

JUHA LÖFLUND

FAIR THREAD SYNCHRONIZATION

Bachelor of Science Thesis

Examiner: University Lecturer Maarit
Harsu
Submitted for review on 7 May 2018

i

ABSTRACT

JUHA LÖFLUND: Fair thread synchronization
Tampere University of technology
Bachelor of Science Thesis, 21 pages, 6 Appendix pages
May 2018
Bachelor’s Degree Programme in Information Technology
Major: Software Engineering

Keywords: threading, mutual exclusion, thread synchronizing

Available computing power in modern computers has been steadily increasing in the form

of processor cores. To effectively utilize the available computing power, computed pro-

grams must utilize multiple threads. Due to the usage of threads, some form of thread

synchronization must also be utilized. However, readymade thread synchronization meth-

ods may not always be ideal for all situations. This thesis is examining what are the prob-

lems with currently offered solutions, and what is the impact of potential problems.

As can be discovered, some readymade solutions have problems when threads are syn-

chronized according to thread priority. This can lead to a situation where some lower

priority thread does not get execution time at all. This thesis introduces a fair thread syn-

chronization technique as a possible solution to the problem, and a case study comparing

the fair thread synchronization technique to a readymade solution is carried out. The prob-

lem can be clearly seen from the results of the case study. In addition, according to the

results, the fair thread synchronization technique can be a utilized as a solution for the

problem.

ii

CONTENTS

1. INTRODUCTION .. 1

2. THREAD SYNCHRONIZATION ... 2

2.1 Concurrency and parallelism .. 2

2.2 Condition synchronization ... 3

2.3 Critical section and mutual exclusion .. 3

2.4 Semaphores .. 4

2.5 Mutex lock.. 4

2.6 Support in high-level programming languages .. 4

3. SYNCHRONIZING THREADS FAIRLY ... 6

3.1 Problem .. 6

3.2 ThreadSynchornizer, a FIFO-based solution ... 6

3.3 Pros and cons of the solution ... 7

4. CASE STUDY: COMPARING THREADSYNCHRONIZER WITH

QWAITCONDITION OF QT .. 9

4.1 Testing methods ... 9

4.2 Performance measurements.. 10

4.2.1 All threads having same priority .. 10

4.2.2 Single thread having a higher priority.. 11

4.3 Fairness comparison ... 11

5. FURTHER APPLICATIONS OF THREADSYNCHRONIZER 15

6. CONCLUSIONS ... 19

REFERENCES .. 20

APPENDIX A: THREAD SYNCHRONIZATION WITH QT 22

APPENDIX B: THREAD SYNCHRONIZATION WITH C++ 24

APPENDIX C: THREAD SYNCHRONIZATION CLASS WITH QT 26

1

1. INTRODUCTION

In modern computers, the number of processor cores and parallel threads has been stead-

ily increasing [1]. Current high-end CPU’s support up to 36 parallel threads [2] and a

typical mainstream CPU usually has four cores and offers eight parallel threads [3]. To

fully utilize the available computing power, modern computer programs must be imple-

mented to support multiple concurrent threads [1]. This allows the application to benefit

from the available computing power more efficiently, by splitting a single task or an op-

eration into multiple subparts and executing each subpart in parallel [4].

Some form of thread synchronization must be utilized by parallel programs fielding mul-

tiple threads. A variety of thread synchronization methods can be employed, depending

on set requirements, used operating system and selected programming language. Modern

operating systems offer APIs for managing threads and thread execution, but these are

not always optimal from programmer’s point of view. These API’s are especially prob-

lematic for the reusability of software components. When these API’s are utilized in a

software component, that component becomes dependent to this specific operating sys-

tem. However, operating system independent libraries for managing thread execution are

included in modern high-level programming languages such as C++11 [1].

This thesis is looking at how to synchronize N-number of threads in a fair manner easily

with high-level programming language. This means that when multiple threads are ac-

cessing the same resource, they are synchronized with First-In, First Out –principle, also

referred as FIFO.

Thread synchronization at a general level is discussed in Chapter 2. The chapter also takes

a brief overlook of the Qt framework, specifically threading related classes. Fair thread

synchronization is discussed in Chapter 3 and a solution for fair synchronization is intro-

duced. Chapter 4 is a case study where the solution for the fair thread synchronization

introduced in Chapter 3, is compared to an existing solution. Some additional applica-

tions for the fair thread synchronization solution, are introduced in Chapter 5. Conclu-

sions of the thesis are discussed in Chapter 6.

2

2. THREAD SYNCHRONIZATION

2.1 Concurrency and parallelism

A program’s concurrency is defined as having more than one thread and each of the

threads can be executed in any order, independently of each other. Any given thread can

be executed before or after another or all threads can be executed simultaneously. Con-

current execution of two threads is demonstrated in Figure 1. The shown threads are con-

current, but not parallel.

Figure 1 Concurrent execution of two threads [5]

On the other hand, parallelism specifically refers to simultaneous execution of different

threads as demonstrated in Figure 2. This means that all parallel programs are concurrent,

but not all concurrent programs are parallel. Parallel execution of threads always requires

that the used computer or similar device, supports multiple parallel threads, i.e. a multi-

core processor is used. [6]

3

Figure 2 Simultaneous execution of two threads [5]

2.2 Condition synchronization

Condition synchronization ensures that a certain predefined condition is met, before an

action occurs [4]. In other words, condition synchronization ensures that a thread cannot

proceed until a given condition is met [7].

A classic example of condition synchronization is a thread waiting for user input via a

keyboard. When a keystroke occurs, the waiting thread is signaled, and it can proceed

with its execution. [8]

2.3 Critical section and mutual exclusion

A section of a program, which can be accessed by multiple threads, but only a single

thread is permitted to be inside the section at any given time, is defined as a critical sec-

tion. In the critical section some shared or common resource is usually accessed. [1, 4]

Mutual exclusion is a solution for solving the critical section problem, as mutual exclu-

sion blocks other threads from executing the same section of a program. In other words,

mutual exclusion only allows a single thread within a critical section. [1] Synchronization

objects such as locks and semaphores provide mutual exclusion [4].

Microsoft Windows API defines some concurrency terminology in a contradictory fash-

ion. The API defines a Critical Section [9] and a Mutex [10], but the meaning differs from

definitions from this section and Section 2.5. A Critical Section object is defined in Win-

dows as providing thread synchronization inside a single process. In contrast, in Windows

a Mutex is defined as providing thread synchronization across processes.

4

2.4 Semaphores

Semaphore is a synchronization object providing condition synchronization and mutual

exclusion. In contrast, locks can only provide mutual exclusion. Depending on a use-case,

semaphores can be utilized as synchronization objects or locks. [4]

A counting semaphore permits a certain, predefined number of threads to execute. When

a thread is accessing a limited or finite resource, it uses the semaphore to allocate the

needed resources to itself. Internally the semaphore reduces the number of available slots.

And vice versa, when the acquired resource is relinquished by the thread, the number of

slots is incremented by the same amount that was allocated previously. [4] When the

semaphore has no free slots, the requesting thread becomes blocked until a slot is availa-

ble [4]. This pattern of semaphores is utilized in resource allocation, where multiple

threads are competing for a limited number of resources [4].

Mutex pattern semaphore is the most commonly used semaphore. The semaphore is ini-

tialized to have a single available slot. Mutex pattern semaphore can be utilized to protect

critical sections, as only a single thread is permitted to access the shared resource. [4]

2.5 Mutex lock

Lock or mutex lock is a similar synchronization object to a mutex pattern semaphore,

utilized to solve the critical section problem. Where a lock can only provide mutual ex-

clusion, mutex pattern semaphore can be utilized to provide conditional synchronization

as well. [4]

Additionally, a mutex lock has an owner, which has a significant role when comparing a

mutex lock and a mutex pattern semaphore. As the mutex lock has an owner, the lock

forces the thread that has locked it to also unlock it. Unlocking the mutex from a different

thread is undefined behavior, usually resulting in termination of the program. On the other

hand, semaphores can be handled from different threads. [4]

2.6 Support in high-level programming languages

Qt is a cross-platform framework for desktop, embedded and mobile applications. It sup-

ports multiple different platforms including Linux, OS X, Windows, Android and many

others. Qt is written in C++ and it is not a programming language in its own. Qt frame-

work extends C++, and with an additional pre-compilation step, code written in Qt is

generated into native C++ code. [11] Within the scope of this thesis, certain threading

related classes provided by Qt Core library are needed [12].

Qt framework provides mutual exclusion with QMutex class. The class provides a simple

interface for locking and unlocking a lock. Additionally, it provides a method testing the

5

lock, meaning that if obtaining the lock fails, the method will return after the provided

timeout expires. In contrast, normal lock-method will block until the lock has been ob-

tained. QMutex is strictly intended for providing mutual exclusion as only the current

owner of the mutex can unlock it and unlocking from another thread results in undefined

behavior. [13] QMutexLocker, a utility class is also provided for easy usage of QMutex.

When QMutexLocker instance is created, the created object obtains the ownership of the

mutex and relinquishes the ownership when the QMutexLocker is destroyed.

QMutexLocker also provides methods for manually unlocking and relocking the mutex.

[15] Classes with similar functionalities are also offered in C++ [16, 17].

For synchronizing threads, Qt offers QWaitCondition class to provide a condition varia-

ble. QWaitCondition allows inter-thread communication where one thread waits until it

receives a notification from another thread. When a thread starts its wait cycle, it provides

a locked QMutex to the QWaitCondition. The provided mutex is unlocked for the duration

of the wait and after the thread returns from the wait cycle, the mutex is automatically

locked by QWaitCondition. This makes QWaitCondition very helpful when synchroniz-

ing access into a critical section for multiple threads, because the locked mutex grants

access to the critical section for the woken thread. [8] Functionality wise QWaitCondition

is very similar to std::condition_variable included in C++ [18].

QSemaphore provides a general counting semaphore. The class is a generalization of a

mutex. It is possible to acquire a semaphore multiple times, whereas a mutex can be

locked only once. Additionally, QSemaphore offers method for acquisition, which do not

block indefinitely like a normal acquire-method. [19]

6

3. SYNCHRONIZING THREADS FAIRLY

3.1 Problem

When synchronizing multiple threads, the different thread priorities may affect how each

thread gets synchronized. Threads having a higher priority may always be placed in front

of threads having a lower priority. This can lead to situations where some threads will get

very little execution time. This can lead to unpredictable delays in application execution,

e.g. if UI-thread is pending results from a low-priority background thread, it may take a

very long time for the results to become available.

Synchronization objects provided in C++ or Qt do not specify in what order pending

threads get execution time [8, 18]. Issues mentioned in the previous paragraph can arise,

if thread priority is used to determine when a thread gets execution time.

A simple test program can be used to determine how different synchronization objects

behave. This can be achieved by creating multiple threads with various priorities within

the test program and synchronizing the created threads with desired synchronization ob-

ject. Each thread is assigned a unique identifier to distinguish between them. Whenever

a thread wakens, the thread’s unique identifier is stored (in this case, printed to program

output) and the thread goes back to the synchronization object and waits to be signaled

again. The test is repeated enough many times to see how the synchronization object han-

dles the pending threads. The aforementioned test program implemented with Qt and uti-

lizing QWaitCondition as the synchronization object, is shown in Appendix A.

Running the test program clearly shows that a thread having a higher priority can com-

pletely starve out other threads. Based on the results from the test program, it can be

hypothesized that the thread having the highest priority is always placed on top of the

queue. Even though the specification of QWaitCondition does not mention this, practical

evidence supports this assumption.

However, different synchronization variables may behave differently, which can be seen

when the test program is implemented in C++ and utilizing std::condition_variable as the

synchronization object. The program is shown in Appendix B. The priorities of different

threads do not affect the scheduling order; threads are executed in the same order in each

cycle.

3.2 ThreadSynchronizer, a FIFO-based solution

One possible solution to the problem shown in the beginning of this chapter, is to imple-

ment a thread synchronization mechanism, where each pending thread gets execution

7

time based how long they have been waiting, effectively ignoring the priorities of each

thread. This method of operation can also be described as first-in-first-out or FIFO. This

solution ensures fair scheduling of pending threads as each thread will get execution time

in the order of arrival.

To overcome the uncertainty of scheduling in various thread synchronization objects,

ThreadSynchronizer shown in Appendix C utilizes separate synchronization objects for

each pending thread. The utilization of separate synchronization objects removes the un-

certainty brought by synchronization objects and possible differences in operating system

specific implementations of these objects.

When a thread requires synchronization and uses the Wait-method of ThreadSynchronizer

from line 36, the function allocates a new instance of QWaitCondition specifically for

this function call. A pointer to the created object is stored in the internal queue of

ThreadSynchronizer. After storing the pointer, the thread begins the wait cycle.

QWaitCondition is allocated on the stack of the calling thread and thus the object is de-

stroyed when the thread returns from Wait. A thread can return from the Wait-method by

one of two ways:

1) Thread gets waken when WakeFirst method in line 62 is called by another thread.

2) The given timeout expires, which can be supplied as an optional parameter in the

function call in line 37.

When the Wake-method is called, the function obtains a pointer to a QWaitCondition for

a thread which has been waiting for the longest and wakes the waiting thread by calling

the QWaitCondition. The function also removes the obtained pointer from the internal

queue to ensure that a single thread does not get multiple wake calls.

3.3 Pros and cons of the solution

The solution presented in the previous section introduces added control over thread exe-

cution and synchronization. In certain situations, the added control can be beneficial, but

it also has downsides. Because an additional layer of code is introduced, and this can

affect the performance, as can be seen from performance measurements in Section 4.2.

Whether this difference in performance is acceptable depends on application and context.

Solution guarantees fair scheduling, and this can be beneficial and even mandatory in

some cases.

As shown in Section 3.2, every time the Wait-method of ThreadSynchronizer is called,

an instance of QWaitCondition is created and destroyed once the function call returns.

These objects could be recycled, either within a single instance of ThreadSynchronizer or

between all instances of ThreadSynchronizer within a process. This would require chang-

ing the allocation scheme of QWaitCondition from stack allocation to heap allocation, as

8

the lifecycle of stack allocated objects is much stricter than heap allocated ones [20]. In

such a recycling scheme, objects would be fetched from a cache or created if none are

available and returned to the cache once the object becomes free. Finding out whether

this improvement idea is practical requires careful analysis and performance measure-

ments to support the feasibility. Based on the source codes, QWaitCondition has an in-

stance-wide recycling scheme [21], which would support the feasibility of recycling.

As threads are having a priority for a reason, ignoring it might cause problems for high-

priority threads. For this reason, the FIFO-based queue utilized in ThreadSynchronizer

could be replaced by a better solution. One possible solution meriting further research

could be a simplified derivative of a scheduling algorithm known as aging [22]. In aging,

the priority of a process is gradually increased until it gets execution time [22]. In the

simplified version of this algorithm, threads would be sorted by priority in the queue.

Additionally, every time a higher priority thread surpasses a lower priority thread, the

priority of the lower priority thread is incremented. The approach prevents indefinite

thread starvation, while allowing high priority threads faster access to the desired re-

source.

9

4. CASE STUDY: COMPARING THREADSYN-

CHRONIZER WITH QWAITCONDITION OF QT

This chapter is comparing ThreadSynchronizer introduced in Chapter 3 to QWaitCondi-

tion. The first section is covering testing methods for comparing ThreadSynchronizer to

QWaitCondition. The second section is comparing performance results. The fairness of

each is analyzed in the third section.

4.1 Testing methods

For measuring the differences between the two solutions, using various measurement

points, a testing environment was devised. The testing environment was using ten con-

current threads, which were synchronized with both ThreadSynchronizer and QWaitCon-

dition. The testing environment measured how long a time thread spent in the queue wait-

ing to be awoken.

To verify that threads were waken in the same order as they entered the queue, every time

a thread called the test function, a unique identifier was generated. This unique identifier,

together with a thread identifier, was stored before entering the queue and after leaving

it.

Threads were woken at a predefined interval, which were one, ten and one hundred mil-

liseconds. After a thread was waken and the result stored, it immediately went back to

wait in the queue. However, this is really the worst-case situation and may not represent

real world situations very well. For this reason, a test execution with a sleep was included.

After a thread had completed its single execution cycle, it slept twice that of the wake

interval.

Threads accessing a shared resource may also have different priorities. This was also in-

cluded in the tests by incrementing the priority of a single thread.

To summarize, all the same tests were executed for both QWaitCondition and ThreadSyn-

chronizer. Each test was executed with the aforementioned wake intervals and included

the following items:

1. all threads using same priority, no sleep between access cycles

2. all threads using same priority, sleep between access cycles

3. one thread having higher priority, no sleep between access cycles

4. one thread having higher priority, sleep between access cycles.

10

To reduce randomness, the duration of each test item was set to 6000 ms and multiplied

with the wake interval. Each test was also repeated ten times.

4.2 Performance measurements

This section is looking at how ThreadSynchronizer, listed in Appendix C, is performing

when compared to QWaitCondition. In this context, performance is measured by how

long a time thread has to wait to get execution time and how consistent the wait time is.

4.2.1 All threads having same priority

When all threads have the same priority, the difference between the two solutions is quite

small as can be seen by comparing average time spent in queue, as depicted in Table 1.

However, when calculating average deviation, more meaningful differences can be seen

between the two solutions with longer wake intervals. Average deviation reveals at how

consistent intervals threads are waken.

Table 1. Time spent waiting for execution on average (averages of all threads).

Wake interval
(ms)

Average time in queue (ms) Average deviation (ms)

QWaitCondition ThreadSyn-
chronizer

QWaitCondition ThreadSyn-
chronizer

1 19.999 20.008 0.019 0.033

10 110.073 110.037 0.145 0.074

100 1010.157 1010.042 0.298 0.039

Theoretically, the average time a thread spends waiting in the queue, should be close to

the wake interval. However, it can be seen from the above table that this not so. Difference

between calculated and reality is especially large when a thread is wakened every milli-

second. This difference is likely due to accumulated overhead. The overhead can be esti-

mated:

 𝑂 =
𝐴−𝑇∗𝐶

𝐶
=

𝐴

𝐶
− 𝑇,

where O denotes the overhead, A means the average time in queue, T means the wake

interval, and C means the number of threads. Applying the above formula, the approxi-

mate overhead can be calculated as 1.0 ms.

11

4.2.2 Single thread having a higher priority

When upgrading the priority of a single thread to a higher one, the results for ThreadSyn-

chronizer stay virtually the same as in Section 4.2.1. However, results change signifi-

cantly for QWaitCondition. The thread having higher priority starves the other threads

completely.

Table 2. Time spent waiting for execution on average (averages of all threads), with ad-

ditional sleep.

Wake interval
(ms)

Average time in queue (ms) Average deviation (ms)

QWaitCondition ThreadSyn-
chronizer

QWaitCondition ThreadSyn-
chronizer

1 16.984 17.029 15.980 0.050

10 88.981 89.026 87.960 0.037

100 808.377 809.014 797.205 0.090

When the same test is executed with the sleep described in Section 4.1, averages for both

solutions are close together as seen in Table 2. However, in the same table, the average

deviations for QWaitCondition are very different. The likely explanation is that

QWaitCondition stores pending threads in a priority-based queue, as seen from Qt’s

source codes [21].

Because of priority-based queueing, a thread having the highest priority is always placed

as the first item in the queue, thus getting more execution time, which can be seen in

Table 3. Thread number 10 has higher priority than the other threads and the average time

it spent in the queue waiting for execution time is far less compared to the others.

Table 3. Thread-wise time spent waiting for execution, on average, with additional

sleep using QWaitCondition.

Wake interval
(ms)

Average time in queue (ms) Average deviation (ms)

Threads 1-9 Thread 10 Threads 1-9 Thread 10

1 32.965 1.005 0.117 0.008

10 176.934 1.015 0.401 0.031

100 1597.156 3.082 32.267 4.018

4.3 Fairness comparison

As described in Section 4.1, the generated unique identifier is used to verify in what order

the threads are entering and exiting the queue. The data also allows to calculate how much

available resource a single thread consumes when compared to other threads. Table 6

demonstrates the recorded data for QWaitCondition at 100 ms wake interval. The first

12

and the second columns show the thread number and the generated identifier when a

thread is entering the queue. The latter two columns show the same information when a

thread is exiting the queue. When threads are exiting the queue in the same order as they

entered, each row has the same information in columns one and two as in columns three

and four as shown in Table 4. However, when a thread has been surpassed in the queue,

the identifier indicating when the thread entered the queue, is listed below the row when

the thread entered the queue. Similarly, when a thread is surpassing others in the queue,

the thread’s exit point is listed above the row when it originally entered the queue. Within

this section, all tables demonstrating thread synchronization order contain only a small

section of the original data as the overall amount of data is too large.

When all threads were having the same priority, no differences can be seen between

QWaitCondition and ThreadSynchronizer, and both can be stated as fair in this regard.

Findings are similar as in Section 4.2.1. Regardless of the used wake interval, the syn-

chronization order for both solutions is similar to results in Table 4 for ThreadSynchro-

nizer at 100 ms wake interval.

Table 4. Thread synchronization order with ThreadSynchronizer at 100 ms wake inter-

val.

Entering queue Exiting queue

Thread number Unique identifier Thread number Unique identifier

1 2215933149 1 2215933149

2 45564477 2 45564477

3 2280578173 3 2280578173

4 611728441 4 611728441

5 3833064745 5 3833064745

6 1779456281 6 1779456281

7 545730938 7 545730938

8 1880964532 8 1880964532

9 1996980587 9 1996980587

10 878211633 10 878211633

When a single thread is having a higher priority than other threads, bigger and more

meaningful differences are visible for QWaitCondition. In this scenario, the single thread

having the higher priority will complete starve out other threads, similarly as in section

4.2.2. The starvation can also be seen from Table 5. Initially, all threads enter the queue,

but only a single thread gets any execution time and all other threads become complete

starved. But as the stated in Section 4.1, this is not a fully realistic scenario, and this is

compensated with a sleep time described in the same section.

13

Table 5. Thread starvation with QWaitCondition.

Entering queue Exiting queue

Thread number Unique identifier Thread number Unique identifier

1 3108412803 10 3869406454

2 1271899378 10 1893594946

3 3812422854 10 3996173184

4 1521659203 10 902101116

5 1280725400 10 4190281462

6 4034391223 10 1900172198

7 2190315840 10 4034412022

8 442166512 10 3304833470

9 2577950124 10 3203927030

10 3869406454 10 3005580724

10 1893594946 10 4028571215

10 3996173184 10 661271208

10 902101116 10 632818809

10 4190281462 10 719981133

With described sleep time using QWaitCondition, the thread having the higher priority

no longer complete starves out the other threads, but still consumes about 50 % of avail-

able resources. The remaining 50 % is equally divided between the remaining threads.

Table 6 demonstrates this behavior. When the test is stated, each thread enters the queue

for the first time and for the first full test cycle, threads are in order. However, when

looking at the exit order of the threads, thread number ten is listed in every second row.

After initial test cycle, this can also be seen when threads are entering the queue. As can

be expected from the design of ThreadSynchronizer, no differences were visible between

different threads.

Table 6. Thread synchronization order with QWaitCondition at 100 ms wake interval.

Entering queue Exiting queue

Thread number Unique identifier Thread number Unique identifier

2 517121028 10 888715374

3 64217383 2 517121028

1 3683312599 10 173490974

4 2936409884 3 64217383

5 965584088 10 4150017827

6 949489883 1 3683312599

7 3623746235 10 1162338631

8 2933268189 4 2936409884

9 3296582518 10 2782934254

10 888715374 5 965584088

10 173490974 10 2177001493

14

2 1456985834 6 949489883

10 4150017827 10 3678744266

3 589854715 7 3623746235

10 1162338631 10 3202488071

1 1798102511 8 2933268189

10 2782934254 10 2462570411

4 896185401 9 3296582518

10 2177001493 10 2794752915

5 2398519705 2 1456985834

10 3678744266 10 2333037547

6 969774479 3 589854715

10 3202488071 10 632389621

7 2118486544 1 1798102511

10 2462570411 10 628342185

8 1780033093 4 896185401

10 2794752915 5 2398519705

9 3446071464 10 2535960579

10 2333037547 6 969774479

15

5. FURTHER APPLICATIONS OF THREADSYN-

CHRONIZER

Problems highlighted in Chapter 3 for priority-based thread synchronization can be an

issue in other synchronization objects as well. If thread synchronization needs to be con-

trolled beyond synchronization primitives provided by the programming language,

ThreadSynchronizer can be utilized to implement various other thread synchronization

objects.

A simplified version of a counting semaphore utilizing ThreadSynchronizer is shown in

Program 1. The constructor of the class takes the initial number of free slots as a param-

eter. The given value is used to initialize the instance of CountingSemaphore. When a

resource is required to be allocated to a thread, Acquire method in line 9 is called. The

method checks if any slots are available and allocates a slot if one is available. When no

slots are available, the calling thread is blocked until a slot is freed by another thread.

Thread can relinquish the allocated slot by calling Release method in line 26. The method

frees the slot and signals the first waiting thread that a slot has been freed. Section 2.4

contains more information about counting semaphores.

2

4

6

8

10

12

14

16

18

20

22

24

26

28

#include "ThreadSynchronizer.h"

class CountingSemaphore final
{
public:
 CountingSemaphore(const unsigned int availableSlots) :
 m_slots(availableSlots) {}

 void Acquire()
 {
 // Utilize RAII-pattern QMutexLocker class
 // to obtain the ownership of the mutex
 QMutexLocker locker(&m_lock);
 if (m_slots > 0)
 {
 // Slot available, acquire it
 m_slots--;
 }
 else if (m_synchronizer.Wait(locker))
 {
 // Slot released by another thread, acquired it
 m_slots--;
 }
 }

 void Release()
 {
 QMutexLocker locker(&m_lock);
 // Release the slot by incrementing the number of free slots

16

The example program is oversimplified, and it does not have all the needed runtime

checks, for example Release function in line 26 can be called more times than Acquire.

But despite the shortcomings of the example program, it is fully working and could be

utilized as a counting semaphore as currently implemented.

With a RAII-pattern [14] utility class, the usage of CountingSemaphore can be made more

convenient as demonstrated by Program 2. The counting semaphores Acquire method is

called in the constructor of the convenience class as seen in line 11. Similarly, the de-

structor calls release when the object is destroyed. The convenience class also offers

methods for manually releasing and reacquiring the slot. Either Release or ReAcquire

methods do nothing if called multiple times. ReAcquire method may block the calling

thread if all free slots have been allocated.

30

32

34

36

38

40

 m_slots++;

 // Signal a pending thread that a slot is now free
 m_synchronizer.WakeFirst();
 }

private:
 unsigned int m_slots;
 QMutex m_lock;
 ThreadSynchronizer m_synchronizer;
};

Program 1. Example of a simple counting semaphore implemented utilizing

ThreadSynchronizer.

2

4

6

8

10

12

14

16

18

20

22

24

#include "CountingSemaphore.h"
#include <atomic>

class CountingSemaphoreUtility
{
public:
 CountingSemaphoreUtility(CountingSemaphore& semaphore):
 m_semaphore(semaphore),
 m_isReleased(false)
 {
 m_semaphore.Acquire();
 }

 ~CountingSemaphoreUtility()
 {
 Release();
 }

 void Release()
 {
 bool isReleased = false;
 // If Release is not yet called (m_isReleased is false),
 // compare_exchange_weak sets m_isReleased to true
 // and returns true
 if (m_isReleased.compare_exchange_weak(isReleased, true))

17

26

28

30

32

34

36

38

40

42

44

46

 {
 m_semaphore.Release();
 }
 }

void ReAcquire()
{
 bool isReleased = true;
 // If Release has been called (m_isReleased is false),
 // compare_exchange_weak sets m_isReleased to false
 // and returns true
 if (m_isReleased.compare_exchange_weak(isReleased, false))
 {
 m_semaphore.Acquire();
 }
}

private:
 CountingSemaphore& m_semaphore;
 std::atomic<bool> m_isReleased;
};

Program 2. RAII-pattern [14] convenience class for counting semaphore.

A RAII-pattern utility class is especially useful when it is utilized in a function with

multiple return points or when exceptions can be raised. The RAII-pattern guarantees

that the acquired resource is released when the utility class instance goes out of scope,

regardless whether this happens due a raised exception or a return statement. [14] Pro-

gram 3 demonstrates the problem with traditional approach by using the CountingSem-

aphore directly. The example function in the program has two return points, either if

the first function call returns false in line 11, or at the very end of the example function.

However, if either of the function used by MyExampleFunction raises an exception, the

acquired resource is never released. Using a utility class solves these problems and

slightly simplifies the code as shown in Program 4.

2

4

6

8

10

12

14

16

18

#include "CountingSemaphore.h"

// Statically allocated CountingSemaphore
static CountingSemaphore s_countingSemaphore;

void MyExampleFunc()
{
 // Acquire one slot/resource etc.
 s_countingSemaphore.Acquire();

 if (!FunctionOne())
 {
 // Release the acquired resource.
 s_countingSemaphore.Release();
 return;
 }

 FunctionTwo();

18

20

22

 // Release the acquired resource.
 s_countingSemaphore.Release();
}

Program 3. Example of direct resource allocation

This convenience class allows to create stack allocated objects, which are automatically

destroyed when the object goes out of scope. The usage of CountingSemaphoreUtility

is demonstrated in Program 4. The program contains a statically allocated instance of

CountingSemaphore, as shown in line 5. That instance is then utilized by CountingS-

emaphoreUtility in line 10 to allocate a resource for the duration of the function call.

2

4

6

8

10

12

14

16

18

20

#include "CountingSemaphore.h"
#include "CountingSemaphoreUtility.h"

// Statically allocated CountingSemaphore
static CountingSemaphore s_countingSemaphore;

void MyExampleFunc()
{
 // Acquire one slot/resource etc.
 CountingSemaphoreUtility wrapper(s_countingSemaphore);

 if (!FunctionOne())
 {
 // ‘wrapper’ -object goes out of scope and is destroyed.
 return;
 }

 FunctionTwo();
} // ‘wrapper’ -object goes out of scope and is destroyed.
 // CountingSemaphore::Release is called by the destructor of
 // CountingSemaphoreUtility

Program 4. Example usage of CountingSemaphoreUtility

19

6. CONCLUSIONS

As the readymade thread synchronization methods and techniques provided by different

programming languages may not always be ideal for all situations, the foundation of this

thesis was to find a solution for fair thread synchronization. Thread synchronization can

be especially problematic when threads are synchronized according to thread priority and

when some threads are having a higher priority than the other threads. In extreme cases,

this can result in complete starvation of the lower priority threads, as demonstrated by the

case study in Section 4.2.2. A possible solution to this problem is introduced in Section

3.2. However, as can be seen from the performance results in the case study in Section

4.2 for the solution, the added logic can introduce some minor performance reduction,

although the difference is minimal at worst.

In normal circumstances, thread synchronization methods and techniques offered by a

programming language are usually adequate as well as straightforward and easiest to im-

plement. However, when the need for more specialized solutions arises, the solution sug-

gested in this thesis can be beneficial.

An improvement idea for enhancing the functionality of ThreadSynchronizer by replac-

ing the FIFO-based thread synchronization with an applied version of a scheduling algo-

rithm known as aging, is introduced in Section 3.3. The applied algorithm takes thread

priorities into account, allowing high priority threads faster access to the desired resource.

Additionally, the approach also prevents the indefinite thread starvation of lower priority

threads. The details of the algorithm are described in Section 3.3. As the algorithm takes

thread priorities better into account, it might be a better overall solution when compared

to the current implementation of ThreadSynchronizer. However, the additional logic re-

quired to implement the algorithm might cause performance degradation. Further re-

search into the feasibility of this algorithm is merited.

20

REFERENCES

[1] M. Gregoire, N.A. Solter, S.J. Kleper, Professional C++, 2nd ed. Wrox, Hoboken,

2011, 1106 p.

[2] Intel® Core™ i9-7980XE Extreme Edition Processor, Intel Corporation, web page.

Available (accessed 1.2.2018): https://www.intel.com/content/www/us/en/products/pro-

cessors/core/x-series/i9-7980xe.html.

[3] Intel® Core™ i7-8700K Processor, Intel Corporation, web page. Available (ac-

cessed 1.2.2018): https://www.intel.com/content/www/us/en/products/proces-

sors/core/i7-processors/i7-8700k.html.

[4] R.H. Carver, K. Tai, Modern Multithreading: Implementing, Testing, and Debug-

ging Multithreaded Java and C++/Pthreads/Win32 Programs, John Wiley and Sons,

2005, 465 p.

[5] P. Pitkämäki Parallel vs concurrent in Node.js, web page. Available (accessed

2.4.2018): https://bytearcher.com/articles/parallel-vs-concurrent/.

[6] D. Buttlar, J. Farrell, B. Nichols, PThreads Programming, O'Reilly Media, 1996, 267

p.

[7] M.L. Scott, Programming Language Pragmatics, 2nd ed. Morgan Kaufmann Pub-

lishers Inc, San Francisco, 2005, 915 p.

[8] QWaitCondition Class | Qt Core 5.5, The Qt Company Ltd, web page. Available

(accessed 04.03.2018): http://doc.qt.io/archives/qt-5.5/qwaitcondition.html#wakeOne.

[9] Critical Section Objects (Windows), Microsoft Corporation, web page. Available

(accessed 18.02.2018): https://msdn.microsoft.com/en-us/library/windows/desk-

top/ms682530(v=vs.85).aspx.

[10] Mutex Objects (Windows), Microsoft Corporation, web page. Available (accessed

18.2.2018): https://msdn.microsoft.com/en-us/library/windows/desk-

top/ms684266(v=vs.85).aspx.

[11] About Qt - Qt Wiki, The Qt Company Ltd, web page. Available (accessed

2.4.2018): http://wiki.qt.io/About_Qt.

[12] Threading Classes | Qt 5.10, The Qt Company, web page. Available (accessed

2.4.2018): https://doc.qt.io/qt-5/thread.html.

[13] QMutex Class | Qt Core 5.10, web page. Available (accessed 6.4.2018):

http://doc.qt.io/qt-5/qmutex.html.

https://www.intel.com/content/www/us/en/products/processors/core/x-series/i9-7980xe.html
https://www.intel.com/content/www/us/en/products/processors/core/x-series/i9-7980xe.html
https://www.intel.com/content/www/us/en/products/processors/core/i7-processors/i7-8700k.html
https://www.intel.com/content/www/us/en/products/processors/core/i7-processors/i7-8700k.html
https://bytearcher.com/articles/parallel-vs-concurrent/
http://doc.qt.io/archives/qt-5.5/qwaitcondition.html#wakeOne
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682530(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682530(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684266(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684266(v=vs.85).aspx
http://wiki.qt.io/About_Qt
https://doc.qt.io/qt-5/thread.html
http://doc.qt.io/qt-5/qmutex.html

21

[14] RAII - cppreference.com, web page. Available (accessed 2.4.2018):

http://en.cppreference.com/w/cpp/language/raii.

[15] QMutexLocker Class | Qt Core 5.10, The Qt Company Ltd, web page. Available

(accessed 6.4.2018): http://doc.qt.io/qt-5/qmutexlocker.html.

[16] lock_guard - C++ Reference, web page. Available (accessed 6.4.2018):

http://www.cplusplus.com/reference/mutex/lock_guard/.

[17] mutex - C++ Reference, web page. Available (accessed 6.4.2018):

http://www.cplusplus.com/reference/mutex/mutex/.

[18] condition_variable - C++ Reference, web page. Available (accessed 04.03.2018):

http://www.cplusplus.com/reference/condition_variable/condition_variable/.

[19] QSemaphore Class | Qt Core 5.5, The Qt Company Ltd, web page. Available (ac-

cessed 6.4.2018): http://doc.qt.io/archives/qt-5.5/qsemaphore.html.

[20] Dobry Tep, Kinariwala Bharat, Programming in C, University of Hawai'i, 1993,

598 p.

[21] QWaitCondition_win.cpp, The Qt Company Ltd, web page. Available (accessed

18.02.2018): http://code.qt.io/cgit/qt/qt.git/plain/src/corelib/thread/qwaitcondi-

tion_win.cpp.

[22] A. Silberschatz, P. Baer Galvin, G. Gagne, Operating System Concepts, 9th ed.

John Wiley & Sons, Inc, 2013, 919 p.

http://en.cppreference.com/w/cpp/language/raii
http://doc.qt.io/qt-5/qmutexlocker.html
http://www.cplusplus.com/reference/mutex/lock_guard/
http://www.cplusplus.com/reference/mutex/mutex/
http://www.cplusplus.com/reference/condition_variable/condition_variable/
http://doc.qt.io/archives/qt-5.5/qsemaphore.html
http://code.qt.io/cgit/qt/qt.git/plain/src/corelib/thread/qwaitcondition_win.cpp
http://code.qt.io/cgit/qt/qt.git/plain/src/corelib/thread/qwaitcondition_win.cpp

22

APPENDIX A: THREAD SYNCHRONIZATION WITH QT

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

#include <QCoreApplication>
#include <QThread>
#include <QWaitCondition>
#include <QMutex>
#include <QDebug>
#include <QVector>

// Thread storage
QVector<QSharedPointer<QThread>> threads;

// Synchronization objects
QWaitCondition condition;
QMutex mutex;

bool runTests = true;

QVector<QPair<QThread::Priority, QString>> test_data = []
{
 QVector<QPair<QThread::Priority, QString>> data;
 data.append(qMakePair(
 QThread::NormalPriority,
 QString("Thread_1_NormalPriority")));
 data.append(qMakePair(
 QThread::NormalPriority,
 QString("Thread_2_NormalPriority")));
 data.append(qMakePair(
 QThread::NormalPriority,
 QString("Thread_3_NormalPriority")));
 data.append(qMakePair(
 QThread::LowPriority,
 QString("Thread_4_LowPriority")));
 data.append(qMakePair(
 QThread::HighPriority,
 QString("Thread_5_HighPriority")));
 return data;
}();

class Thread: public QThread
{
public:
 Thread(): QThread() {}

 ~Thread() override
 {
 condition.wakeAll();
 QThread::wait();
 }

23

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

100

protected:
 virtual void run() override
 {
 while (runTests)
 {
 // Obtain the ownership of the mutex
 QMutexLocker lock(&mutex);

 // Wait until signaled
 condition.wait(lock.mutex());

 // Print object name
 qDebug() << QObject::objectName();
 }
 }
};

QSharedPointer<QThread> Create(QThread::Priority priority,
 QString name)
{
 QSharedPointer<Thread> pTester(new Thread());
 pTester->setObjectName(name);
 pTester->start(priority);
 return pTester;
}

void Test_QWaitCondtion()
{
 // Create the threads
 for (auto testData : test_data)
 {
 // Create a thread
 threads << Create(testData.first, testData.second);
 }

 // Start testing
 auto testIterations = 100;
 for (auto i = 1; i <= testIterations; ++i)
 {
 // Wake one thread from QWaitCondition
 condition.wakeOne();

 // Sleep for a 100ms before waking the next thread
 QThread::msleep(100);
 }

 // Stop & destroy the threads
 runTests = false;
 threads.clear();
}

24

APPENDIX B: THREAD SYNCHRONIZATION WITH C++

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

#include <iostream>
#include <thread>
#include <mutex>
#include <vector>
#include <condition_variable>
#include <windows.h> // SetThreadPriority
#include <string>
#include <memory> // std::unique_ptr

// Container to hold the threads
std::vector<std::unique_ptr<std::thread>> threads;

// Thread synchronization objects
std::mutex mutex;
std::condition_variable condition;

// Simple boolean to control the execution of threads
bool runTests = true;

// Test data
typedef int PRIORITY;
typedef std::string ThreadName;
std::vector<std::pair<PRIORITY, ThreadName>> test_data = []
{
 std::vector<std::pair<PRIORITY, ThreadName>> data;

 data.push_back(
 std::make_pair(
 THREAD_PRIORITY_NORMAL,
 ThreadName("Thread_1_NormalPriority")));
 data.push_back(
 std::make_pair(
 THREAD_PRIORITY_NORMAL,
 ThreadName("Thread_2_NormalPriority")));
 data.push_back(
 std::make_pair(
 THREAD_PRIORITY_NORMAL,
 ThreadName("Thread_3_NormalPriority")));
 data.push_back(
 std::make_pair(
 THREAD_PRIORITY_BELOW_NORMAL,
 ThreadName("Thread_4_BelowNormalPriority")));
 data.push_back(
 std::make_pair(
 THREAD_PRIORITY_ABOVE_NORMAL,
 ThreadName("Thread_5_AboveNormalPriority")));
 return data;

25

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

}();

void DoTask(ThreadName threadName)
{
 while (runTests)
 {
 // Obtain the ownership of the mutex
 std::unique_lock<std::mutex> lock(mutex);
 // Wait
 condition.wait(lock);
 std::cout << threadName << std::endl;
 }
}

std::unique_ptr<std::thread> Create(PRIORITY priority,
 ThreadName name)
{
 std::unique_ptr<std::thread> thread(new std::thread(DoTask, name));

 // Set the thread priority
 SetThreadPriority((HANDLE)thread->native_handle(), priority);
 return thread;
}

void Test_std_condition_variable()
{
 // Create the threads
 for (unsigned int i = 0; i < test_data.size(); ++i)
 {
 auto testItem = test_data.at(i);
 threads.push_back(Create(testItem.first,
 testItem.second));
 }

 auto testIterations = 100;
 for (auto i = 1; i <= testIterations; ++i)
 {
 // Signal one thread
 condition.notify_one();

 // Sleep a for 100ms before signaling the next thread
 Sleep(100);
 }

 // Stop the threads
 runTests = false;
 condition.notify_all();

 for (unsigned int i = 0; i < threads.size(); ++i)
 {
 // Wait until the execution has finished
 threads.at(i)->join();
 }
}

26

APPENDIX C: THREAD SYNCHRONIZATION CLASS WITH QT

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

#include <QList>
#include <QWaitCondition>
#include <QMutexLocker>

//! \brief Provides fair thread synchronization
//! \details Threads are synchronized around a single QMutex
//! In other-words, the same mutex must be throughout
//! the lifespan of ThreadSynchronizer -instance
//! The mutex must be locked before using any of the provided functions
//! \author Juha Löflund
class ThreadSynchronizer final
{
 // Disable copying of ThreadSynchronizer
 // by deleting copy constructor and assignment operator
 Q_DISABLE_COPY(ThreadSynchronizer)

public:
 ~ThreadSynchronizer()
 {
 // Check that no threads are pending
 Q_ASSERT_X(m_waitingThreads.isEmpty(),
 Q_FUNC_INFO,
 "Destroying while threads are pending");
 }

 //! \brief Waits until timeout or Wake -command
 //! \param[in] pLock Locked QMutex
 //! \param[in] maxWaitTime Maximum wait time in milliseconds
 //! Function will wait indefinitely with default value
 //! \details More details, see
 //! http://doc.qt.io/qt-5/qwaitcondition.html#wait
 //! Locked QMutexLocker will unlocked during the wait
 //! and it will be returned to the same locked state.
 //! \return True, if thread was wakened before timeout
 //! \author Juha Löflund
 inline bool Wait(QMutex* pLock,
 const ulong maxWaitTime = ULONG_MAX)
 {
 // Create an instance of QWaitCondition
 // for the calling thread
 QWaitCondition waitCondition;

 // Add it to the queue and start waiting
 m_waitingThreads.append(&waitCondition);
 if (waitCondition.wait(pLock, maxWaitTime))
 {
 return true;

27

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

 }

 // QWaitCondtion::wait() timed out,
 // remove the pointer of 'waitCondition'
 // from ‘m_waitingThreads’
 // It is possible that the thread times out
 // just as it is being waken.
 // In this case, nothing is removed
 // Interpret this as a success by returning true
 return m_waitingThreads.removeAll(&waitCondition) == 0;
 }

 //! \brief Wakes the first thread in the queue
 //! \author Juha Löflund
 inline void WakeFirst()
 {
 if (!m_waitingThreads.isEmpty())
 {
 m_waitingThreads.takeFirst()->wakeOne();
 }
 }

 //! \brief Checks if any thread(s) are waiting
 //! \return True, if any thread is queued
 //! \author Juha Löflund
 inline bool HasThreadsWaiting() const
 {
 return !m_waitingThreads.isEmpty();
 }

 //! \brief Checks how many threads are waiting
 //! \return Number of waiting threads
 //! \author Juha Löflund
 inline quint32 WaitingThreadsCount() const
 {
 return m_waitingThreads.size();
 }

private:
 QList<QWaitCondition*> m_waitingThreads;
};

