details standard they are creating with the same tool. In addition, the old

tools have several smaller issues and bugs, which are not being worked on as the tool is

no longer maintained.

2.5 The purpose and usage of the messages

Messages are used as a means of communicating the states and changes in the modules

to the whole system, which the monitoring application will then show to the user. When

user connects with the configuration tool to the modules, the log messages are read from

9

the system and shown to the user. If a module crashes or encounters an error it cannot

resume from, a message about the situation is shown in the log. The log also shows mes-

sages that are received when the modules go from operational to booting, to pre-opera-

tional and finally operational.

The messages are divided into five different categories: info, safety, error, event and de-

bug. Each of these types has a different use case. For example, an info message can be

used to inform the user that a booting of an external module was successful, where as a

debug message can be used for developing the external modules and applications that are

executed in them.

The log works mainly as a diagnostic view when the application is connected to the au-

tomation system. The log provides an easy way to determine and debug possible issues

in the system. In normal situation, all the modules are aware of all the messages in the

system, and there is no reason to pass all the message information to all the modules. In

most cases, the modules must know the unique ID of the messages and all the parameters

the message requires to be able to pass the correct parameters when sending the messages.

The main application will receive the ID and parameters of the message and then store it

to the buffer according to the category of the message, and show the user more infor-

mation in the log, such as the description, recommendation and implication of the mes-

sage.

10

3. GOALS OF THE THESIS

The goal of this thesis is to design and implement an extension to an existing standardi-

zation tool. The extension allows the users to create and maintain message standards that

are XML configurations. The standards can be taken into use in the system configuration

tool. The original message standardization tool is an independent Java application which

is in customer use. The new standardization tool has replaced some of the old standardi-

zation tools and the new extension is to replace the old message tool. The new implemen-

tation must allow the users to save their changes concurrently to the database. The goals

are divided into three main areas, each described in their own sections: the basic func-

tionality of the new standard type (3.1), effects on the existing system (3.2) and the new

concurrent saving logic (3.3).

3.1 The basic functionalities

The extension will be available in the standardization tool. The active view can be

changed from the starting view of Parameters standards to the messages standards. The

XML configuration is loaded at startup and the view will be built when the user changes

the active view to the message standardization tool.

The configuration items are presented in the system explorer tree as a tree structure as

shown in Figure 4. The tree contains group items which allow the user to group the con-

figured messages in the standard. The groups can contain other groups. The depth of the

group structure is limited to the maximum of 10 groups, but the user can set this limit to

be lower using a configurable value in the configuration. The groups can also contain the

messages and the messages can belong to multiple groups. The message must be config-

ured only a single time to the XML configuration and the UI must support showing the

same XML item in multiple positions in the system explorer tree. The reason for this is

that in a normal use case the user is interested in only a specific group of items, but the

groups can overlap in their contents. Thus, the same items must be present in multiple

groups, but the size of the XML configuration is to be kept under control and data dupli-

cation must be avoided.

11

Figure 4: Messages tree explorer.

The tree view must have a context menu. From the context menu of a group item, it is

possible to create a new message, create a new child group, and edit or remove the group.

The context menu of a message item allows the user to deprecate the message or delete

it. Left clicking a message item, opens the configuration view.

The messages should be configurable in multiple languages. Due to the requirement, a

custom view handling is required. Initially, the tool must support configuring the mes-

sages only in English, but the support in XML level for multiple languages must be taken

into consideration. Normally in the application, the views would be constructed from sep-

arate XML configurations through a generic view constructor. That is not an option for

the messages because of the more complex structures, as the amount of shown data should

be limited to improve usability [9]. The item configuration is done in the view by editing

the values of the items, such as the description of a message. The tool will then write the

change to the XML configuration which can be saved to the database server.

The standards stored to the server must be valid. The validations are done based on the

user input, the existing values and the dependencies to other data entries. The errors are

shown to the user in event view, along with possible warning and info events. Possible

errors that can be created are: a duplicate message, tag, category or group name, an empty

mandatory field or an illegal group depth configuration. Most of the errors can be detected

when the erroneous situation is created, such as a duplicate group name. An exception to

this is the changing of the standard dependency.

The message standards will have a dependency to Measurement details standard and by

extension to Parameters standard. The dependency can be changed from a dependency

12

change dialog which will update the information to the XML configuration, but the

change in dependency can introduce new errors to the configuration. If a configured mes-

sage uses a specific unit system (e.g. rpm) or a code as its parameter, and the unit system

or code is no longer available in the standards to which the Messages standard has the

new dependency to, then new errors have been created in the configuration. The user must

then reconfigure the items which have errors before the standard can be saved or pub-

lished.

3.2 Effects on the existing system

The standardization tool has complex code that in several places can be considered legacy

code. Editing the legacy code has a risk that the edits have unexpected side effects, and

thus the new extension should be designed and implemented in a way to minimize the

risk to the existing standardization views [5].

Chapter 5 describes the current architecture of the system and how it is going to be ex-

tended to support the new Messages standardization tool. The new extension should not

cause considerable regression in the existing code base and possible refactoring work

must be done as separate work to ensure there are no unexpected side effects. The work

will also contain changes that will be done to the JBoss server and the database where the

configurations are stored. A new API function version must be implemented into the

JBoss server that the standardization tool will utilize in the new extension. This way the

original views can use the current version and the new functionality can be added to the

server.

Currently, the standardization tool loads the data for all the views on startup. For the

Parameters and Measurement details, the loading is reasonably fast since they have either

no dependencies or a single dependency. By contrast, the current Communication Ad-

dresses and the new Messages standards have a dependency to at least two different stand-

ards. The data loading is slower at that point and for the future implementation, a solution

should be created to ensure the data loading is reasonably fast to ensure better usability

and efficiency. This improvement is not the goal of this thesis, but the refactoring of the

startup logic must be considered.

The implementations to the general code of the standardization tool are to be designed in

a way to allow the existing views to be extended to use them. The concurrent saving logic

introduced in Section 3.3 must be done in a way to allow the existing views to take it into

to use in the future.

3.3 Concurrent saving of the standards

The new implementation for the concurrent standard saving logic is to be designed and

created for the new extension of the application. Current saving is done by sending the

13

complete XML document to the server and creating necessary database entries for the

document and the data relations to schemas. The current saving results in situations where

one user saving their version of the standard to the database prevents other users from

saving to the same standard branch. In addition, the users cannot move their changes on

top of a fresh version of the saved standard and instead the user must perform a reload

action, which clears all the changes they have done.

The new saving logic must allow multiple users to save the edits to standards if the

changes do not target the same items. The change requires definitions for the smallest

level of items, since the level of single XML element is too precise. For the Messages

standard, singular items are the messages, the groups, the tags and the categories. The

user can add, edit and remove each of the item types. The saving operation must support

saving each of the operation types.

In case users edit the same items in a standard, user’s changes cannot be written automat-

ically. The user should be informed about the situation, but the user may not be familiar

with XML, and therefore all the communication with the user must be done on a higher

abstraction level.

For the first edition of the Messages standardization tool, the conflicting items are shown

to the user and the changes done to those items are discarded. Improvements to this logic

are further discussed in Section 6.4 where future implementation ideas are presented. The

number of conflicts has been evaluated to be quite low if the application use is done in

planned manner, where one message is not being maintained by different people. The

conflicting information must be presented in a clear and informative manner for the user,

so that they know how to fix the issue.

The implementation must start another save attempt in case the first attempt fails. A rea-

son for such a failure can be that the data has changed on the server during the saving

operation.

14

4. CONCURRENCY ISSUES AND SOLUTIONS

The new standard extension must support concurrent standard saving, which is currently

missing from existing standardization tool. The issue has not been critical before. In the

future, it may become more prominent because the number of users will increase as the

supported functionality of the tool is extended and more standard types are implemented

into it. Therefore, a new functionality that allows multiple users to save changes to stand-

ards must be implemented. The logic must also be extendable to the existing views if they

are converted to use the new logic in the future.

To solve the concurrency issues, the starting point is to create logic to detect exactly what

items have been added, edited or removed in the XML configuration. This logic is further

discussed in Chapter 5. The level of detection can be line-level like some existing version

control systems (e.g. SVN) or more abstract [17]. The more abstract option requires the

program to know that what kind of items are considered singular objects.

Currently, the application does not support actions where the local changes are transferred

on top of another XML documentation. A solution can be to use rebase which is an action

found in Git [1]. The action can be used to allow multiple users to move their changes to

the XML configuration on top of a fresh configuration. This allows them to make saves

at the same time if the changes do not have the same targets. If the changes have the same

target, the changes are in conflict and must be resolved. In Git, this means that the user

must view and understand the line level conflict and solve the issue to prevent any un-

wanted change.

The end users of the standardization tool may not know about XML, so resolving the

conflicts on line-level is not user friendly. Item-level conflict resolving is easier for them

than the line-level because they have more knowledge on the items that they are editing

[9]. This has the effect that the number of conflicts may increase when compared with the

line level conflicts. In normal workflow, the users do not edit the same items and thus in

theory the conflicts do not increase [14]. This and the fact that the usability of the software

increases with lesser granularity as the conflicting changes gain context from the sur-

rounding data of the changed item. The minimum requirement for the program is to allow

the user to save all their changes to standard that do not conflict with other changes to the

same XML configuration and discard the changes that conflict.

The current standard saving logic is presented in Section 4.1. Existing solutions to rebase

or merge XML configurations are presented in Section 4.2. The standardization tool has

a modification handler class which keeps track of changes made to the XML. By modi-

fying it, a list of items that have changed can be created. With this information, the rebase

15

can be done, but whether the rebase is done on the client or the server side must be de-

cided. The solutions are presented in Sections 4.3 and 4.4 and a comparison between them

is done in Section 4.5. Based on the chosen option an architecture is designed in Chapter

5.

4.1 Current standard saving

On startup, the tool will determine all the views it supports and requests the latest XML

configuration (work version) for each of the views from the server. The XML configura-

tions are loaded to the memory of the program and their version dependencies are

checked. If they have a dependency to another standard, the dependency standard is also

loaded and then injected to the loaded XML configuration. This will be done until the

dependency chain has been executed and each of the dependencies has been loaded and

injected to the XML configuration. For the Messages standard this means that it first loads

the Messages XML configuration, then the Measurement details standard and finally the

Parameters standard and combines them into a single XML configuration.

The loaded XML configurations are stored to the memory of the program and are

swapped to be the active ones when the user changes the view in the tool. After the data

has been loaded and the views have been built, the user can make edits to the standard

versions. For the released standards, the user can only edit the latest revision of the major

standard branches. When they are satisfied with their changes, they will attempt to save

their work. For the work version, the user has two options: Save to Work and Publish

version. The first one is only available if the user is in the work version making the

changes, and it is not available when editing published standards. The second one is avail-

able in both the work version and the published standards. Save to Work saves the changes

to the work version on the server and does not affect the published standards. The changes

are not publicly available and only the standard editors themselves can import the work

version for their system configurations. The action flow of Save to Work is presented in

Figure 5.

16

Figure 5: Current save to work.

The Save to Work logic is linear with no loop to the previous steps of the logic. If at any

point, the save encounters an issue, the operation is terminated and in the case the user

did not stop the process themselves, an error or info message is shown to them.

Publish version logic differs when the currently active version is work or a published

standard. If the current version is the work version, the changes are first saved to the work

version to ensure that it is always on the level with the newest standard branch. After that,

a new standard version is created where the major version number has been incremented

and minor number is set to 0. Both the edited work version and the new standard version

are saved to the database. When the active version is a published standard, the data of the

existing standard is not edited, but instead a new version is saved to the database and the

minor version number of the standard branch is incremented for the new version.

The current Publish version logic causes each edit to an existing standard to require a new

standard revision. The multiple standard revisions waste resources if they are truly not

used. Allowing users to save changes to a standard version without increasing the version

17

number reduces the number of unused standards. Editing can be done gradually and when

the standard revision is deemed publishable, a new version is created. This is further dis-

cussed in the future implementations in Section 6.4.

The standardization tool stores the XML configurations that were loaded from the server

and copies them to keep the original data available for comparison. The changes made by

the user are made to the stored XML configuration and when the user saves or publishes

the standard, the data of the standard extracted from the XML document and sent to the

server. The server will then create the necessary database entries and store the received

XML configuration to them. Usually, the user does not make changes to all the items in

a standard and thus some unnecessary data is sent to the server, especially when saving

the work version. Because the whole XML configuration instead of individual changes is

sent to the server, the server-side implementation does not monitor the received XML for

its validity and stores it as is. The server is lean and the client program (standardization

tool) has more of the implementation logic, such as checking the validity of the XML

[29].

The side effect of sending the XML configuration to the server is that if more than one

user were editing the same standard version, it is not possible to merge their changes into

the same XML configuration. Thus, if the second user attempts to save their changes after

the first user, the save is stopped, as accidental data overriding would happen if the save

was accepted.

The server is used with older versions of the standardization tool that will not support the

new extension. This also restricts the new logic to saving and loading data from the server.

The old server API must be kept intact if possible and new API functions or function

versions must be implemented for the new functionalities.

To solve the concurrency issue, a merge of two different XML configurations must be

taken into use. Depending on the chosen implementation type, the result XML configu-

ration will be created either on the client-side or the server-side.

4.2 Existing solutions

There are already existing merge implementations that can be used to merge two XML

configurations into one. Multiple version control systems can do it, of which Git is used

as an example in Section 4.2.1. Existing merge algorithms are also studied to introduce

the different solution types for the merging.

4.2.1 The Git rebase

Git is a distributed version control system that can be used to track and manage changes

to files and handle combining different changes (commits) into a single history of changes

18

[1]. The functionality of Git can be described as storing a snapshot of the files it tracks

and creating a history of snapshots [1]. Git supports branching which means that from the

history of a single branch (often called Master) a new branch is created. The branches

have the same history until that point. Anything newer than the point of branching in

either branch is not part of the common history unless the user combines them.

There are several ways for Git to add the changes introduced in one branch on top of

another. The rebase operation of Git is one of them. A rebase of Feature branch on top

of Master branch is depicted in Figure 6.

Figure 6: Git rebase [1].

First there is a Master branch. The user wants to implement a feature and to do that, they

create a new branch Feature from the Master branch. Later, a critical issue is detected in

the software and a hotfix is quickly implemented and added to the Master branch as com-

mits C and D. The issue affects the development of the feature, but the hotfix is not avail-

able in the Feature branch because it was created from Master branch before the hotfix

was added to the Master. Instead of manually writing the same solution implemented in

the hotfix to the Feature branch, the user can perform a rebase operation on their devel-

opment branch. During the rebase operation, Git determines the common point of history

between the two branches, then stores the changes done after the point of common history

to the branch being rebased. The history of the branch is then replaced with the history

from the branch from which the rebase is done on. The stored changes are then applied

on top of the new history in order of creation.

In ideal situation, the rebase operation does not encounter issues and the process is per-

formed automatically. However, sometimes the operation notices a conflict between the

changes in the new history and the changes being applied on top of it. If the hotfix and

the Feature had changes to the same lines, a conflict situation is created. The Git is unable

to determine the correct result and the user must resolve the conflict. The conflict location

shows the different versions of the location and the user must then combine the versions

to resolve the situation. Once all the conflicts have been fixed, the rebase operation can

be continued.

The Git rebase logic can be used as an example for solving the concurrency issue when

saving the standard XML configurations to the server. The XML configuration stored to

the server can be thought as equivalent to the Master branch from Git and the local ver-

sions are different branches that have been created from the Master branch. When the

user wishes to save their changes to the server, the changes are stored and applied on top

19

of the latest version of the XML configuration from the server. In case the XML config-

uration of the server has new changes done to the same items that were changed locally,

a conflict situation is created. The minimum requirement defined in Section 3.3 states that

at this point, the user is informed about the conflicting items and the local changes are

removed and must be done again on top of a fresh XML configuration. Further improve-

ments are described in Section 6.4. The client application could allow the user to resolve

the conflict by showing the conflicting item and the changes done to it. The user could at

that point make the required changes to create the final version of the item that would be

saved with the rest of the changes.

Because the conflict level has been decided to be at item-level instead of line, there is no

need to compare the entire XML configurations. Instead, a node from the change location

is fetched from the original local and the server XML configurations. The nodes are then

compared with each other. If the nodes have no differences, the local change can be safely

applied to create the final version of the document. This process is repeated for each

change. The different ways to solve the rebase logic are shown in the Sections 4.3 and

4.4.

4.2.2 XML merge with versioned tree and identifiers

C. Thao and E. Munson describe an algorithm for three-way merging of the XML docu-

ments [16]. According to them, the benefits of their algorithm are the speed and memory

usage when comparing with other three-way XML merging algorithms.

Three-way merge of files requires three different versions of the file. The base line and

two modified ones, both of which were created from the baseline by making changes to

it. The algorithm creates delta from the base line and the changed versions and then using

these, creates a document where the changes from both files are present. [16]

The authors use an existing versioned data structures to represent different versions of the

XML configurations [16]. For the rest of this section, the word ‘node’ refers to the node

in the versioned data structure which represents an element in the XML. It should not be

confused with the node in XML document.

Nodes in the data structure contain information such as the version of the document, ref-

erences to other versions and nodes, and a node value. Each node also has a reference to

the older versions of the node. A ChangeRecord object is created to listen to changes in

a single node of the versioned data structure. The object knows if the node has changed,

but not the type of the change. [16]

The authors define following merge operations: addition, deletion, update, update where

both versions target the same node, but the changes are disjointed, and move. Conversely,

they also define conflict rules: 1. One node is moved to a specific location in one version,

20

and another node is moved to the same location in the other version, so the order of nodes

cannot be determined. 2. A node is moved in both versions but to different locations. 3.

A node is moved or updated in one version and deleted in the other. 4. An attribute of the

node is updated to have a different value in the different versions. 5. The node is deleted

in one version and it or its descendant is updated in the other version. [16]

Every XML element is required to have a unique identifier (UID) in the authors’ proposal.

The UID is added to each element when the document version is added to the version

control system. When an element is added to the configuration, the UID field is left

empty. This allows the detection of addition in the merge algorithm. This UID is used to

create a hash table from the versioned tree of the baseline where the UID is mapped to an

element. Then a parser reads the first modified document version and compares each item

with UID to the existing node in the base lines hash table. If the node has changed, the

change is added to a delta that is constructed from the differences between the baseline

and the edited version. Each node without UID is an addition and added to the delta. The

delta for the second edited version created in similar manner as the one for the first edited

version. [16]

A new third version of the document is created from the second edited version. Then each

changed item in the first version is parsed. For each change, the longest common sequence

of nodes is calculated in each version (baseline, first edited and second edited). Then an

existing diff3 algorithm is used to compute a new sequence for the node. [16]

The proposed algorithm cannot be used directly in the standardization tool, as the algo-

rithm handles the changes with too fine granularity. The algorithm presented by the au-

thors works on the XML element level where the elements can be added, updated, moved

and deleted. On the other hand, the concept of a singular item presented in Section 3.3

handles the items on the level of real world items the XML elements define, such as a

message or a group. Also, worth considering is their approach that XML configuration is

ordered [16]. This is only partly true for the standards, because the order of messages or

groups is not as critical, if the depth of the item does not change. Thus, the conflicts

presented by the authors are only partially applicable to the XML merging in the stand-

ardization tool.

The solution proposed by the authors has concepts that are also found in the standardiza-

tion tool. The usage of UID is like another identifier which is used in the tool. This iden-

tifier and its usage is further discussed in Chapter 5. The ChangeRecord object has simi-

larities to a modification handler already found in the standardization tool but has a dif-

fering use. Finally, the three-way merge algorithms use three different versions of a single

file to merge the changes: A baseline and two edited versions which were created from

the baseline version. The standardization tool has the baseline as well as one of the edited

versions already in the program memory when the rebase operation is performed, so the

21

existing data can be used in the client-side rebase operation, which is presented in more

detail in Section 4.3.

4.2.3 XML diff with context fingerprints

S. Rönnau and U. Borghoff present a diff algorithm for XML documents in their article

[13]. In their approach, they calculate deltas which contain a list of edit operations done

to the XML configuration. One version of the document can be created by applying a

delta to the other version.

Issue when comparing the XML documents for merging is the non-persistent paths in the

XML. As XML documents are often ordered tree structures, changes to the element order

by insert or delete changes the tree structure. This may cause other changes to be written

to incorrect locations if not taken into notice. [13]

C. Thao and E. Munson used UID to determine the node identity and thus allow differ-

encing a node that has been changed from others [16]. S. Rönnau and U. Borghoff present

a concept of context fingerprints [13]. To support different node types found in the XML

(text, element and attributes), they present that each node has calculated a value. The

value is a hash value which is calculated differently for different kinds of nodes. For text

nodes, the value is their contents. For elements, the node name and attributes are repre-

sented as normalized. If two nodes have the same hash value, they are considered equal.

Their approach is to use the document order. The hash values of the immediate neighbors

of the node are used to create a sequence of their hashes. This acts as the fingerprint.

Furthermore, they define two concepts: the depth and the height of a node. The depth is

the step count from the node to the root node. The height is the longest path from the node

to its descendant. [13]

They define four different change types: insert, delete, move and update. Of the opera-

tions, the first three modify the tree, its subtree or tree sequence. This knowledge is used

in their algorithm to determine the changed items. [13]

First, they process the leaf nodes of the document. For each leaf node, the XML versions

are compared, and the node is considered matching if it has the same value and depth. All

matched noted are added to a list. Next, they check the parents of the matched nodes.

Matching nodes are added to the list and mismatches have been updated. The tree is then

traversed bottom-up. Since the leaves that matched had the same depth, possible changes

must have kept the structure of the tree the same. Insert and delete operations were thus

captured in the first step. An exception to this detection is if the leaf node was moved

from one parent to another with the same depth. This situation can be detected here as the

parent nodes are compared and possible mismatch is detected. Lastly, the non-matched

nodes and their insert and delete operations must be identified. For those nodes, the tree

22

is traversed upwards until already matched node is encountered. This way, larger subtree

changes are also detected. [13]

The diff and merge of XML documents in the standardization tool is much more limited

in scope. As the XML elements are abstracted to a higher concept such as messages, it is

important to consider this in the design. In addition, using this algorithm means that a lot

of the existing code base cannot be used for the rebase logic. An example of such logic is

the log of changes the application keeps during the user’s session. Each change is logged

and available during the rebase operation. This is further compounded, because of the

concept of a singular item. An edited item in the standardization tool may have had its

internal XML structure changed considerably with all the different change types S.

Rönnau and U. Borghoff define. Furthermore, the order of items in the singular items is

not important in most cases. Because of this, the actual node value instead of the order of

nodes is more important.

4.3 Rebase on the client side

The client-side rebase solution performs the rebase in the client application and sends the

updated XML configuration to the server for saving. The server implementation is cur-

rently very lean and does not perform complex operations or validations on the data it

receives from the clients. The client side rebase builds on top of the existing logic by

keeping the server-side implementation simple and handling the synchronization and data

manipulation actions on the client side. This means that the client-side implementation

will become more complex as it must solve the following issues: how to guarantee no

data is overwritten without user confirmation, how server data is modified in synchronous

manner and amount of data being sent. The client-side rebase logic is displayed in Figure

7.

23

Figure 7: Save to work (client side rebase).

As shown in the figure, the logic is mostly done on the client-side and only at the end, the

execution is passed to the server, which checks that is the save ok to do and responds to

the client.

24

The saving algorithm

In this solution, the saving logic is started by requesting the latest XML configuration

from the server. The client compares its own original XML configuration with the re-

ceived one on the items that were changed locally. At this point, the logic branches de-

pending on whether there are conflicts or not. If there are no conflicts, the client will

finish the rebase operation and send the whole XML document to the server for saving.

If there are conflicts, the user is informed about the conflicting items. The local changes

targeting conflicting items are discarded and the rest are applied on top of the new XML

configuration.

First, the client will create two new XML configuration instances, both of which will be

identical. The first one will be kept as is and is used with the local original XML config-

uration to compare client and server XML configurations. The second XML configuration

will be modified when the changes done to the active XML configuration of the client are

copied to it.

The client compares each change location in the loaded XML configuration with the local

original configuration. If the XML configurations have a difference, the change is in con-

flict. If a change is in conflict, the user is informed about the situation. If all the changes

are in conflict, the saving process is interrupted. Otherwise the user has an option to con-

tinue the saving process or cancel it. If the user continues the save, only the non-conflict

changes are saved. This implementation also allows the extension of the logic where a

conflict resolution wizard can be implemented. The wizard is shown after all the changes

have been checked and a conflict is found. This is further discussed in Section 6.4.

Next, each non-conflict change is written to the second loaded XML configuration. After

the changes have been copied to the new XML configuration, it is checked for validity.

For the standard types that use XML files to define the view contents, the checks are also

defined by the XML. For the standards (such as Messages), the validations are pro-

grammed into the standardization tool. If the validation fails and errors are found, the

saving process is interrupted, and the user must fix the issues before saving their changes.

Otherwise, the saving process is continued, and the saving dialog is opened for the user.

The saving dialog is shown in Figure 8. All the changes the end users do to the standards

must be traceable to a documented issue and the issue ID field allows the user to give the

issue number. A list of links is created from the given issue numbers which allow easy

navigation to the issue documentation. Second field is partly pre-filled. The application

automatically generates the change log entry, based on the changes that were done. The

changes are documented into this field, but the user can edit them and add more infor-

mation if they want. Above the input fields, the change log of the standard being edited

is shown. When the user is satisfied with the new change log entry to be created, they can

25

press the save button which will start the process of sending the data to the server for

processing.

Figure 8: Save dialog.

When the standard data is loaded from the server at the beginning of the saving, the

change log of the standard is loaded as well. The change log is shown when the user saves

the standard and gives a new entry to the log. Second usage for the log is to use it to

determine if the server data has been changed, since a new entry is always added to the

log when the XML configuration is saved. This can be utilized when sending the rebased

XML configuration to the server for saving. When the data is being sent to the server, the

client passes the change log it received from the server when it loaded the data at the

beginning of the saving operation. The server then compares the received change log with

the one that is stored in the database. If there are no changes, the client operated on the

most recent XML configuration and the server performs the save operation. If there are

changes in the change log, someone has saved their changes during the rebase operation

done on the client-side. The server does not save the received data and instead replies to

the client that the data has changed. The client can then start a new rebase iteration and

save attempt.

The server-side implementation is lean and existing functionalities can mostly be used

for the new saving operations. The major difference is the addition and handling of the

26

standard change log that will be passed along the save request. The server uses the re-

ceived change log to determine if the server contains newer data than the one on top of

which the client rebased its changes. Because a change must be made to the save request,

a new API function version must be implemented into the server. The server only vali-

dates the request was built correctly and contains all the necessary data. It does not con-

sider the actual contents of the XML configuration that is to be saved to the database. The

server reads the received change log and the data, and then it compares the change log

with the log stored in the database. In case the logs match, the saving operation is safe to

be continued.

4.4 Rebase on the server side

The rebase operation can be done on the server-side. The client will send the changes to

the server, which will load the target XML configuration from the database and write the

changes to it.

Currently, the clients will send whole XML documents to the server. That means that in

most cases, a lot of unnecessary information is transported between the client and the

server to save changes to a few items on the configuration. A solution for this issue could

be to move parts of the XML parsing to the server side. The client would create data

package containing the necessary information to inject the changes to the XML configu-

ration on the server-side. The server implementation would still have to guarantee that

two simultaneous save attempts to the same configuration do not result in a loss of data.

The standard XML configuration must be locked for the duration of the parsing, and the

competing clients must attempt to resend the information in case they are unable to obtain

the lock to the standard. The saving logic is shown in Figure 9.

27

Figure 9: Save to work (server side rebase).

28

Major issue with the server-side implementation is the validation. The XML validations

are done on the client side, either basing them on the UI configurations or being directly

programmed to the application itself. If the XML merge is done on the server side, the

standard must still be kept in a valid state. This problem could be partially solved by

implementing a standard work described in Section 6.4. The server would allow invalid

standards to be saved if they are valid against the specified schema, but this option re-

quires larger change in the way the users use the application. If this option is chosen, the

standard version numbering system must be changed so that instead of having just one

work version and several released standards, each standard branch would have to have its

own work version. The work version would be allowed to be invalid and multiple saves

can be done to it. When the work version is published, all remaining validity issues must

be resolved before publishing can be done.

The saving algorithm

In this solution, the saving logic is started with validating the configuration on the client

side, because if there are errors, they must be fixed before communicating with the server.

After the validation has been done, the change log is fetched from the server so that a

save dialog described in Section 4.3 can be opened and the log can be shown. After the

user presses the save button in the dialog, the application begins to construct the data for

sending to the server. Instead of sending the whole XML document containing the stand-

ard specific data to the server, more granular data is constructed. Each change action is

iterated and for each change the original node value and the new value is paired. In addi-

tion, a unique XPath query must be provided for each change [28]. The XPath query is

necessary to allow the server side to write the change to correct location in the XML

configuration.

Once the data has been constructed and sent to the server, the client will wait for the

server to respond. The expected responses are: success, success with conflicts, failure as

all changes in conflict, configuration no longer valid and standard locked for editing. The

server must first determine the targeted standard version and if it is already locked for

editing by another request. If it is already locked, the server should immediately respond

to the client, so the user can be informed about the delay and a new save attempt can be

made later. If the standard is not locked for editing, the XML configuration is fetched

from the database and the parsing is started. The server must compare the original data

that was received from the client in each changed location with the one found in the XML

configuration of the server. If there are differences, the item is in conflict as someone has

changed the same value as the user. The conflicting item is added to a list to be shown to

the user when the server responds. The items that are not in conflict can be written to the

XML.

The writing depends on the type of change: add, edit or remove. The items that are to be

added to the configuration are not yet present, so the unique XPath query that is provided

29

by the client must point to the parent of the item. This is different than the edit and re-

moval items as their XPath queries point to the item itself. The server must then create a

new node to the XML configuration. To do this, the server must load the correct schema

version from the database.

Removing items only requires the server to locate the correct XML node using the XPath

query and then removing it from the document. In the new messages standard type, the

removal operation is easy for messages, but for other types such as groups and tags, the

operation becomes more complex because the validity of the XML must be maintained.

The groups are singular items, but they can contain other groups, creating a treelike struc-

ture. The removal of leaf group (one that has no child groups or messages) is allowed, but

if it has either groups under it or messages referring to it, the operation becomes more

complex. In case of child groups, the removal should not be allowed at all and the change

should be in conflict. If messages belong to the group, all the references to the group must

be removed from the XML configuration. If a message would be left without a group, a

reference to special group called Deprecated must be added. Tags do not contain other

singular items, but they have similar design as the groups containing messages. On the

XML level, the tags are referenced by messages and therefore if a tag is to be removed,

all the references to the tag must be removed. Edit items can be fetched from the XML

using the provided XPath query and a new value can be written if the change is not in

conflict.

After all the changes have been either deemed to be in conflict or written to the XML, the

server must then perform validation. This step can be made optional as stated earlier if

the work version can be invalid, but otherwise the server must be programmed to know

all the validation conditions. If the XML configuration contains errors, the saving process

is stopped, and the server informs the client of errors in the result XML configuration.

The user must then make local changes to save their changes. If there are no errors, the

configuration can be saved to the database and the server responds success to the client.

If the save was successful with conflicts, the list of conflicting items is shown to the user.

The user must make said changes again and make a second save attempt to save them to

the server.

If the client receives a failure response from the server, the logic will differ according to

the response. If the reason for the failure is that all the changes are in conflict or the

configuration is no longer valid, the user must perform additional actions before the sav-

ing can be done successfully later. If the response is that the standard was locked for

editing by another save attempt, the client can wait and automatically start a second save

attempt after reasonable amount of time.

30

4.5 Choosing solution for design and implementation

A concurrency solution must be chosen because beyond the editing of the standard in the

client application, the architecture of both the client and the server will be different be-

tween the solution options. The main points for the selection are presented in the Table

1.

Table 1. Comparison of solution designs.

The main reason for choosing the server-side rebase is to reduce the amount data that is

being sent and making the server communication more granular. As stated before, cur-

rently the whole XML configuration of a single view is sent to the server for storage. The

file can be 4 MB in size, but if instead only the changes to a single message are sent to

the server, the changes are at most kilobytes in size. In addition, if the XML parsing is

moved or copied to the server side, the communication between the client and server can

be more granular in the future if the program is modified to become more of a cloud-

based service instead of a simple data storage in the server and a complex client. However,

such a change would require considerable change on the users’ way of working, as the

standards would not necessarily be saved as a single large operation as is currently done.

Current save implementation sends the whole XML configuration to the server. The cli-

ent-side rebase would still function in similar manner and thus the existing communica-

tion code can be utilized. The server API function call for saving the standards would

need to be modified slightly as the server would have to be able to compare the age of the

received XML configuration with the one in the database and respond accordingly if the

age is the same or not. Beyond this change to the original API function, the server imple-

mentation can be used as is. As the amount of existing code that can be used is higher in

the client-side rebase than the server-side rebase, the amount of work required to imple-

ment the feature is considerably less. This is directly reflected in the cost of the software

and the development time.

Choosing the client-side rebase has the effect that instead of reducing the amount of logic

on the client-side and moving it to the server, the complexity of the client is increased.

The complex client makes adapting to changing requirements and environments more

difficult, as the implementation done to the client is made available to the end users with

Criteria Client-side rebase Server-side rebase

Sent data amount X

Code reusability X

Work amount X

More granular communication X

Simplicity X

31

a release [12]. The client software must be modified, tested and redistributed to the users.

If the client would be thinner, changes could be made to the server and tested there. Once

the server is tested, the release can be made, and the effect will be visible to all users [12].

When comparing the activity diagrams in Figure 7 and Figure 9, the client-side rebase

has a long feedback loop in case the save operation fails on the first try, but the overall

execution path is linear. The server-side rebase on the other hand is more complex be-

cause the server is changed from being lean, to handling more complex operations and

consider the actual data that is being stored. The server has multiple possible return points

depending on the execution path that is being taken and the client must be aware of the

different ways the execution is returned to it. The matter is further complicated if the

conflict resolution wizard is implemented in the future. The server must then detect each

conflicting item, inform client about them and the client must be able to allow the user to

fix the conflicts. This means that instead of having simple requests to the server in the

saving logic, the communication becomes more like a discussion. The execution is

switched between the client and the server multiple times during a single save attempt.

Based on the solution proposals and their comparison, the client-side rebase is chosen as

the one for further design and implementation. The most relevant reason for the choice is

that if the server-side implementation were chosen, a greater redesign of the application

should be done. Choosing the client-side rebase allows making general refactoring and

code improvements as the implementation requires less work than the server-side imple-

mentation. Chapter 5 discusses the design and implementation of the implementation.

32

5. ARCHITECTURE AND DESIGN

This chapter discusses the architecture and design of the standardization tool and the new

extension for messages standards. The application has been created with Qt framework.

Qt is a cross-platform application framework that allows writing applications to different

software and hardware platforms [21]. Qt is implemented with C++ and provides ready

to use UI elements and C++ libraries, and allows the users to create both GUI and non-

GUI implementations. The framework offers GUI-elements, but it is possible to write and

create terminal or server console applications as well. Qt offers its own IDE called Qt

Creator, but the framework can be used in other IDEs as well, such as Visual Studio for

which Qt offers Qt VS Tools add-ins [22]. Qt also offers bindings to other programming

languages such as C# and Java [3].

The existing application is divided into multiple plugins [8]. Some plugins are mandatory

and are present in all system types and in normal use can always be assumed to be avail-

able, such as Core and GUI. The plugins are loaded on run time when they are needed.

Using the dynamic link library (DLL) structure, the application can be made modular and

the plugins that are not needed for a specific use case are not loaded in program memory.

The creation of UI is handled in one plugin and the actual standardization tool logic is

implemented in its own plugin. From here on, the plugin of the standardization tool is

referred to as STT or Standard Template Tool. In addition to STT, a communication

plugin called STTCommunication is necessary for the standardization tool to work. The

STTCommunication plugin offers the API functions for contacting the server to request

and send data to.

The architecture of the standardization tool is presented in Section 5.1. Section 5.2 de-

scribes the design for messages standard support in the tool. The new saving logic and its

design is presented in Sections 5.3 and 5.4.

5.1 Standardization tool

On system startup, a login dialog is opened. The user can at this point choose to login to

an empty system (for creating a new system), existing system (for editing it), or to STT

system. If the user chooses the STT system, the STT.dll is loaded and the data is fetched

from the server. Because the system architecture uses an AddinManager class to manage

the plugin loading, the plugins act like singleton classes [4, 6]. The overall structure of

the current STT plugin is depicted in Figure 10.

33

Figure 10: STT class diagram.

STT has a single interface through which requests to the plugin are made. Class ISTT is

the interface class and the actual STT class is inherited from it. STT acts as the main class

of the plugin and holds ownership and memory management for most of the high-level

objects in the plugin. Examples of such high-level objects are the modification handlers

and the actual XML configuration objects which contain the data for each different type

of standard that is currently active (often work versions). Parameters and Measurement

details standards are implemented mostly using generic implementation provided by the

34

GUI plugin and the STT, which manages the XML, logs changes and offers some stand-

ard type specific functionality. For Communication setup the class acts as an entry point

and the actual functionality is handled in its own classes. This separation of concern be-

tween the generic STT class and standard type specific functionality will be used in the

new Messages standard type.

The STT class and the basic functionalities of the plugin itself are quite old and can rea-

sonably be called legacy code. Thus, a better separation of concern is an overarching goal

for the long-term health of the project and the plugin [5]. The technological debt is evident

in the pervasiveness of XML handling in the plugin and more broadly in the whole sys-

tem. In the ideal case, the XML handling would be abstracted, and only lower level func-

tionalities would handle it. This is not the case, as the classes use the XML class which

allows for fetching and writing values to the XML document using document node nota-

tion and XPath requests. As preparative work for the subject of this thesis, a new class

XmlAccess was implemented. The class will offer STT specific XML functionalities

which can be used across the whole plugin. Even though the XML functionalities still

leak to the higher levels of the plugin, the new XML helper class can be used so that the

callers only pass along the return values of the functions without parsing the XPath re-

quests or nodes.

A set of unit tests were also created for the XmlAccess class. This way any future imple-

mentation to the class will benefit from quicker feedback to the changes, and the overall

quality of the plugin is improved [5].

5.2 Messages standard support

The STT class is already very large. It is better to separate the new messages standard

support from the generic functionality of the STT class. Model-view-controller (MVC)

design pattern can be used as a starting point for the design [4, 6].

5.2.1 Classes of the message standard support

The MessagesManager class acts as the controller of the design pattern. The manager is

the high-level object and owns the other classes related to the messages standard. The

manager is owned by the STT class. When a function call related to the messages stand-

ards is passed to the STT class, it passes the request along to MessagesManager.

A model class is needed to handle the actual data and how it is stored. Actual data is XML

configuration that is loaded from the server. The existing XmlAccess class can be used

as an example for a model class. The new MessagesXmlAccess class abstracts function-

ality such as creating a new message so that the rest of the plugin does not need to know

the structure of the XML. When the XML configuration is modified, MessagesXmlAc-

cess also informs the modification handler about the change. A generic function in

35

XmlAccess can be used to create a unique XPath to the target node. MessagesXmlAccess

requests the unique XPath from XmlAccess and passes it to the modification handler.

View part of the MVC design pattern is divided into multiple classes. The classes derived

from or owned by the MessagesWidget class act as the view part. The main application

uses widget-based user interfaces of Qt [23]. The view classes are all inherited directly or

indirectly from QWidget class [4]. These classes only contain logic related to showing

the data to the user and interpreting the user’s actions.

The Manager class owns a pointer to a view widget which can be one of the three available

types: a category, a message or a tag widget. The pointed object will be replaced if the

type is changed, by user selecting another item, and a new view is constructed. Mes-

sageDataWidget contains the logic for showing the data of the message in the UI. Part of

the UI is further defined in the MessageInfoGroupContainerWidget and MessageIn-

foGroupWidget classes, which show specific fields of the message.

The data fields of messages, tags and categories can be edited. When user edits a field,

the view class executes the function connected to the Qt edit signal [19]. The function

then reads the data from the UI and passes it MessagesXmlAccess for storing to XML. A

view of a message is shown in Figure 11. Each field is a GUI class of Qt or inherited from

one.

Figure 11: New messages view

Validation functionality can be added to MessagesXmlAccess. The class operates on the

XML, so data checking should be done there. However, the class should not care about

the results of the checks. A new class called EventManager does that. The event manager

keeps track of errors in the configuration by calling the check functions of Messag-

esXmlAccess. If an error is found in some item, the event manager calculates a unique

ID for the error, based on the item itself and which field in it has the error. The error

manager can then create a new error event that is shown to the user. The usage of error

manager can be divided into two: 1. checking a single item and 2. checking the whole

36

configuration. The first is needed when the user is modifying the standard. The second is

needed when saving the standard.

ModificationHandler of the STT plugin is used to keep track and store information about

the changes that have been done to the XML configuration. The standards created with

the standardization tool have an XML attribute STTID (Standard Template Tool Identi-

fier). STTID is guaranteed to be unique by maintaining a sequence on the server-side. To

define the singular items (e.g. messages), each item is given the STTID attribute. Using

the STTID as a condition in the XPath queries allows the program to define a single item

in the configuration and is used in the modification handler. The use of STTID to define

a singular item is similar in use to the UID presented by C. Thao and E. Munson in their

study [16].

The new modification handler is inherited from the old one. The old handler stored each

change to the same data structure with the full XPath to the edited field. This caused issues

when the item has siblings with the same name. An index is added to XPath, but the index

is no longer valid if the user makes an order changing edit.

A new modification handler uses the concept of a singular item as its basis. The handler

has separate data structures for different change types (add, edit and remove). Each data

structure contains XPaths to singular items that have changed. Since each item has a

unique STTID, the index is not needed in XPath. If the change is an edit, the additional

relative XPath to the edited field itself is added as additional information to XPath to the

singular item.

5.2.2 Functionality of the messages standard

The system tree is shown in Figure 12. The user can open items from it by left clicking

them. Some actions are found in the context menus which are opened by right clicking

the items in the tree.

37

Figure 12: The messages tree explorer.

In the configuration tool, the contents of the context menu are defined in separate tree

XML configurations. This functionality can be reused in the messages standards and the

handler plugin for the action can be set to be STT. GUI plugin registers the action and

passes the handling to STT. The execution can be seen in Figure 13. An example of cre-

ating a message is shown in the figure, but the sequence is similar with other actions.

Figure 13: Sequence diagram for context menu actions.

The STT class receives the action and checks its name. If the name matches a predefined

action, the execution is passed to the correct class, such as MessagesManager. This allows

the functionality relevant to the messages standards to be separated into its own classes.

The manager then calls the appropriate functionality, such as create a message or delete

a group.

It should be possible, that a message can belong to multiple groups. The actual XML data

should not be duplicated. Either a group must reference the messages that belong to it or

38

a message must reference groups it belongs to. Message referencing groups was chosen

as the design. An example of the XML of a message can be seen in Figure 14. The Be-

longsToGroups structure defines the groups to which the message belongs to.

<Message STTID="90">
 <ID> ID_TEMPERATURE_LIMIT</ID>
 <BelongsToGroups>
 <ReferenceId>1</ReferenceId>
 <ReferenceId>2</ReferenceId>
 </BelongsToGroups>
 <MessageText>
 <Value Language="English">Temperature limit for module</Value>
 </MessageText>
 <Category>100</Category>
 <Descriptions>
 <Description>
 <Value Language="English">The module is reaching its temperature limit.</Value>
 </Description>
 </Descriptions>
 <Implications>
 <Implication>
 <Value Language="English">The temperature is too high.</Value>
 </Implication>
 </Implications>
 <Recommendations>
 <Recommendation>
 <Value Language="English">Lower the temperature.</Value>
 </Recommendation>
 </Recommendations>
 <Parameters>
 <Parameter>
 <Datatype>UnitSystem<Datatype>
 <Unit int="C" disp="C" />
 <Description>
 <Value Language="English">The current temperature</ Value>
 </Description>
 </Parameter>
 </Parameters>
 <Approval>REQUEST</Approval>
 <Tags>
 <Tag>Alarm</Tag>
 </Tags>
</Message>

Figure 14: Messages standard XML.

In the view building, when a message is read from the XML, the groups it belongs to are

read as well. A tree item is then added to the tree to the referenced groups. The tree items

can be traced back to the XML nodes they were created from. This allows fetching the

specific XML node that is a target of an action, such as delete group.

The fields of a message that have a Languate attribute can be configured in multiple lan-

guages. The attribute references a known language, in this case the language is English.

A new language version of the message can be added by adding a second entry to all the

locations that have the language attribute. This way the multilanguage support is config-

ured.

39

The messages standard has a dependency to the Measurement details standard. The values

from that standard are used in the parameters of the message. The parameter has some

unit system configured to it. The unit system can be configured directly from Parameters

standard or taken into use from an entry in Measurement details standard. Changing the

version dependency can be done the same way as for the other standards. The existing

code is almost completely reusable and only the UI elements of the version dependency

dialog must be updated. If a unit system used in a message is no longer available, the

XML left as is, and an error is created from the situation (missing unit system).

5.3 Rebasing data

Rebase is separate functionality which can be called directly as a menu action or be exe-

cuted as part of the new saving logic. Algorithm for rebase is presented in Figure 15. The

code has been abstracted into a chart to show only relevant parts of the program and more

specific functionality of it is presented in text.

Figure 15: The rebase algorithm.

Before loading actual standard data, the client application will request the change log of

the standard. If the received log does not differ from the one the client has in memory

from when the standard data was loaded originally, the standard data has not changed and

there is no need for a rebase operation. Otherwise the standard data is loaded from the

server and two XML instances are created from it with identical contents at first. The

40

second copy is not needed for the rebase algorithm, but rather for the functionality after-

wards. The client keeps two instances of XML in memory: 1. XML with all the local

changes and 2. XML that is unchanged. The second copy will become the new unchanged

XML for the client if the rebase is successful.

5.3.1 Writing changes to XML

After the XML instances have been constructed, the changes are written to one of the

loaded XML copies, which will eventually be the result XML of the rebase. The writing

algorithm is presented in Figure 16. Some changes may be in conflict if the same item

has been changed between the data of the server and the client. If all the changes are in

conflict, there is no reason to continue the rebase logic. If only some of the changes are

in conflict, the user is informed about the conflicting items and asked whether they wish

to continue. If the user continues, the conflicting changes will be discarded. Otherwise

the execution path ends.

Figure 16: Write changes.

WriteChanges function writes all changes of one type at a time. The function will request

all changes of given type from ModificationHandler. Using the retrieved changes and

specifically the XPaths to the singular items in them, the function compares the node with

41

the original XML instance of the client and the data from the server. If the node is un-

changed, the change is safe to write to the XML from the server. The node is retrieved

from the modified XML of the client and copied to the new XML. If the node has

changed, it is instead added to a list of conflicting items which will be returned to the

rebase function. The compare logic is further described in Section 5.3.2.

5.3.2 Comparing nodes

Before writing the changes to the newly created XML configuration, they must be

checked if the changes are in conflict. The edit and remove XPaths must be used to com-

pare the XML configuration that was received from the server with the local original

version. The compare and writing logic in the rebase implementation has similarities with

three-way merging [13, 16]. The standardization tool has the original and modified ver-

sion before the saving is started. Once the saving is started, the newest data is loaded from

the server. This results in three different document instances. The original version the

standardization tool has is the baseline, and the new data from the server and the modified

version in the tool are the differing versions.

Comparison function is generic and is used elsewhere as well, but for the thesis the rele-

vant call location is the writing of changes in rebase. CompareNode function is shown in

Figure 17.

42

Figure 17: Compare a node in two XMLs.

First the node itself is retrieved from the XML. Then the node and its contents are parsed,

and a list of its contents is created. Each list entry contains XPath to the node and the

value of the node. If a node has descendants, its value is set to empty. This operation is

also performed to the other XML instance, thus creating two lists of node contents.

Then these lists are compared with each other. To skip unnecessary checking in case the

nodes differ in size, the size of the lists is compared and if it is different, there must be

some change in the node and the function can return immediately. Otherwise the contents

of the first list are looped and for each entry, the number of instances in one list must

match the number in the other list. If at any point the numbers do not match, the node

must have changed.

The presented comparison of node contents is not enough, because the singular items can

be in a hierarchical structure where one group owns other groups. If a child group of

another group has been modified, the parent group should not be considered having

changed, unless the parent group is being removed. Thus, the fetching of node contents

is made aware of whether other singular items that are descendants of the node that is

being compared, should also be compared. If the change operation is REMOVE, the chil-

dren must be compared, but for other changes the singular descendants are skipped. An

example of the XML data is shown in Figure 18.

43

<Groups>
 <Group STTID="1" Name="Module responsiveness"/>
 <Group STTID ="2" Name="Safety">
 <Group STTID ="3" Name="Warnings">
 <Group STTID ="4" Name="Module 1 warning"/>
 </Group>
 </Group>
 <Group STTID ="13" Name="Deprecated"/>
</Groups>

Figure 18: Message groups XML.

The side effect of the XML structure is that when comparing a group like the Safety shown

in the figure, change to it such as its name, should not conflict with changes done to the

name of another group such as Warnings. However, if the change targeting the higher-

level item is a removal, the group should not be removable. Such a situation may be cre-

ated if as a starting point the group Safety has no child groups and two users start to

simultaneously edit the standard. One wishes to remove the group, and the other wishes

to add a child group to it. The situation should not be encountered in normal application

usage, but the sanity of the system and usability should still be guaranteed. If the user

who is adding the child group saves their changes first, the other user should not be al-

lowed to remove the group, as the group now has a child group. First, they must explicitly

remove the child group and only then are they allowed to remove the parent. If the user

who is removing the group makes the save first, the addition of child group must fail.

Before starting data construction for sending to the server, the result XML configuration

from the rebase operation must be validated. Changes done to it during the operation may

have caused issues such as duplicate IDs. For Parameters and Measurement details, the

checking is mostly done based on the view configurations, but Communication setup and

the new Messages are instead programmed to the application itself, because the views are

custom built instead of being built from separate view configurations. If validation errors

are found, the saving process is stopped, and the user is informed that there are errors that

must be fixed. The stopping of the saving process and even the whole validation can be

removed in the future if the proposal for allowing erroneous work in progress standards

will be implemented. In case there are no validation errors, the saving process continues

to the server communication.

5.4 Sending data to the server

When the user starts a saving operation, the STT class first performs a rebase operation.

If the operation is successful, a save dialog is opened for the user.

After the user confirms the save in the dialog, the construction of a message to the server

is begun. XML configurations that have been loaded to the client system contain more

44

than just the XML configuration of the standard. In addition, they contain basic defini-

tions and possibly their dependency data. An example of the highest XML levels for the

Messages standard document can be seen in Figure 19.

<Root>
 <Profiles>
 <Profile>XSP</Profile>
 </Profiles>
 <XSP>
 <BasicDefinitions>
 <!-- Basic definitions data -->
 </BasicDefinitions>
 <MeasurementDetails>
 <!—Measurement details standard data -->
 </MeasurementDetails>
 <Messages>
 <!-- Messages standard data -->
 </Messages>
 <Parameters>
 <!-- Parameters standard data -->
 </Parameters>
 </XSP>
</Root>

Figure 19: A high level Messages standard XML configuration.

The extra information in the XML configuration is necessary for the client application to

operate, but there is no reason to store duplicate data to the server in case the standard has

dependencies to other standards, like in Figure 19 the Messages standard XML configu-

ration also contains the data from Measurement details and Parameters standards. After

the data has been validated after the rebase operation, the node containing the actual

standard data is extracted from the document. Then it and necessary version information

is passed to the communication plugin for sending to the server. In addition, the current

change log history of the standard must be passed along as well so that the server can

determine is the received data acceptable or too old.

Communication is done using SOAP protocol and the standard data and the change log

are stored as part of the message [24]. The communication plugin will also read the com-

munication configuration file that is part of the application. The file defines the URL to

which the data is sent to, timeout limits and the authentication information. Using the read

values, the request message is sent to the server.

The functionality of the server is presented in Figure 20. The code is split into multiple

functions which are called, but for clarity, the logic is presented with higher abstraction.

45

Figure 20: Functionality of the saving on the server-side.

The server will receive the request and create a service instance for handling it. The ser-

vice will parse the request message and check if it contains all the necessary data. Then

the API function to perform is read from the message and the functionality is passed to

proper handling function. For simplicity, only the execution path of saving standard is

depicted in Figure 20.

The server will then retrieve the change log of the standard version from the database and

compare it with the one received from the client. The change log is used to determine if

the standard data has changed during the saving operation as described in Section 4.3.

The function will parse the actual standard data from the message (it has its own field)

and store it to the database. The new log entry is added to the change log and saved to the

database. Afterwards, the server responds to the client that the operation was successful.

The server can respond with two different responses: 1) success, and 2) standard data

changed. In case the first response is received, the client will inform the user the save

operation was finished successfully. If the second response is received, a new save at-

tempt is made.

For the new saving logic, the saving function needs to be modified to allow the new logic

to work. Reason for this is to support older standardization tool versions, so the server

must offer the older version of the function for requests from those applications.

46

6. IMPLEMENTATION AND EVALUATION

The implementation was done during 2017 and 2018. A test version including the new

messages standardization tool and the concurrent saving logic has been provided for the

end users for testing.

The changes to the design are presented in Section 6.1. Following it in Section 6.2 the

result of the project is compared with the set goals from Chapter 3. Next, in Section 6.3

the advantages and disadvantages of the solution and tool are evaluated. Lastly, the future

implementations are presented in Section 6.4.

6.1 Changes to the design.

Implementation of the messages standard tool followed mostly the design presented in

Section 5.2. A change to how the items reference other items in the configuration was

changed.

The messages reference the groups they belong to using the groups unique STTID. Lan-

guage and the tags of a message however were referenced with the value of the item, such

as English for language as seen in Figure 14. The reference logic was changed to be uni-

form and done using the STTID attribute. The Language attribute was changed to Lan-

guageId and Tag element was changed to ReferenceId. This allows easier updating when

the referenced value is edited. If a message has a reference to Alarm tag, and the user

changes the name of that tag, all the references would have to be updated as well. This

can be skipped with referencing the items with STTID as the attribute does not change.

The new save logic implementation can be divided into three high-level parts: refactoring

the existing solution to support the new implementation, the implementation of the rebase

logic and the implementation of the actual server communication. The implementation

followed mostly the design presented in Sections 5.3 and 5.4, with some changes.

Checking whether the added item is safe to add could not be done during the conflict

checking (before performing the XML writing). Reason was that it was not possible to

determine whether the node where the new item would be added to existed in the standard

before but was removed or was added in the same session. Solution for the issue would

have been to create a lookbehind logic in the conflict checking to check whether the parent

was added in the same session if it does not already exist in the XML configuration.

The lookbehind logic is unnecessary, because the check could also be performed during

the XML writing. The changes are written in order of XPath query depth, meaning that

parent nodes will always be written before the child nodes. Therefore, if the parent of an

47

added item does not exist during the writing step, the parent must truly be missing, and

the item is in conflict.

In the design, it was deemed enough to pass the change log to the server to ensure no

accidental data overwriting could occur. When a user releases a new standard version

from the work version, the change log of the work is cleared. At first, this was not seen

as a problem because the change log comparison either matches the logs as empty (stand-

ard has been released and no further changes have been made) or non-empty and normal

comparison can be done. This left a situation incorrect, if a user makes a second standard

release after the first one. Steps of the situation are: 1. a new standard branch has been

created from the Work version and the log has been cleared. 2. One user starts making

changes and starts the saving process. 3. The second user makes a change to Work version

and immediately releases another standard branch, before the first user finishes the save

in step 2. 4. The first user’s save request is being handled on the server-side and an empty

log is passed there.

The database contains an empty log as the second user had made a change and released a

new standard. Therefore, the XML configuration in the database has changes that are not

found in the request and the save should not be allowed. The server did not notice this

because the change logs were both empty and thus considered equal. The save was fin-

ished, and changes made by the second user were overwritten in the database. The situa-

tion is very unlikely, but a solution must be created. The client will send the latest standard

version the edited standard type has according to it. The server will then compare both

the received log and the received standard version. If the logs differ or a newer major

standard version has been released, the server data has changed, and the server responds

to the client with failure, after which the client will start a new save attempt.

Another change is to limit the automatic save attempts to the maximum of three. If the

limit is exceeded, the process is cancelled, and the user is informed about the situation.

The limit is not mandatory for the save functionality because the user is able to cancel the

process. The limit was implemented because unnecessarily long operations are not user

friendly.

6.2 Realized goals

Some of the goals from Chapter 3 were met only partially. The development process was

started from the basic functionalities and the saving logic which is the main question of

this thesis. The goals and the results are presented in Table 2 below. The table has three

columns: first one for the actual goal, second whether the goal was reached, partially done

or not reached, and the chapter where the goal was defined. The comparison was done on

March 2018 using the program version which was the same as the second test version

which was provided for the users.

48

Table 2. Thesis goals and their realization.

When user logs into the standardization tool, they can choose the Messages standard type

from the system tree explorer. The system tree contains the data structures, with group

structure where the messages can be found. A single message can belong to multiple

groups and the message is shown correctly in the system explorer. Currently, the user

cannot manage the multiple groups, and thus the feature is only partially implemented.

The system supports showing existing messages belonging to multiple groups, but the

user cannot configure a message to belong under multiple groups.

The items found in the system tree explorer can be right clicked, which will open a context

menu with actions related to the clicked item: Add and remove for both messages and

groups, edit for groups and show the underlying XML action are found for the items.

Also, when the message items are left clicked in the system tree, the configuration view

for the message is opened. Messages data is displayed in different fields and the user can

edit the message if they have the correct user profiles. Currently, it is not possible to

configure parameters to the messages, and therefore the message editing is only partially

implemented.

Custom event manager for Messages standard is partially implemented. The system no-

tices errors when the erroneous message or group is opened, but the full configuration

check has not yet been implemented. Therefore, the configuration check found in saving

does not yet automatically ensure the configuration is valid after rebase operation. When

implementing the rebase operation, the validation had to be done manually.

The user can change the version dependency of Messages standard and the process will

change the dependency standard data on the XML configuration. The dialog is like the

Goal Realized Chapter

Messages standard in tool Yes 3.1

System tree shows messages & groups Yes 3.1

Message belongs to multiple groups Partially 3.1

Context menu: Add/Edit/Remove Yes 3.1

Message is editable Partially 3.1

XML validation Partially 3.1

Standard dependencies Yes 3.1

Standard API support older application versions Yes 3.2

Data loading refactoring Yes 3.2

Concurrent saving Yes 3.3

Conflicting items are discarded or save cancelled Yes 3.3

49

dependency dialog of the existing Communication setup standard, and the implementa-

tion could be reused as is with minor changes. Validation of the dependency change is

not possible because of the missing configuration check.

Server communication for the new saving logic was implemented as a new API function

version, and the old functionality was preserved as is. This was done to ensure that saving

other standard types works with current and older application versions. The new saving

logic can be taken into use in other standards in the future. Data loading on the client side

was modified, and as it is generic functionality, the changes affect the other standards.

The implementation was done first before the saving logic was implemented to ensure

the existing standard types were not unintentionally affected by the refactoring.

First working version of the new concurrent saving logic was implemented and will be

available to the users in the second test version of the application. The logic allows the

users to save their changes even if the server data has been changed if the changes do not

target the same items. The functionality also handles concurrency issues where one user

has managed to make a save during the second user’s saving operation, between the re-

base and server communication. This way the data integrity on the server side is ensured

and the changes do not accidentally override each other. The process was automated, and

if the first attempt fails as the data has changed on the server side, the application starts

the saving process again.

If the rebase operation notices a conflicting item or items, the user is informed about the

situation and asked whether they wish to continue the operation (in which case the con-

flicting changes are discarded) or to cancel it and preserve the local data as is. The func-

tionality fulfills the basic requirements, and the implementation was done so that possible

conflict resolution wizard can be added to the logic in the future.

6.3 Advantages and disadvantages of the solution

The created solution allows the users to create messages standards. The standards reduce

the amount of repetitive manual work. When the importing logic is implemented, the

users can take the created standards into use. The time to create a system configuration

by hand can be weeks or months. By reducing the amount of manual work and importing

ready-made standards, the amount of work can be reduced to days or weeks.

Added benefit of automating the process with the standards and their importing is the

reduced number of user mistakes. If user had to create thousands of items in the configu-

ration, the risk of a user error increases. By importing ready-made standards that have

already been validated to the system, the software does the repetitive work. This improves

the quality of created system configurations and allows the users to allocate more time

and resources to other tasks.

50

Without the standards, the users would have to manually create the basic data structure

definitions such as unit systems. Then they would have to create the measurement items

and what kind of unit systems they use. Following that, they would have to define com-

munication addresses to the system and define the measurement items to individual ad-

dresses. Then the user would have to define the messages that the system can send and

read. With the standardization tool, the user can simply import the different standard types

one by one and skip the presented manual work.

The new saving logic improves the usability of the standardization tool. Before, more

than one user could not edit the same standard without the other users losing the effort

they had made. With the created solution, the users can edit the same standard at the same

time without a considerable loss of work. An exception to this is if the users were to edit

the same items. In normal workflow, this should not happen.

By making the conflict situation item-level, meaning that a conflict is created if two users

edit the same item (for example a message), the user experience was improved. Although

the item-level design can in theory increase the amount of conflicts, the gain in user ex-

perience outweighs the risk. The users do not have to be experts on XML, but rather

experts in their own field. If a conflict resolution wizard is created, it can show the conflict

in user friendly manner and further improve usability.

Added benefit of the new saving logic is that users’ cooperation can increase. Instead of

waiting for one user to finish their change, both users can make their changes at the same

time. Similar logic can be found in online office tools offered by Google [7]. The users

can create different documents and edit them at the same time with other users. The stand-

ardization tool differs from them in that the users cannot see what other users are currently

editing. The main reason for this is that the solution is mostly client based and the server

is thin [29].

Because the chosen solution for concurrent saving was the client-side option, the archi-

tecture of the system remains heavily on the client-side. This means that further improve-

ments to the user coordination become more difficult. As the client is fat and handles all

the business logic, any coordination between clients would have to be done in three-way

communication from one client to the server to another client. This is different in fat

server implementations. The clients could be very simple, and the server could contain

the business logic. Showing information about other clients would be simpler, as the in-

formation would be stored to the server.

Updating the software is another issue of the fat client and that the new saving logic was

done on the client-side. Improvements and bugfixes that are done after the standardization

tool has been published will not be available for the users. Only when a new version of

the tool is created, will those improvements be made available. If the solution would be

more on the server-side, the server could be updated. The new functionality would be

51

available for existing users immediately if the logic does not require changes on the client-

side.

The new save logic is very specific to the use case and the solution environment. A lot of

decisions in the design were influenced by the existing functionality. The combination of

unique identifier (STTID) and active tracking of changes is a novel idea not presented by

the existing solutions presented in Section 4.2 where algorithm calculated a delta from

the XML documents. In the new save logic, modification handler already tracks changes

to the XML configuration. Using it as part of the save logic allowed skipping the calcu-

lation of deltas when the actual rebase and save are done. The solution is also an example

of where an XML configuration merge is done on a higher abstraction level than in the

existing solutions in Section 4.2.

6.4 Future implementation

During the design and implementation, several ideas were created about further develop-

ing the application. Most prominent ones are presented here.

The minimum requirement for the concurrent saving was to implement logic for optimis-

tic situation where items never or rarely conflict and therefore the conflicting items can

be discarded and redone after the save has been completed. This logic can be replaced by

implementing a conflict resolution wizard, whereby the user could resolve the conflicting

items. The wizard would have to allow the user to view all the conflicting items, the value

stored in the server and the local values, and a reason to the conflict. Then the user could

fix the conflict by providing the correct result. As with the saving, the end user is not

necessarily aware of XML or its usage and therefore the wizard must abstract the items

to be relevant to the user (messages, groups, etc.). Using the wizard, the usability of the

saving is improved, as all kinds of items can be changed in a single save attempt. Also,

the conflicting items become more visible to the user.

Currently, the new concurrent saving is limited to the work version of the standard. The

reason is that the way the versions of the standards are numbered, where each change is

its own standard revision. The version numbering can be changed by introducing a stand-

ard work concept, where each standard major branch would have its own work version.

That version would not be released and would not be available for the users who import

the standards into system configurations. The users could make multiple saves to the

standard work, like the current work version. When the version is deemed to be accepta-

ble, it would be published, and a new revision is created. This way unnecessary standard

revisions can be reduced, as each small change would not require its own version.

The new modification handler is currently only used in the new Messages standard im-

plementation. The existing Parameters, Measurement details and Communication setup

52

standards still use the old handler which has several known issues. Of the existing stand-

ards, Measurement details and Communication setup items can be modified to use the

handler by adding the support for handling the older type XPaths where the unique STTID

is not located on the item itself, but one of its children. In addition, the handler must be

extended so that a change log entry can be created from the XPaths the handler has stored.

Parameters standard type is more complex, because it has the greatest number of different

items which have the STTID but that may also contain a varying number of items which

have the STTID. Unlike the other standards, logic for importing the Parameters uses the

item STTIDs to update references to the items. Therefore, changing the structure of XML

and the location of the STTID attributes is not acceptable.

Like the modification handler, the new saving logic can be taken into use in other standard

types with some modifications. The implementation requires using the new handler, and

therefore the prerequisite must be fulfilled before this feature can be implemented. Con-

siderable work effort is required when defining the singular items in the other standard

types, and how they can become conflicted. This implementation would also break com-

patibility for modifying the work standard with older standardization tool versions.

Standard importing is planned, but it was not implemented as part of this thesis. The im-

plementation will allow the end users to utilize the created messages standards by directly

importing them from the server. Another way of using the Messages standards is imple-

menting an export functionality into the standardization tool, which allows creating XML

files containing the relevant data for using in a system. The user could then copy the file

to relevant location for usage in configuration tool. Currently, the messages used by the

system are stored in a separate file, so the export functionality is a smaller feature to

implement as opposed to a full-fledged import.

Currently, Messages standard supports configuring messages in English only. The XML

has been designed to support multiple languages, but the standardization tool does not

have support for creating and managing multiple language versions. One of the goals of

this thesis was to offer only English support with other features available to the users,

thus allowing the users to give feedback for the created functionalities. Logic for adding

other languages and configuring messages with them is needed for the full language sup-

port.

53

7. CONCLUSIONS

A message standardization tool was designed and implemented in this thesis. The main

research topic was: concurrency issues when saving standards with the tool.

First the background and the environment of the application were introduced. The stand-

ardization tool is an extension to a configuration tool that is used to create industrial sys-

tem configurations. Template XML configurations are created to reduce the amount of

repetitive work when creating a new system configuration. Common data structures are

defined in the template XML configurations. The templates are then loaded from a server

to become part of the system configurations. This reduces the amount of repetitive work.

Next, the goals of the thesis were presented. A new standard type support (messages) was

to be added to the standardization tool. The users can create messages standards in the

standardization tool. The standards would contain messages and groups where the mes-

sages can be found. The user can add, edit and remove the messages and the groups.

The standardization tool has concurrency issues when saving changes to the template

XML configurations. If more than one user attempts to edit a template, only one can save

their changes. The other user must reload the data and make the changes again. Before

this has not been considerable issue because the number of users has been low. The num-

ber is expected to increase with the addition of new standard type support. Therefore, a

new saving logic is to be designed and implemented. Logic is to allow multiple users to

save their changes at the same time.

Next, the theory of the concurrency issue and existing solutions were presented. Git ver-

sion control system allows the users to work on the same file and combine their changes.

Git has two relevant functionalities: merge and rebase. Git supports branching different

versions of a file. One branch can be rebased on top of another, combining the changes

in both. This logic can be used as an example to solve the concurrent save issue. The new

save logic has a rebase functionality, where the local changes are rebased on top of a fresh

XML configuration.

The tool has two copies of the XML configuration, the original unchanged one and the

modified one. The server has a third version. The original XML configuration in the tool

is the common point in the change history of the XML configuration. The other XML

configuration in the client is a new branch of history. The XML configuration on the

server is the main branch.

Other existing solutions to merge XML documents were introduced as well. Using ver-

sion trees and UIDs to detect changes and calculating context finger prints for nodes were

ways to implement an XML merge. The existing solutions could not be used directly as

54

the end users are not necessarily familiar with XML and the elements representing a sin-

gle message instance. Therefore, in case a conflict situation is encountered, more relevant

information should be shown to the user.

Two solutions were proposed for the new save logic: 1. client-side rebase and 2. server-

side rebase. The client-side rebase was chosen for further design and implementation be-

cause the costs of implementation were lower and overall logic was simpler.

Using Git rebase and existing XML merge algorithms as an example of rebase and merge

improved the speed of the design and eventually implementation. Implementation costs

were reduced by choosing the client-side solution for the rebase as greater amount of

existing code and logic could be used. This allowed improving the functionality and de-

signing a more extensible solution. In addition, the implementation logic became simpler,

as the logic could be divided into two separate parts: rebase and server communication.

In the client-side solution, the rebase was done completely in the standardization tool with

only existing data loading from the server being used. This allowed the implementation

to be split into smaller items which could be implemented and validated separately.

Most of the goals for the thesis were achieved. Only three goals were partially met: 1. a

message belongs to multiple groups, 2. a message can be edited and 3. standard can be

validated. The standardization tool supports showing a message in multiple groups. The

users cannot configure the message to belong to multiple groups, so the goal is only par-

tially reached. Messages can be created and removed. The messages can mostly be edited

as well. Only the parameters of a message cannot be configured. Thus, the goal is only

partially met. Currently, a message can be validated when it is opened. But a whole con-

figuration validation is not yet implemented. This means that the new save logic does not

validate the configuration.

The new save logic allows more than one user to edit a standard. This allows greater

cooperation between the users, as they can edit the same standard at the same time instead

of having to wait one user to finish their changes. It will also reduce the amount of lost

work, as the tool can automatically rebase their changes. The conflict situations were

evaluated to be uncommon. If a conflict is found, the relevant change must be discarded

to save the changes. This situation can be further improved by implementing a conflict

resolution wizard. The saving logic can be extended with further logic as well as extended

to the existing standard types in the future.

Currently, the new extension of the standardization tool is only partly useful to the end

users, as importing the data directly to the system configuration is not available yet. This

means that there is no easy way for the end users to take the standards into use when

creating system configurations. But, as the goals of the thesis were mostly met, the created

solution is successful.

55

REFERENCES

[1] S. Chacon, B. Straub, Pro Git, 2nd ed. Apress, 2014, pp. 12-13, 70-98, ISBN

1484200772.

[2] K. Dick, XML: a manager's guide, Addison-Wesley, 2003, pp. 22-26, ISBN

0201770067.

[3] Digia Oyj, Language Bindings - Qt Wiki. Available (accessed 12.01.2018):

https://wiki.qt.io/Language_Bindings.

[4] A. Ezust, P. Ezust, Introduction to Design Patterns in C++ with Qt 4, Prentice Hall,

2007, pp. 203-208, 238, 361, 392, ISBN 0131879057.

[5] M.C. Feathers, Working effectively with legacy code, Prentice Hall Professional

Technical Reference, 2005, pp. xv-xix, 3-12, 249-264, ISBN 978-0-13-117705-5.

[6] E. Gamma, E. Gamma, Design patterns: elements of reusable object-oriented soft-

ware, Addison-Wesley, Reading (MA), 1994, pp. 12-16, 127-132, ISBN 0-201-

63361-2.

[7] Google, Google Docs. Available (accessed 19.05.2018):

https://www.google.com/docs/about/.

[8] Microsoft, What is a DLL?. Available (accessed 12.01.2018): https://support.mi-

crosoft.com/en-us/help/815065/what-is-a-dll.

[9] J. Nielsen, Usability engineering, Academic Press, San Francisco (CA), 1993, pp.

123-132, ISBN 0-12-518405-0.

[10] Oracle, Java Software. Available (accessed 12.01.2018): https://www.ora-

cle.com/java/index.html.

[11] Red Hat Inc., JBoss EAP. Available (accessed 12.01.2018): https://develop-

ers.redhat.com/products/eap/overview/.

[12] G. Reese, Database Programming with JDBC and Java, 2nd ed. O'Reilly & Associ-

ates, Inc., 2000, pp. 131-132, ISBN 1-56592-616-1.

[13] S. Rönnau, U.M. Borghoff, XCC: change control of XML documents: An Efficient

and Reliable Framework for XML Diff, Patch, and Merge, Computer Science - Re-

search and Development, Vol. 27, Iss. 2, 2010, pp. 95-111.

[14] S. Rönnau, U.M. Borghoff, Versioning XML-based office documents: An efficient,

format-independent, merge-capable approach, Multimedia Tools and Applications,

Vol. 43, Iss. 3, 2009, pp. 253-274.

https://wiki.qt.io/Language_Bindings
https://www.google.com/docs/about/
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://www.oracle.com/java/index.html
https://www.oracle.com/java/index.html
https://developers.redhat.com/products/eap/overview/
https://developers.redhat.com/products/eap/overview/

56

[15] Software Freedom Conservancy, About Git, Free and Open Source. Available (ac-

cessed 19.01.2018): https://git-scm.com/about/free-and-open-source.

[16] C. Thao, E.V. Munson, Using versioned trees, change detection and node identity

for three-way XML merging, Computer Science - Research and Development,

11/2014.

[17] The Apache Software Foundation, Apache Subversion. Available (accessed

12.01.2018): http://subversion.apache.org/.

[18] The PostgreSQL Global Development Group, PostgreSQL. Available (accessed

12.01.2018): https://www.postgresql.org/.

[19] The Qt Company, Signals & Slots | Qt Core 5.10. Available (accessed 12.01.2018):

http://doc.qt.io/qt-5/signalsandslots.html.

[20] The Qt Company, QMap Class | Qt Core 5.10. Available (accessed 12.04.2018):

http://doc.qt.io/qt-5/qmap.html.

[21] The Qt Company, Qt | Cross-platform software development for embedded &

desktop. Available (accessed 20.03.2018): https://www.qt.io.

[22] The Qt Company, Qt Visual Studio Add-in 1.2. Available (accessed 20.03.2018):

http://doc.qt.io/archives/vs-addin/index.html.

[23] The Qt Company, User Interfaces | Qt 5.10. Available (accessed 13.04.2018):

http://doc.qt.io/qt-5/topics-ui.html.

[24] W3C, SOAP Specifications. Available (accessed 12.01.2018):

https://www.w3.org/TR/soap/.

[25] W3C, About W3C. Available (accessed 12.01.2018): https://www.w3.org/Consor-

tium/.

[26] W3C, Extensible Markup Language (XML). Available (accessed 12.01.2018):

https://www.w3.org/XML/.

[27] W3C, Schema. Available (accessed 12.01.2018): https://www.w3.org/stand-

ards/xml/schema.

[28] W3C, XML Path Language (XPath) Version 1.0. Available (accessed 12.01.2018):

https://www.w3.org/TR/1999/REC-xpath-19991116/.

[29] S.C. Yadav, Introduction to Client Server Computing, New Age International Pvt.

Ltd., Publishers, Daryaganj, 2009, pp. 4-5, ISBN 9788122428612.

https://git-scm.com/about/free-and-open-source
http://subversion.apache.org/
https://www.postgresql.org/
http://doc.qt.io/qt-5/signalsandslots.html
http://doc.qt.io/qt-5/qmap.html
https://www.qt.io/
http://doc.qt.io/archives/vs-addin/index.html
http://doc.qt.io/qt-5/topics-ui.html
https://www.w3.org/TR/soap/
https://www.w3.org/Consortium/
https://www.w3.org/Consortium/
https://www.w3.org/XML/
https://www.w3.org/standards/xml/schema
https://www.w3.org/standards/xml/schema
https://www.w3.org/TR/1999/REC-xpath-19991116/

