TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

SAMPO NYYSSONEN
CONTROL AND COMMUNICATION OF PEELING MACHINE SIM-
ULATOR

Master of Science Thesis

Examiner: prof. José L. Martinez
Lastra

Examiner and topic approved on 2.
May 2018

ABSTRACT

SAMPO NYYSSONEN: Control and communications of peeling machine simula-
tor

Tampere University of technology

Master of Science Thesis, 56 pages

April 2018

Master’'s Degree Programme in Automation Technology

Major: Factory automation and industrial informatics

Examiner: Professor José L. Martinez Lastra

Keywords: Peeling machine, real-time simulation, PLC, control, communications,
TCP/IP socket

In this thesis communication between real-time peeling machine simulation and
Programmable Logic Controller (PLC) is created. The PLC uses a program which
is originally used to control a conventional peeling machine. Thesis describes
needed changes in the control program to make the program function with the
simulator. The control on the simulation should work so that the simulation imi-
tates the actions of the real machine. Finally, it is shown how this peeling machine
simulation could be used from various aspects. One of the goals was to create
control for simulation that can be represented on a fair.

The peeling machines are used to peel a 1-4mm thick veneer ribbon from a block
of wood. The peeling machine moves the block from block conveyor to lathe spin-
dles in the optimal position to maximize the veneer output. During the peeling
various axes are moved simultaneously to support the peeling against forces
caused by knife cutting and to improve the quality of the veneer.

The resulting interface uses TCP/IP (Transmission control protocol over internet
protocol) communication over Ethernet. The resulting communication interface to
simulation initiates various movement commands for each of the axes. The feed-
back data contains axis status information and relevant sensor status information.
Each of the communication clients attempt to send data to its participant every
10ms. The communication interface works reliably and rapidly enough for logic
program need and for interactive use. For future work, the simulation environment
could be used to test and develop peeling machine control program.

il
THVISTELMA

SAMPO NYYSSONEN: Simuloidun viilusorvin ohjaus ja kommunikointi
Tampereen Teknillinen Yliopisto

Diplomityé, 56 Sivua

Huhtikuu 2018

Automaatiotekniikan DI-tutkinto-ohjelma

P&aaine: Factory automation and industrial informatics

Tarkastaja: Professor José L. Martinez Lastra

Avainsanat: Viilusorvi, reaaliaikainen simulaatio, PLC, ohjaus, kommunikaatio,
TCP/IP socket

Tassa tydssa luodaan kommunikaatio reaaliaikaisen viilusorvi simulaation ja oh-
jelmoitavan logiikan valille. Logiikka kayttaa ohjelmaa joka on alun perin tarkoi-
tettu oikean viilusorvin ohjaukseen. Tarvittavat muutokset logiikan ohjelmaan,
jotta logiikka toimisi simuloidun jarjestelman kanssa kuvataan tassa tyossa. Si-
mulaatiomallin ohjauksen tulee toimia siten ettd simulaatio imitoi oikean koneen
kayttaytymista. Lopulta ndytetdan kuinka simulaatiota voisi hy6dyntaa useista eri
nakdkulmista. Yksi tavoitteista oli luoda simulaatiolle ohjaus, jotta sité voitaisiin
esitella messuilla.

Viilusorveja kaytetdan sorvaamaan 1-4millimetrin paksuista villumattoa puupdl-
lista. Viilusorvi liikuttaa péllin pdéllikuljettimelta sorvin karoille optimaaliseen asen-
toon, maksimoidakseen viiluntuotannon. Sorvauksen aikana useita eri akseleita
likutetaan samanaikaisesti, tukeakseen viilun leikkauksesta aiheutuvia sorvauk-
sen voimia vastaan ja parantaakseen viilun laatua.

Luotu rajapinta kayttda TCP/IP-tiedonsiirtoa (Transmission Control Protocol / In-
ternet Protocol) Ethernetin kautta. Luotu kommunikaatiorajapinta simulaatioon
panee alkuun erilaisia likekomentoja kullekin akselille. Takaisinkytkentadata si-
saltda akseleiden tilainformaatiota ja tarpeellisten antureiden tilatiedon. Kaikki
kommunikaation osanottajat yrittavat lahettdd dataa yhteyskumppanilleen 10ms
vélein. Luotu kommunikaatiorajapinta toimii tarpeeksi nopeasti ja luotettavasti lo-
giikkaohjelman tarpeeseen ja interaktiiviseen kayttéén. Jatkossa simu-
laatioymparistdéa voisi kayttdd sorvin logiikkaohjelman testaukseen ja ke-
hitykseen.

11

PREFACE

I would like to thank Raute for giving me interesting subject and lots of trust and support
to work on. I would like to thank Mevea company for making such interesting thesis
possible. I want to give personal thanks to Heikki Korpilahti from Raute and Karli Kund
from Mevea for good co-operation. Additionally, I want to thank both of my supervisors
Antti Pennanen in Raute and José Lastra in TUT for support and trust in the finalizing the
thesis. Finally, I want to thank my parents and relatives for support and constant pushing
to go forward.

Lahti, 05.04.2018

Sampo Nyyssonen

iv

CONTENTS
1. INTRODUCTION ...ccoiiiitiiiitiiieiiesieete ettt ettt sttt ettt st e b enees 1
L1 MOTIVATION c.tieeie ettt ettt s e e eanees 1
1.2 JUSHIICATION ..ottt et 2
1.3 ProbIemcouiiiiiiie s 2
Lid SCOPE .ttt ettt ettt e ettt e st e sbte e st e e sabee e e 3
1.5 LIMIEATION ..uttiiiiiiieeiiceieee ettt et 3
L. OULHNE ...ttt ettt 4
2. LITERATURE REVIEWcooiiiiiiiiiiiiieietee ettt 5
2.1 Plywood manufacturingcccceeeriieeriiieeniieenieeeniteeeieeesieeesieeesieeesnee e 5
2.2 Industrial cOmmMUNICAtION SYSTEIMS ...uvvveeerieeirieeriieeeiieeeireeeieeesieeesereeesaneees 10
221 BHREINET ..couiiiiiiiiiiiiecieeeeeeee et 13
2.2.2 TCP/IP protocol Stackccceeerueerriieriieeeiieeniieeeieeeeiee e 15
2.3 Virtual machine appliCAtiONS.ceerveeeriieeriieeiiieeiee et eiee e 21
2.4 State Of the ATt ..cooeiiiiiiiieiiceeeeee e 24
3. DESIGNING CONTROL SYSTEM FOR SIMULATION.......c..cccceevuenieiniennnne 26
3.1 Defining iNterface.........cccueeviiieiiiiiiiiiieriie ettt 26
3.1.1 Sending command tO SIMUIALOT..........ccovurerrieerrireeniieenieeeniieeniieenn 28
3.1.2 Control Parameterseeerueeerieeeriieenieeeniieeeireesireesireesneeesereees 28
3.1.3 Feedback Valuescccoouerieiiiiniiiiiceieeeceeceeeeeee e 30
3.1.4 Command tYPES.....cccueeerueeeriieeniieeniieerite et e sire e 33
3.2 Debugging the original program for simulation useccocceeeveuveenineene 35
3.3 Considerations on virtual machine applications.........cc.cccecueeveeriieeneennennnen. 38
4. TESTING THE CONTROL AND INTERFACE.........cccccceiiiiiiiniiiieeieeeeee 42
4.1 Communicating through TCP/IP...........ccccccoiiiiiiniiieeceeeee 42
4.2 Considerations on PLC programccocceecueerieniieenieniieeneenieenecneeeneenene 50
5. CONCLUSION AND FURTHER WORK........cccccooiiiiiiiiieiieeeeeeeee e 54
5.1 Points of development and further Work............ccocceeviiniiiiiniinnniceee 55

REFERENCES oottt st st et 57

LIST OF FIGURES

Figure 1.
Figure 2.
Figure 3.

Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Figure 9.
Figure 10.
Figure 11.

Figure 12.
Figure 13.
Figure 14.

Figure 15.

Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.

Outline of plywood production (Shi and Walker, 2000)............................ 6
Knife peeling variables (Varis, 2017)cccoueeeeoueeeceeeniieenieeeeeeeeieeeees 9
Some features of modern lathes (courtesy of Coe Manufacturing
Co., Painsville, Ohio) (Shi and Walker, 2000)..........cccccoveeeeeeeeeeeeveivunnnnn.. 9
Communication in OSI model (Zurawski, 2015)ccccoevvveeeeieeeeeneecnnn. 12
Predefined service primitives (Wilamowski and Irwin, 2011) 12
Ethernet frame split in parts. (Miller and Cummins, 2000). 13
TCP/IP suite and OSI model (Edwards and Bramante, 2009)................ 16
Major protocols of the TCP/IP protocol suite. (Miller and
Cummins, 2000)..........ccccueeeeeieeeeeeeeiiieeeeeeeeeeeeeciireeeee e e e eeesirereeeeeeeneanes 17
Structure of IPv4 packet (Pigan and Metter, 2008)ccocuveeeueenne.. 18
TCP packet structure (Pigan and Metter, 2008)cccceeeveeeenvcveennnnnnn. 19
TCP/IP protocol with socket interface (Donahoo and Calvert,
2009).....ciiiiiieeee e ettt st 20
Communication system where designed interface resides 27
Figure showing database structures used for communication................ 32
Example movement control curve, using 2" order acceleration
coefficient (“Delta RMC User Manual,” 2017)........cccueeeeevueeeeevvueeeaannns 38
Encapsulation of Telnet data inside TCP/IP inside Ethernet 11
frame (Miller and Cummins, 2000)c..ccoeeeueeeeecineeeeeiieeeeeecveeeeenns 44
Raw data capture from Lathe PLC 10 PCccccccovvieiiiiinniieniieeneenn. 44
Collection of captures of sent and received data.....................ccc.ccuu...... 45
Axis data structure on PLC side (1) and on PC side (2).ccccuueenn... 45
Block in centring SPIndlesccccoooueeveiniieiiiiniiiieinieeeeeeeeenenn 50
Block being peeled...................oocovueviiiinieiniiiiniiinieiieeeeeeeeeeeeee e 51
Outline of peeling MACKINE.................ccoceevereiivoiiiiniiiieieeiereeeeeeeae 51
Capture of Mevea 10 pool containing control information 52
Control voltage to simulated valve of linear feeder 53
Plot of actual speed of linear feeder cylinderooovcuuvevcuvennunnn. 53

LIST OF SYMBOLS AND ABBREVIATIONS

CAD
DB
RMC
SFD
CRC
STL
SCL
LD
FBD
PLC
FB
LVL
/O or 10
CPU
PC
HMI
TCP
1P
ISO
OSI
MBD
PID Controller
TIA

Computer Aided Design
Database

Real-time Motion Control
Start Frame Delimiter

Cyclic Redundancy Check
Statement List

Structured Control Language
Ladder diagram

Function block diagram
Programmable Logic Controller
Function block

Laminated Veneer Lumber
Input - Output system

Central Processing Unit
Personal Computer

Human Machine Interface
Transmission Control Protocol
Internet Protocol

International Standardization Organization

Open Systems Interconnection
Multi-body dynamics

Proportional-Integral-Derivative Controller

Totally Integrated Automation

vi

1. INTRODUCTION

Industrial automation has been developing on fast phase for past four decades. The driven
factor for fast development has been technological development, higher expectations
from the users and maturity of the industrial processing technologies (Mehta and Reddy,
2015). Modern production plants within manufacturing industries are continuously in-
creasing in complexity of the process and the product (Shahim and Moller, 2016). The
early test of the engineered automation solution is critical task to reduce the risks during
real commissioning and plant operation (Oppelt and Urbas, 2014). It has been proposed
that virtual commissioning can reduce the ramp-up time of the actual commissioning
(Hloska and Kubin, 2014; Oppelt and Urbas, 2014; Reinhart and Wiinsch, 2007; Shahim
and Moller, 2016).

There were few parties working on this project: mechanical engineer working on multi-
body mechanical models, group from Mevea Corporation working on motion controls of
the hydraulics, wood process model and visualizations of the model, Mevea also provided
the simulation software for the project. In this thesis the logic control and communications
between simulation and logics will be discussed.

Objectives of this thesis include the creation of functioning control interface for logic
controller to communicate with simulation. Another objective is to modify the original
control program to function with the simulation. Final objective is to find possible appli-
cations for such simulation environment.

This work can be used as reference for building a real-time simulation control interface.
This work will also work as reference for possible user of the program. Information on
practical challenges and programming decisions made in the project are also discussed.

1.1 Motivation

In this thesis control interface for real-time simulation of Raute smart peeling machine is
created. The simulation model is created using Mevea modeller which provides tools for
creating multibody system model for real-time simulation. The simulation uses so called
multibody dynamics (MBD) method. This provides means for simulating kinetics, dy-
namics and forces of multibody systems and creates a visualization of the simulation.
This multibody system can be simulated and controlled in real-time. Real-time simulation
provides valuable information of the dynamics and control of the system.

Simulations have been traditionally used to research the optimums of sub-processes.
These kinds of simulations need deep understanding in the specific sub-process to build
mathematical models of the process. For these simulation environments such as Matlab
Simulink can be used. These simulations are run offline, which means that modelled pro-
cess events are calculated for certain amount of time and the results of the simulation can
be seen afterwards. This way simulating 10 seconds of process can take from 2 seconds
to days to calculate. The counterpart for offline simulation is real-time simulation. Real-
time simulation refers to computer model that can be executed in same rate as actual real-
world time. This means that process that would take 10 seconds would also take 10 sec-
onds to simulate. It is easy to understand that modelling such simulation must be simpli-
fied to the point that the real-time constraint is achieved.

The Mevea solver, used in this case, calculates the mechanical process in real time. The
real-time simulations provide comprehensive data from the system dynamics, which can
be used in product development. The real-time simulation environment is claimed to be
the next generation for product development and product lifecycle management.

The primary motivation of this work was to create an interactive presentation for wood
processing fair called Ligna, kept in Hannover Germany 22-26.5.2017. After the fair the
work could focus on actual applications of simulation.

1.2 Justification

For the MBD simulation to function as a real time controllable system, the simulation
system need to be controlled somehow. The control is desired to be done by the PLC
program which would be normally used for the real system. This hardware-in-loop setup
with original control program should make the simulated system function as real system
would. This hardware-in-loop simulation should allow the testing of logic program
through simulation environment. In order to have this hardware-in-loop to control the
simulation, the communication between the hardware and the simulation is needed to be
defined. For a company to gain benefit of such a virtual machine, the virtual machine
applications are studied.

1.3 Problem

The problem that had to be solved this work was to make programmable logic controllers
(PLCs) to exchange data with the simulation in rapid and reliable manner to make control
system working. Another problem that is solved in this project, is to make peeling ma-
chine logic program given by Raute corporation to communicate and cooperate with sim-
ulation in a way that the original control software should be modified as little as possible.
Additional problem that had to be solved was to study possible uses for virtual machines
and consider if they could be applied in this scope.

1.4 Scope

This thesis focuses only on PLCs communicating with simulation and focuses on func-
tional communication interface. Other focus is to use the interface to control the virtual
machine using as realistic logic controls as possible. Realistic controls in this context
means that the actions in each stage of operation should imitate the operation of the real
system. Final focus of the thesis is to research possible applications for the simulation
system. The setup used in the thesis uses so called “hardware-in-loop” simulation since
the PLC hardware is present and not simulated.

The hardware in the project consists of two Siemens open controller PLCs (s1500 series),
Siemens HMI and conventional computer used for simulating. Some switches, network
switch and power supplies are also needed for powering the components. Programming
is done in TIA v14 environment. The hardware setup used is selected as it is for few
reasons; Raute corporation has interest in testing out migration to TIA v14 programming
environment for lathe programs, the logics are very compact and can be easily fit inside
the simulator bench setup and no excessive electronic cabinet is needed.

1.5 Limitation

The work on this thesis is limited to this specific peeling machine model provided by
Raute corporation, although some aspects of the control and communication interface can
be used for similar machines models. The controllers are limited to be Siemens s1500
series open controller PLCs, because the open controllers are easy to fit inside small space
within the small electric control panel boxes and the original code would be easier to be
migrated from siemens environment to another siemens environment. The used program-
ming languages are limited to the ones supported by the Siemens TIA environment, since
the Siemens’ open controller PLCs can only be programmed by those languages. The
simulation is limited to be provided by Mevea corporation and the communications are
only considered to the specific application provided by Mevea, however the control in-
terface on PLC side doesn’t restrict it only to work with Mevea simulation.

The control of the system that is considered in this work limits to the PLC control that
initiates the commands. The actual motion control algorithm is not considered in this the-
sis. Neither the mechanical modelling or study of real-time multibody mechanical system
simulation is not considered.

From the program logic all the safety features are removed from the system since they
are not considered interesting in this context. This includes all the pneumatic safety bolts
which hold the axes in position when hydraulics is off. Also, the centring of the block is
limited to so-called pre-centring, which only roughly centres the block to lathe spindles.

1.6 Outline

Chapter 2 contains literature review on the existing technologies that are used in this
work. These technologies are divided in three categories. First literature review on peeling
machine as part of plywood industry. Second, TCP/IP over Ethernet protocols are studied.
Finally, the virtual machine applications are studied in this context.

Chapter 3 describes the designed structure to make control and communication to work
with simulation. The communication is interface structure is explained in detail such that
each data field and its purpose in the structure is explained. Also, the commands that are
desired to be initiated are explained along with the purpose of the commands. Later in the
chapter the needed modifications to original program are discussed along with how the
modifications should be done. Finally, chapter 3 describes how the various virtual ma-
chine applications could be applied in this context.

In chapter 4 the results of the designed control interface are described. The results are
considered through the factors such as protocol stack efficiency, bandwidth usage and
average interval between communications. Lastly, in the chapter the control program and
the correct functionality are also considered through user experience and through exem-
plary command.

In chapter 5 the work is concluded by discussing what were the initial goals and how well
they were achieved. Chapter also proposes further work based on this thesis and on the
simulation environment as whole.

2. LITERATURE REVIEW

For literature review the plywood manufacturing is first studied in chapter 2.1. The ap-
plicable communication protocols are studied in chapter 2.2. Chapter 2.3 studies the vir-
tual machine applications. Chapter 2.4 sums up the state of the art of these three fields.

2.1 Plywood manufacturing

Plywood production is done in process-like steps from logs to veneer and from veneer to
plywood sheets. In the manufacturing process the yield is tried to be maximized by using
all the material as efficiently as possible. Also, the strength and qualities requirements
must be met in each of the process steps. (Varis, 2017)

The modern production process is long and complex, but latest machines have been au-
tomated so that operators may focus mainly on process monitoring and ensuring fluent
process. (Varis, 2017)

Plywood production process is a process of turning a block of wood in to a sheet of ply-
wood or LVL. The outline of plywood production can be seen in Figure 1, however it
should be noted that some of the steps may be done in different order. The average yield
of each process step can be seen in Table 1. It should be noted the yield drop in from
peeling to drying. Just showing the importance of good peeling process in terms of total
yield.

Table 1. The average yield of main process steps in modern plywood plant. (Varis, 2017)

Step: Birch Softwood tree
Log input 100 % 100 %
Debarked logs to cut 89 % 90 %
Cut logs to peeling 85 % 89 %
Wet veneer to drying 57 % 66 %
Veneer from drying 50 % 58 %
Veneer to lay up 43 % 54 %
Compressed veneer 41 % 51 %
Ready veneer 35 % 45 %
Yield 35 % 45 %

Veneer manufacture (peeling line)
Centering and Clipper
Debarker :h\arge'rr_ﬁ Tipple % l
[O T e
—| (5] (=]

Prooondlt.omng Lathe Stongo trays Green sort

Veneer drying and upgrading

. (Moisture
ﬁ del/ector Veneer plugging
=z
A -
:> I I (e E B2 [% '
Veneer dryer Dry sort Edge glueing
or stitching
Panel lay-up and finishing
R
Glue spreader —— ——
? ‘ — - 000 - — ~Z
o = i i Lz
Lay-up Hot press Panel grading Panel patching
table and overlaying

Figure 1. Outline of plywood production (Shi and Walker, 2006)

Early mills mid 1960's in the Pacific Northwest of the United States made plywood from
flawless, old-growth, large diameter logs (>1,5m) of Douglas-fir, which accounted 90%
of North American plywood production. The declining availability of large, high quality
logs has caused the need for use of smaller less efficient blocks in plywood manufactur-
ing. The less efficient, such as birch logs averaging 200-250mm are peeled down to 60-
65mm in diameter. (Shi and Walker, 2006)

As the log diameters were reduced, they had to be peeled much more efficiently. This
requirement in efficiency caused the development of automatic XY-charger (XY origi-
nating from the horizontal X and vertical Y movements of the charger) late 1980s’.

The veneer made from smaller diameter logs needs much repair work e.g. patching and
jointing represents about third of the work input. To add value two thirds of plywood is
processed by scarf-jointing into giant panels, by preservative treatment, by overlaying or
by adding a thick textured phenol-resin coat providing a non-slip pattern for flooring. (Shi
and Walker, 2006)

Peeling line is composed of XY-charger, veneer lathe, veneer conveyors, veneer clipper,
veneer stacker and stack conveyors (Varis, 2017). Veneer peeling line includes operations

from after log is cut to block and to drying of the veneer. The peeling line operations can
be split in to following steps: move the block to feeder, move the block to centring device,
centre the block, move the block from centring to lathe spindles, round-up of the block,
peel the block, collect the round-up waste, cut the veneer ribbon and the regular mainte-
nance of lathe knife. Depending on application the veneer ribbon can be dried as one
piece directly after the peeling or it can be first cut in to pieces after which the pieces are
conveyed to dryer. (Koponen, 1998)

The veneer used in plywood and laminated veneer lumber (LVL)-industry is produced
using veneer lathe. In the lathe the block of wood is rotated with constant radial velocity
simultaneously as the knife carriage is moving towards the spindle centre. The speed of
the knife carriage is relative to rotation speed and thickness of veneer: Knife carriage
should move 1,5mm forward each spindle rotation if 1,5mm is the nominal thickness of
wet veneer. The nominal thickness of such veneer as dry sheet should be around 1,4mm.
The most common peeling thickness of birch veneer is 1,5mm. The goal of peeling pro-
cess is to gain maximal yield of block while maximizing the capacity of the machine.
(Varis, 2017)

XY-Charger plays a crucial part in the plywood factory material consumption. To gain
the maximal amount of veneer out of the wood, the block must be centred and placed
optimally to lathe spindles. The centring happens in the machine before the lathe, which
is called the XY-charger. First is calculated so called pre-centring position, which gives
approximate diameter of the block of both ends of the block, the diameter is used to cal-
culate the retrieve positions for XY spindles. Once the XY spindles have retrieved the
block, XY spindles move the block under laser scanner, where they rotate the block one
round to gain perfect profile of the block. The profile is used to fit maximal spiral inside
the wood which is used to place the piece perfectly to the lathe spindles. As the optimal
position is known, the spindles are rotated and moved so that transfer arms, which move
the block from XY spindles to lathe spindles, move the block to lathe in perfect position.
This way minimal amount valuable surface veneer goes to waste and maximal count of
full sheets is yielded. (Varis, 2017)

The XY-Chargers have been developed from first laser scanning techniques, which used
point lasers with 300mm intervals, to curtain laser, which scanned with 25mm intervals
to HD laser fans, which have 3mm interval between lasers. The achievements in laser
scanning techniques have greatly improved the yield of the block. Basic principle of cen-
tring the block can be seen in Figure 3a, the block is first roughly centred by so-called
pre-centring after which the centring is done by spinning the block in centring spindles
one rotation to get full 3D scan of the block. Based on this information the block can be
placed in optimal position to lathe spindles. (Varis, 2017)

The improved measurement accuracy also provides more accurate position for knife car-
riage. This position is the position where it waits for the next block. The position should

be as close as the block as possible while not touching the block, this way knife instantly
starts peeling the block instead of “peeling air” as the knife carriage closes to block.
(Varis, 2017)

Latest XY-Chargers can also be combined with autocalibration. The autocalibration is
used to verify the measurement data of the scanner. The block diameter is scanned again
during the first rotation in the lathe spindles. This data can be used to find error caused
by wear of XY-charger components, and the error can be eliminated. It has been studied
that effect of autocalibration on yield is around one percent. (Varis, 2017)

The quality of the veneer will affect the following steps of the process and the quality of
the final product. The qualities of the veneer that can be affected by peeling process are,
toughness, smoothness of the surface, straightness of face of the sheet and compression,
just to name a few. For example, if the ply does not have straight or smooth surface the
gluing process would need more glue between the sheets. Despite the requirements in the
quality of the ply the production speed must not suffer and the yield of the block should
be maximized. (Varis, 2017)

Plywood is made by gluing together thin sheets of wood on top of each other with crossing
directions of grain. The usability of plywood sheet is mainly decided in veneer peeling
and the following steps. (Koponen, 1998)

The peeled ply is given many difficult requirements. Some of the requirements are de-
fined by the quality of the final product and some are set by the following steps of the
manufacturing process. The requirements set by quality of the final product can be based
on appearance, physical measures such as thickness and the strength of the veneer. Re-
quirements set by following manufacturing process are that ply must not be short or long-
ended for it to dry in a uniform manner. The gluing sets high standards for peeling: the
ply must have smooth surface and uniform in thickness so that glue spreading is success-
ful, and the usage of the glue is minimal. Also the ply has to endure all the handling in
the following steps so ply strength has great economical effect. (Koponen, 1998)

Process of rotary veneer cutting is essentially to cut perpendicular to grain with the knife
lying parallel to grain. The block is centred between two spindles on lathe and then rotated
against the knife. In so-called spindle-free lathe there is no centring used as there are no
spindles where the block should be centred to, the block is dropped on powered back-up
devices and the block is rotated by backup devices instead. The knife extends the full
length of the block. As the block turns and knife moves towards the block, thin continuous
ribbon of veneer is cut through the gap between the flatbar (or some cases rotating nose-
bar) and face of the knife. The quality of the veneer is determined to great extent by the
precise set up of the lathe. The complexity of correct knife setup can be seen in Figure 2.
In the figure the spindles (B) are rotating the block (A) against the knife (L) and flatbar

(F) which are moving towards the centre of the block at rate of peeling thickness each
rotation. (Shi and Walker, 2006)

B d@
Figure 2. Knife peeling variables (Varis, 2017)

Powered Bolt
back-up rolls

Figure 3. Some features of modern lathes (courtesy of Coe Manufacturing Co.,
Painsville, Ohio) (Shi and Walker, 2006)

The knife carriage is moved towards block at the rate of peeling thickness per each rota-
tion of the block as the peel is forced to go through small knife gap, the knife gap is
controlled by nosebar. Depending on wood type the knife gap is 10-15% smaller than the
desired thickness of the veneer. The compression causes veneer to be more solid and

10

higher quality. The compression of the veneer by nosebar causes a force pushing the block
away from the knife. This force causes block to bend so that the block is thinner from
middle. To counteract this force backup rolls are used. The backup rolls support the peel-
ing from behind the block, causing opposite force towards the knife, preventing the block
to bend. If there is too much pressure from backup rolls however, the block may bend the
other way, causing veneer to be thicker from the middle. Uneven thickness of veneer is
considered to be poor quality. The rolls that are used as backup device, are powered to
rotate. This rotation is to help the spindles rotate the block, or sometimes even rotate the
block alone with rotating nosebar. The rotation is needed to counteract the knife cutting
force. This knife cutting force can cause so called spinout. Spinout causes the spindle to
start “drilling” in to block as the knife force causes the spindles to slip from initial grip
position. This happens when knife peeling torque exceeds the supporting torque of spin-
dles and back-up rollers. (Koponen, 1998; Shi and Walker, 2006)

2.2 Industrial communication systems

Computer network is a group of computers that share information over communications
link (Delamer and Martinez Lastra, 2007). These networks in control systems are used to
connect devices that are connected to accomplish a certain task. The tasks require ex-
change of information between devices to be completed. (Alani, 2014) These devices can
be computers, logics, printers, frequency converters, smart-sensors and smart-actuators.
The advances in electronics miniaturization and lowered costs of networking infrastruc-
ture enable interconnecting even the smallest devices to network (Delamer and Martinez
Lastra, 2007). Two systems can be called interconnectable if they share the same stand-
ard. However this interconnectability does not guarantee that the systems cooperate.
(Wilamowski and Irwin, 2011)

Within the industrial world the networks are called industrial networks as there are vari-
ous networks in use, each of which are designed for different types of tasks. Some of the
networks provide fast and reliable transmission for small amounts of data and some pro-
vide high rate of data but unreliable timing. However, the Ethernet based connections
promise a single technology that covers the needs of all requirements of industrial appli-
cations (Delamer and Martinez Lastra, 2007).

The communication between devices have many similarities to the communication
among human. Instead of usually hard-to-understand human logic, controllers have CPU
that make the decisions. The CPU is programmed to follow set of instructions, much like
human following cooking recipe. However, the controller can’t finish the task by itself; it
needs sensors to tell the state of the process and actuators to affect the state of the process,
and usually the controllers need to exchange data among other logics to finish the task.
To achieve this data exchange with various devices, controllers need various connection
mediums.

11

The information that is exchanged between devices is sequences of bits that are con-
structed and interpreted by programs that are ran on these devices. In computer networks
these bit sequences are called packets. Packet contains control information that the net-
work uses to do its job and sometimes also includes user data. Such control information
can be packets destination and senders address. (Donahoo and Calvert, 2009)

“The term protocol denotes a set of rules that govern the communication on the same
level” (Zurawski, 2015). These rules tell how packets should be structured; where the
destination information is in the packet and how big the packet is as well as size of the
actual message. A protocol is usually designed to solve a specific problem using given
capabilities, however some protocols can be very versatile. As example internet protocol
(IP) solves the problem of individualizing each device in the network and finding each
device in the network. (Donahoo and Calvert, 2009)

Implementing actual network for information transmission requires solving large number
of problems. To keep things manageable, different sets protocols are designed to solve
different sets of problems. TCP/IP is such set of protocols, often this kind of set of proto-
cols can be called a protocol suite. (Donahoo and Calvert, 2009)

If message or a packet is wanted to deliver over network, common protocols among par-
ticipants are needed. The protocols used for specific communication is called protocol
stack. The generalized stack for communication is defined in the OSI model, name orig-
inating from open system interconnection model.

The OSI model was introduced by ISO foundation. The OSI model was created to coun-
teract the lack of interconnectability among different fieldbus standards. To simplify the
handling of complex task of data communication it was decided in the committee to par-
tition it to hierarchical layered model. The significance of the OSI model and its value for
practical use came from the consistent implementation of three essential concepts; proto-
col, service and interface. The definition of protocol has been described in previous chap-
ter. The service represents any service that’s made available by one layer to layer above
it. The layer below is called service provider and layer above is called service user. OSI
model only defines their functionality, not how they are implemented. The interface is
between every two layers, this specifies which services are provided by lower layer to
upper layer. (Zurawski, 2015)

In the OSI model the protocols in the stacks are called layers. Seen from the logical per-
spective, each of the layers communicates horizontally with corresponding layer in the
other end. Layers don’t communicate vertically with layer above or below. They take
request from upper level layer, process and possibly add its own overhead to it and make
request to pass the message to lower level layer. This happens until the lowest, physical
layer, is reached and the data transferred. Upper level n+1:th layer is called service user
for n:th layer, whereas the n:th layer is called service provider for the upper layer, this

12

applies to all layers except for the physical layer, illustrated in Figure 5. (Wilamowski
and Irwin, 2011)

The packet can go through hubs and switches where the three lowermost layers are de-
crypted to read information of the receiving end, then decrypted again (see Figure 4).
Once the message has been received in the other end, the packet is passed from "down to
up". The protocols parse their own overhead from the message and pass it onward to
upper layer until application layer is reached, where the data packet is read. (Wilamowski
and Irwin, 2011)

Receive process

Transmit process

Application | 41 lication protocol < AH] A-PDU | Application | pyooco00
layer - . - m layer .
Presentation | p oo eaeion protocol m p-ppy | Presentation
layer layer
Session Session protocol m S-PDU Session
layer layer
T'|3“5P°rt Transport protocol ~-————TH| Data |— T-PDU Tr?n5port Telegram
ayer ayer
Network | Njetwork protocol <—{NHI Data l—— N-PDU Network Packet
layer layer
Dal:’:irnk Data link protocol Q—ILHI Data ILTI—D L-PDU DT::_nk Frame
P};:;:_al Bit transmission <—| Bits I'—b P}l‘:;:_al
K protocol)

Figure 4. Communication in OSI model (Zurawski, 2015)

Response Indication

Request Confirm

..........

Figure 5. Predefined service primitives (Wilamowski and Irwin, 2011)

13

2.2.1 Ethernet

Ethernet covers the layers 1 and 2 of the OSI model. It defines the physical transfer char-
acteristics, such as type of cable, connectors and signal modulation. Ever since the first
invention of Ethernet by Xerox in 1970s the physical layer has been evolved to provide
faster connection (higher baud rate), but most implementations still utilize the same data
link layer implementation that was standardized in 1982. (Delamer and Martinez Lastra,
2007)

Standard Ethernet is a so-called packet switching network (not to be confused with
switched network later in chapter). This means that data is transmitted in smaller packets
or frames. Each of which contain all required information, such as receiver and sender
address. The packet can be from 64 to 1526 bytes long. The Ethernet / IEEE 802.3 frame
is composed of 7 parts (Figure 6) described in detail below:

1. Preamble, 7 bytes for synchronizing sender and recipient (1010...1010)

Start Delimiter, 1 byte for signalling that message starts, ends with two ones

(10101011)

Destination address, 6 bytes for destination MAC address

Source address, 6 bytes for sender MAC address

. Length / Type, 2 bytes describing frame length in IEEE 802.3 or Type in case of

Ethernet II frame (0x0800 for IPv4 datagram)

6. Data block, 46-1500 bytes of user data, which contain the data and headers of
higher layer protocols. If the data is less than 46 bytes, the data block will be
“padded” to be 46byte long.

7. Checksum, 4byte checksum is generated to check the correct transmission of data.

Do W

Preamble | SFD |Destination| Source Type Padding | FCS
10101010...| ...11 | Address | Address | 0800 | Information-IPDatagram | (jfReq.) (4 octets

= =
Figure 6. Ethernet frame split in parts. (Miller and Cummins, 2000).

After transmission of one packet on wire there must be a gap of 12 bytes called inter-
frame gap (IFG for short, also called interpacket gap by some sources) before sending
another packet on wire.

The packet parts apart from data block are called “overhead” and data block is the actual
message. The DIX Ethernet frame format is the same with the difference that instead of
2 bytes of length there is be 2 bytes for data type (Pigan and Metter, 2008).

The MAC (Media Access Control) address is used for reaching stations in the network.
A MAC address is given by hardware vendor to each Ethernet interface. First 3 bytes of
the MAC address are used to identify the vendor and the rest can be freely assigned by
the vendor. This address is unequivocal worldwide. MAC address is also known as hard-
ware, station or Ethernet address. This address usually coded in hardware and usually
cannot be changed to avoid address conflicts in a network. (Pigan and Metter, 2008)

14

In the physical layer the Ethernet needs to convert the bits to electrical signals on the
coaxial cable. In the original 10BASES version of Ethernet which transmitted 10Mbit/s
used Manchester encoding to encode the original data to signal, the Manchester encoding
uses rising and falling edges of signal to represent logic 1 and 0, requiring frequency
double of the baud rate (i.e. 10Mbit/s requires 20MHz frequency). Manchester encoding
solves the issue of the long “silences” during long sequences of ones or zeros, these long
sequences are easily misinterpreted by the receiving end. (Delamer and Martinez Lastra,
2007)

With higher baud rates, reduced bandwidth is desired while still avoiding the silences
caused by long sequences of ones or zeros. In later version, such as I00BASE-TX use 8-
wire cable with twisted pairs instead of coaxial cable. The 100BASE-TX uses 4B5B to
encode the data. 4B5SB modulates the 4bit sequences to 5 bits, each of the 16 variations
of the 4bit sequence having unique 5bit code, which are selected so that the change of
value happens for certain. (Miller and Cummins, 2000)

As major problem associated with twisted pair wiring scheme is that as the signal levels
need to be strong enough to be reliably interpreted over twisted cable pair, the wire radi-
ates electromagnetic interference (EMI). If one attempts to use 125Mhz signal directly on
twisted pair media, the specifications for energy radiation would exceed the limits of Fed-
eral Communications Commission (FCC) and CENELEC. To overcome this EMI radia-
tion issue 100BASE-TX introduces a sublayer which employs MLT-3 (Multi Level
Transmission — 3 level) as another encoding before transmission. MLT-3 modulates the
signal so that it has three states (Positive, zero and negative) and the signal changes states
only if “1” occurs. As the transition happens only with “1” and there are four transitions
(positive to zero, zero to negative, negative to zero and zero to positive). This means that
MLT-3 modulates the message so that the message has maximum fundamental frequency
of 1/4" of the original. As the 4B5B would increase the frequency from 100MHz to
125MHz as it increases the bit count by one fourth and MLT-3 divides it to fourth of the
modulated signal. The resulting signal has maximum fundamental frequency of
31,25MHz. (Miller and Cummins, 2000)

The collisions within the Ethernet are caused by devices trying to send messages simul-
taneously and causing the messages to become corrupted. The collisions happen more
often the more devices are connected to same “collision domain”. These collision do-
mains were defined by the number of devices connected to the same bus. In the early
versions of Ethernet used thick coaxial cable for transmission. Current fast Ethernet uses
Cat 5 cables, which uses two cables for sending and two for receiving, providing full
duplex features and changing the topology from bus to star. The older coaxial cable ver-
sions of Ethernet needed to solve these collisions by using Carrier Sense Multiple Access
with Collision Detection (CSMA/CD). To avoid collisions and resolve collisions
CSMA/CD defines a set of rules on how to act to avoid and to resolve collisions (Delamer

15

and Martinez Lastra, 2007). These collisions were caused the Ethernet to be non-deter-
ministic and thus not desirable for industrial applications. However, introduction of
switched Ethernet allowed to use Ethernet on industrial applications as it provided needed
determinism (Henning, 2016). The switch will keep queue of outgoing frames for each
connected endpoint in case frames from multiple sources are directed to same destination
arrive at the same time. This avoids collisions and lost packets, providing efficiency of
nearly 100% of the available bandwidth (Delamer and Martinez Lastra, 2007). As the
Siemens Profinet devices provide integrated switching, meaning that each device may
function as a switch, the Profinet network (or industrial Ethernet network using Profinet
devices), can be set up as fully switched network (Pigan and Metter, 2008). Fully switched
network means that network is set up so that there is only a single device in each collision
domain (one device can’t collide with itself), thus providing fully collision free network
even with bus and tree topologies if switching devices are used (Pigan and Metter, 2008;
“PROFINET System Description, System manual,” n.d.).

2.2.2 TCP/IP protocol stack

The TCP/IP (Transmission control protocol/Internet protocol) protocol family was origi-
nally developed by DARPA (Defence Advanced Research Projects Agency) in the sev-
enties. Original objective was to allow computer systems to communicate freely, regard-
less of the location. TCP/IP protocol is currently most widely used protocol family in
offices, homes and industrial environments. (Pigan and Metter, 2008) The TCP/IP proto-
col suite is also known as the Internet protocol suite, as TCP/IP is most widely used
standard in the Internet (Edwards and Bramante, 2009).

TCP/IP is a suite of protocols which consists of two main parts. Transmission control
protocol (TCP) controls the transmission and the actual data transfer. Internet protocol
(IP) is used to uniquely address a computer in a network. The TCP/IP is considered as a
suite of protocols that work in concert to provide wide range of functionalities that we
now take for granted. Figure 8 shows some of the TCP/IP related protocols and the inter-
dependencies of the protocols. (Miller and Cummins, 2000) Also UDP is considered to
be major part of TCP/IP protocol family. (Donahoo and Calvert, 2009; Pigan and Metter,
2008)

The TCP/IP protocol suite is mapped to four layers each of which can be cross-referenced
to seven-layer OSI model. Figure 7 illustrates the mapping of the TCP/IP model to OSI
reference model. (Edwards and Bramante, 2009)

e The network interface layer corresponds to the physical and data link layers of the
OSI reference model. The network interface layer is responsible for the device
drivers and hardware interfaces that connect node to transmission media.

e The Internet layer corresponds to the network layer of the OSI reference model.
Internet layer is responsible of delivery of packets through network, nodes that

16

perform functions on this layer are responsible for receiving a datagram, deter-
mining where to send it and forwarding it towards its destination.

The transport layer corresponds to the transport layer of the OSI reference model.
Two primary protocols function on this layer, TCP (as the name implies) and
UDP. These layers are responsible for successful data flow between nodes within
a network.

Application layer corresponds to the application presentation and session layers
of the OSI reference model. Users initiate a process that use an application to
access network services and on the other end, lower layers receive the data and
pass it up to application for processing for the user. This layer concerns with the
details of the application itself and not so much about moving the data.

oS! TCP/P TCP/IP Protocol Suite
Applicatior Telnet FTP DNS
Presentation Application SMTP SNMP TFTF
Session NFS NS DHCP
Transport ‘ Iransport I TCP UpP
Network nternat [IP | RIP | IGMP [ICMP] OSPF
11 1 AT) Fthemet | HDL(PPP
13 Link ”"‘"\X""'. ATM tthemet LU |
nterface o - o | R
Physical Interiac Frame Relay | Token R 0| DD
L J

Figure 7. TCP/IP suite and OSI model (Edwards and Bramante, 2009)

17

Ow

Application Layer

User Datagram
Protocol
(UDP)

Transmission Open Shortest
Control Protocol Path First
(TCP) (OSPF)

Transport or Service Layer

Internet Control
Message Protocol
(ICMP)

Internet Protocol (IP)

Address Resolution Protocol (ARP) I

fSmomsn oz
Network or Routing Layer

l Point-to-Point
Protocol (PPP)

Ethernet/802.3 I Token Ring/802.5 I FDDI I WAN
Technology

Network Access Layer
Figure 8. Major protocols of the TCP/IP protocol suite. (Miller and Cummins,
2000)

Internet protocol, is used to transfer datagrams or “data packets” from endpoint to end-
point across one or more intermediary nodes. In contrast to Ethernet where frames are
transferred from endpoint to endpoint directly through LAN, an IP packet is expected to
go through several LANs before reaching its destination. An IP packet can even use dif-
ferent layer 1 and 2 networks along its path. Station which wishes to communicate with
another station needs to be identified with unique IP address. Unlike in Ethernet, this IP
address is not hardware dependant. (Delamer and Martinez Lastra, 2007; Pigan and Met-
ter, 2008)

The Internet protocol is connectionless service with unreliable datagram service, meaning
that not correctness of the data nor sequence, completeness or unambiguity of the data-
grams is checked at the IP level. The correctness and acknowledgements are done in TCP
which is typically used together with Internet Protocol. (Pigan and Metter, 2008)

Similarly, as the Ethernet frame, IP has its own frame, which has data and overhead.
Frame has minimum length of 20 bytes and its most vital parts are the 32bit source and
destination IP addresses. The packet structure of IPv4 frame can be seen in total in Figure
9. (Delamer and Martinez Lastra, 2007; Pigan and Metter, 2008)

18

Bit 0 4 8 16 31
Byte 0 | Version [[HL l Type of service Packet length (bytes)
Byte 4 Identification Flags Fragmentation offset
Bvte 8 Time to live I Protocol Header checksum
’ - Header
Byte 12 Source IP address
Byte 16 Destination IP address
Byte 20 Options [Padding
User data - Data

Figure 9. Structure of IPv4 packet (Pigan and Metter, 2008)

The IP addresses defines logical network addresses for the TCP/IP protocol suite. This
address must uniquely identify an IP endpoint. Unlike the MAC address used in Ethernet
the IP address is not hardware dependant. Sometimes IP address can be also identified by
more familiar name called domain name which is more commonly known as “internet
address” as the name is sequence of text strings separated with dots such as “www.Com-
panyName.com”. As the internet protocol needs 32bit address, DNS (Domain Name Sys-
tem) can be used to determine 32bit IP address for given domain name. (Delamer and
Martinez Lastra, 2007; Pigan and Metter, 2008)

Two major extensions to IP are the Internet Control Message Protocol (ICMP) and Ad-
dress Resolution Protocol (ARP). As the TCP/IP doesn’t introduce underlying network
technologies and existing technologies such as Ethernet and Token Ring are used, there
is need for address translation since these rely on addressing structure that is incompatible
with address structure of IP. In the case of Ethernet, ARP resolves the MAC address of
the corresponding IP address. The ICMP provides an error messaging capability and ru-
dimentary routing and reachability function. ICMP provides two important diagnostics
tools, ICMP “Echo Request” — Ping and Traceroute. Receiver of ICMP Echo Request
packet must send it back, making it Echo reply. The mechanism provides easy checking
of availability of certain address. Traceroute provides a mechanism to figure out how
many intermediary stations are needed to be crossed before the destination is
reached.(Delamer and Martinez Lastra, 2007; Miller and Cummins, 2000; Pigan and Met-
ter, 2008)

Transmission control protocol, or TCP for short is the part of the TCP/IP protocol suite
that controls the transmission of data. It takes place on 4" or the transport layer of OSI
stack, above the network layer where internet protocol lies. The TCP provides reliable
data transmission to higher layers. The purpose of the TCP is to segment the data into
units that fit in to IP packets and may be retransmitted lost packets without the two end-
points using TCP not knowing that the data is split in to smaller packets. Two endpoints
using TCP simply see continuous flow of data, which is guaranteed to be reproduced at
the receiving end without loss of information. (Delamer and Martinez Lastra, 2007)

19

TCP passes the data in units called segments to IP layer. When TCP splits a message, it
uses the sequence number to reconstruct the message at the receiving end. If one packet
of 500 bytes is set to be sent as two 250byte packets TCP sends first message with se-
quence number of 1, and the second packet with sequence number 251. Depending on the
case the receiver will respond to first message with ACK 251 and to second ACK 501, or
simply acknowledge both packets by ACK 501. (Delamer and Martinez Lastra, 2007)

Bit 0 16 3]
Byte 0 Source port | Destination port
Byte 4 Sequence number
Byte 8 Acknowledgement number
Byte 12 Offset Reserved Flags Window
Byte 16 Checksum Urgent pointer
. 2
Byte 20 Options -
I Padding
Data

Figure 10. TCP packet structure (Pigan and Metter, 2008)

In Figure 10 the TCP packet structure can be seen. The source and destination port de-
scribe the source and recipient (application) in the target host provided by IP address. The
32bit sequence number ensures the correct order of the data stream and acknowledgement
number is used to acknowledge the sender of successful sending of packets. Flags are
used to inform the recipient of what the message contains (example: does the package
acknowledge something or want to start or close the TCP connection). The window field
specifies the maximum amount of data that can be sent without acknowledgement.
(Delamer and Martinez Lastra, 2007)

TCP defines concept of port to distinguish between different connections in the same
device. Each connection is assigned a port number at the sending host and at the receiving
host, the port numbers don’t need to match in both ends but need to be constant during
the lifecycle of TCP connection. As an IP packet arrives to host containing TCP segment,
port number is used to place the TCP packet to correct stream. The TCP port is often
addressed using combination of IP address and port number (for example 192.168.0.12:
8080). The combination of IP address and port number can also be referred to as a socket.
(Delamer and Martinez Lastra, 2007; Pigan and Metter, 2008)

A socket is an abstraction which an application may send and receive data through, sim-
ilar as open-file allows application to read and write data to storage. A socket allows an
application to connect to the network and communicate with other applications that are

20

connected to the same network. Information written to socket by one application can be
read by another application and vice versa. (Donahoo and Calvert, 2009)

Socket itself is not a protocol nor does take a part in the OSI model. Socket provides an
interface from transmission control layer to higher level layers. Socket is used to abstract
the lower layer protocols to be easily used by application layer. This abstraction allows
programmer to generate an object with parameters that define which protocols are used
and where to find participant. In the case of TCP/IP protocol suite, IP address and port
number are needed to find participant. Once the object of socket is created, it can be
referred as object and called to connect, send and receive messages or to disconnect. The
server needs to be started and listening to the port before the client can connect. Once the
client sends connection request and first package, the server will, in this case reply with
package to each package sent by client. Client and server can be configured so that both
replies to each message sent by other, so client nor server can be distinguished one from
another after the first message. The classical server — client roles can be distinguished by
client being the first one to start the conversation or to end the conversation. (Donahoo
and Calvert, 2009)

Socket

Host Router Host

Figure 11. TCP/IP protocol with socket interface (Donahoo and Calvert, 2009)

When talking about socket, we are talking about file descriptor that allows us to read and
write data from. This file descriptor needs parametrization to function correctly. As the
socket is using TCP/IP stack, it needs to be parametrized accordingly. Server needs to
know which port it is listening to, so it can separate incoming messages from others.
Secondly server needs to know the socket type. Socket type is usually stream or datagram,
the one is for TCP and another is of UDP in that order. The socket needs to know if it is
the active or passive participant of the connection. Server is set to be passive since it
typically is not shutting down the connection. Once the server is parametrized, it needs to
bind the port to be listened. Once the binding of the port is successful the file descriptor
is created, and the port cannot be bound by other applications. Once the file descriptor is
created, it can be set to listen to incoming connections and messages to its port. Client
side will need this port and address of the server to connect to the server. When client
creates a socket for communicating with other socket, it will open a free port where it can

21

receive messages itself. Upon sending a message to server, the client will send its own
address and port to the server, so the server can respond to correct participant. Depending
on how the client and server are built both sides of the connection can send and receive
messages.

2.3 Virtual machine applications

As the simulation system is developed, the possible applications for virtualization of ma-
chine can be discussed. Ideally the virtual machine could be used throughout the whole
product lifecycle. Early in the design phase of new machine, the concepts of virtual pro-
totyping can be used. Before actual commissioning the concept of virtual commissioning
can be used to make the actual commissioning go faster. During and after commissioning,
virtual training environment can be used to train operators of the machine learn to operate
faster. In the following chapters various VM application concepts are discussed.

“Virtual prototype is a computer simulation of a physical product that can be presented
analysed and tested during design, engineering, manufacturing, service and recycling as
if on a real physical model.” (Wang 2002, ix. sit. Leino 2015)

All industrial sectors are confronted by challenges to design better high variety of prod-
ucts to variety of customers (Ameri and Dutta, 2005; Auweraer et al., 2008). These prod-
ucts need to be delivered in shorter time and in lower product and design cost (Auweraer
et al., 2008). As the need for development grows, so needs the knowledge and expertise
for development grow as well (Ameri and Dutta, 2005). Monolithic design teams can no
longer efficiently manage the product development so to avoid lengthy product develop-
ment systems, higher development costs and quality problems (Ameri and Dutta, 2005).
Collaboration across distributed and multidisciplinary design teams has become necessity
(Ameri and Dutta, 2005). It has been claimed that virtual prototyping shortens the product
development cycles, reduces product development costs, enables better decision making
and higher quality of the product. (Leino, 2015)

In virtual prototyping virtual product models or computer simulation models of the prod-
uct are used instead of or in addition of the physical prototype. Virtual prototype is com-
puter simulation model of the product prototype that is used in the virtual prototyping.
This work is focused on real-time interactive models that can be controlled by external
logic. The problem of virtual prototyping is to justify the decision to go through virtual
prototyping since it is difficult to measure quantitative value such as money. There are
too many variables affecting the benefits and costs of virtual prototyping and resources
create value only when they are put into use and combined with skills and knowledge.
The quantitative objects that add to the value could be number of engineering changes,
cost of physical prototyping, calendar time of product development and number of safety
problems. The more problems are identified and changed in virtual prototype, the less

22

problems occur in physical prototype. Similarly the cost of creation of virtual prototype
will be quantified. (Leino, 2015)

Quantitative methods for measuring value of virtual prototyping can be difficult to meas-
ure, so qualitative measures might be interesting. The main proposition by work of Leino,
2015, is that value of virtual prototyping is manifested by its position as an intermediary
object and a medium for improved communication and knowledge creation. The added
value of a virtual prototype is derived from the facilitation human interventions, oppor-
tunity to make mistakes and learn with immaterial prototypes, compared to conventional
trial and error physical value chain. (Leino, 2015)

Usual problem with logic programming is that it can only be tested once the plant has
been installed. This causes longer times on site on actual commissioning. (Ko and Park,
2014) The three most significant drivers in automation industry that have higher impacts
on automation industry are “Deadline control”, “Risk of delay and interruption during
ramp up” and “Software quality in relation to future operation”. (Shahim and Moller,
2016)

Virtual commissioning involves replicating the behaviour of one or more pieces of hard-
ware and software environment. The virtual commissioning is the action of commission-
ing the PLC code against simulated system. The simulation requires the same behaviour
as the real production system, this behaviour includes movements, signals, material flow
and safety parameters. The simulation can confirm that the robots and other automated

machines work as expected which will reduce commissioning time. (Markovi¢ et al.,
2015)

If the program could be tested before it is used on site, the commissioning time could be
potentially reduced. The virtual commissioning is proposed to do just that, as the virtual
machine (or even plant) is made to imitate the actions of actual machine. (Ko and Park,
2014) A project going through virtual commissioning (VC) has been studied to experi-
ence less interruptions in the ramp up and make it possible to hand over the entire system
to customer on time. (Shahim and Moller, 2016)

Human errors often occur when operator is working under high time pressure and when
performance requirements are high (Vieira et al., 2010). The staff-training objectives in-
clude, better operating of the system, increase safety, anticipate incidents and reduce risks
of faulty procedures and manage efficiently in emergency situations (Bartak et al., 2000).
Operating training simulators use mathematical models capable of simulating the real
process in a realistic manner to allow efficient training in the virtual environment (Ger-
lach et al., 2016). The practical operator training is fundamental and critical in terms of
effort, time, costs, hazard and to the equipment itself (Vergnano et al., 2017). It has been
suggested, that interactive training introduced via a computer has been reducing training

23

time and been more cost efficient compared to traditional classroom lectures (Stone,
2001).

For a system to work correctly in faulty scenarios, all the fault scenarios and responses to
fault scenarios must be tested. Testing of the faulty scenarios in PLC programming is
often done by hand and without systematic workflow. To find a way for systematic test-
ing, one can look in to conventional software development. In conventional software de-
velopment, there are something called asserts are used during unit testing. These asserts
are used only during software development, and they can be used to tell if the block is
working incorrectly in certain scenario. These asserts are done by giving a partial program
called unit a various sets of input parameters and checking if the unit outputs a correct
response to given set of inputs. In PLC programming there is hardly any common practice
for such testing, possibly due to the fact that asserts are not supported by development
platforms. (Rosch and Vogel-Heuser, 2017)

For similar kind of testing fault injection principles could be implemented for testing in
simulator environment. In simulator environment three kinds of fault injections can be
implemented, software-implemented fault injection (SWIFI), Hardware-implemented
fault injection (HWIFI), model implemented fault injection (MIFI). While SWIFI and
HWIFI are used on prototypes or system testing, MIFI is used in conceptual design phases
to give early feedback to engineers. (Rosch and Vogel-Heuser, 2017)

Fault injection is composed of four parts:

Fault(s) "F" that are injected

A set of activations "A"

The readouts "R"

The actions or measures "M" that are derived from F.A.R.

Faults are usually based on hardware or human error. Hardware errors can be imple-
mented on simulator side and software errors can be implemented in PLC software. The
simulator makes it possible to check how the logic works in those scenarios without
breaking the machine or risking the safety of workers. Even automated fault testing could
be implemented to check all the interesting scenarios in the system every time program
is changed. (Rosch and Vogel-Heuser, 2017)

As example, SWIFI means injection of error to software, HWIFI can be a forced pin for
example and MIFI can be implemented to simulator model as faulty hose for example
(Rosch and Vogel-Heuser, 2017).

24

2.4 State of the art

There is constant development on plywood manufacturing, and the development is going
towards better yield and lower downtimes of the machines. The better yield is gained
through better centring optimization of the block, reducing the core size of the block and
trough development of the blade settings to increase the peel quality and reduce the spin-
outs of the blocks. Current modern peeling machines typically peel from 5 to 20 blocks a
minute, this rate depends highly on the block size and the type of the peeling machine.

The industrial communication is going towards Ethernet based communication protocols.
The lean towards Ethernet based communications can be explained by the higher data
rate provided by the Ethernet which is needed to excavate more data from the system to
cloud applications and monitoring. These applications typically use TCP/IP protocol fam-
ily for communication.

The simulations systems and applications are rapidly growing for industrial applications.
Various vendors provide different platforms for mechanical modelling as more and more
companies are interested in creating simulation of their machines. The reason for the in-
terest is the claimed benefits of the simulation, the system can be prototyped in safe en-
vironment to avoid collisions, the operators can be trained faster, and the program can be
tested before commissioning to verify correct functionality.

25

Table 2. State of the art in virtual machine industry, industrial communication system
and plywood industry
Virtual machines | Industrial com- Plywood machine
munication sys- industry
tems
State of the art Building a virtual Various industrial | Highly automated

machine is costly
but promises of

buses and proto-
cols. Protocols gen-

high efficiency ma-
chinery (Varis,

typing and for vir-
tual commission-
ing.

give promise to
meet all the needs
(Delamer and Mar-
tinez Lastra, 2007).

beneficial applica- | eralized by OSI 2017)
tions (Shahim and | model.
Moller, 2016)
Current trends Using virtual ma- Ethernet based Higher personnel
chines, for proto- communications efficiency and

higher quality of
the end product
(Varis, 2017)

Current chal-
lenges

Technological ad-
aptation in the
companies. Com-
panies need new
type of expertise.
(Reinhart and
Wiinsch, 2007)

Changes to new
technologies in in-
dustries is slow.

Alternative prod-
ucts such as OSB (
Oriented Strand
Board) (Varis,
2017)

26

3. DESIGNING CONTROL SYSTEM FOR SIMULA-
TION

In this chapter the work to be done is designed and the taken decisions are reasoned.
Chapter 3.1 describes decisions made to the control interface and how the interface should
be composed and how it should be used. Chapter 3.2 considers the needed changes that
are to be done to the control program for it to work with simulation. Chapter 3.3 considers
how the virtual machines could be applied in this context.

3.1 Defining interface

The interface in this case means the set of data that is exchanged between the two partic-
ipants. So altogether there should be four data sets defined in this project one incoming
and one outgoing for both PLCs (from PLCs perspective). The outgoing interfaces are
used to control the axes and the incoming interfaces are used to give measurement infor-
mation from the simulation system.

This interface can be defined in multiple ways for same application and the same interface
can be used differently. As example the interface could only send one axis data at a time
making the interface somewhat small. Also, the same interface could be used differently;
the data could only be transmitted only when a value is changed, instead of periodical
data exchange. From the examples it can be easy to understand, that changing the inter-
face definition or the way it is used can change the program that use these interfaces,
proving the earlier made claim that the interface should be defined early in the develop-
ment process.

The environment where the communication interface resides can be seen in Figure 12.
The data is exchanged with the Mevea IO clients which map the data to Mevea 10 pool
which is read by the simulation and the real-time control script (python code) and which
write the status information back to the output pool which is mapped and sent back to the
PLC by the Mevea 1O client.

Although the interface should be defined early in the development process, doesn’t mean
that it cannot be altered later in the process to get more information from simulation or to
add more axes to be controlled by the interface. Although in this case, all the new features
are suggested to be added to the end of the interfacing data structures, as the data added
to middle of the structures is more prone to human error.

The communication interface selection is simple, since the only communication protocol
each of the devices support is TCP/IP socket. The Mevea IO interface supports CAN
protocol and the use of TCP/IP socket. The Siemens’ systems don’t support CAN without

27

external devices. Since the TCP/IP is believed to provide sufficient information exchange
rate through Ethernet, the TCP/IP socket is selected to be used over Ethernet.

Although the TCP/IP socket doesn’t provide robust communication in timely manner, the
deviation is believed to be sufficiently small since there is no hard-real-time requirement
for the communication.

PC side

/’ \ s R
Mevea IO pool J Python code
I o

A

hJ

s ~
Input Qutput
pool poo Simulation
o
Data
mapping 4‘
Mevea IO client
Y A
TCPAP

—| communication

[i
4 lcharger PLC M 4 l Lathe PLC ‘ M

-, -,

Send ‘
DB

Send ‘
DB

Receive
£B

Receive
£B

- e

Figure 12. Communication system where designed interface resides

28

3.1.1 Sending command to simulator

The interface that is defined between PLCs and simulation is used to control the axes in
the simulation. The motion control of the axes is done by scripts. The scripts are written
in python language. The embedded python environment to Mevea solver allows the script
to read and write to variables in the model. The script files are included in the simulation
model and linked to the variables, which they are controlling. These scripts are called
every simulation cycle and thus can be used for real-time motion control of the simula-
tion. Each controlled axis has its own script for motion control.

The control system interface is designed to imitate the motion control program used in
the real machine, in our case the real-time motion controller is Delta RMC. The com-
mands in Delta RMC are initiated by command number. In the controller this command
number is the key value to structure which contain command specific data, such as com-
mand type, control parameters and control values. The Delta RMC takes command num-
ber as input along with possible variables if for example the target position of the com-
mand varies. Delta RMC receives the axis position typically from absolute position sensor
for the feedback, which is needed for control.

Instead of the command number, several control data structures are sent to simulation 10
interface. One control data structure contains 5 bits and 5 control values, this control
structure is described in detail in the following chapter. There are also reserve bits and
reserve values in the interface, which make interface modifications easier to manage on
PLC side. Bits in the control data structure are used to indicate the type of command needs
to be carried out. Real values in the control data structure describe the parameters the
command needs to use.

The commands always start with rising edge of execute bit. Rising edge of signal means
the change of signal state from logic “0” to “1”. In principle, it should be enough for this
execute bit to be on until the next TCP packet is sent. As the functioning of the script is
non-deterministic the signal is held as logic “1” for 500ms to ensure that the signal is
received. As a result, one cannot initiate commands to one axis at higher rate than 2/s.

3.1.2 Control parameters

To make correct movement in right situation the system needs to send right parameters.
In this chapter each bit and control value are explained in detail.

Commands are composed of two parts. Control bit frame and target value frame. The
control bit frame is composed of five bits that initiate and describe the type of the com-
mand. The value frame is composed of five real values each describing how the motion
should be accomplished. The designed composure of one control message for one axis
can be seen in Figure 13.

29

Execute bit is used to signal of new command to axis. Execute bit takes place as first bit
of the control bit sequence of the axis. Basically, the rising edge of execute bit is mean-
ingful but new rising edge (thus new command) is unable to come before previous has
fallen.

Tracking bit is used in case axis needs to follow certain curve or to move relative to
another axis movement. Tracking bit is in the same slot of the interface for some axes
there is reserve bit (as seen in Figure 18), in cases of open close style axes the reserve bit
is controlling the movement to “close” direction movement of “open / close” type of
movement used in spindles. Tracking bit is set to be the second bit in the control bit frame
of each axis.

Torque control bit is meant for cases when the axis is desired to move with desired torque
or pressure. The torque control bit works like reserve bit for “open / close” type move-
ments, with the difference that it controls open direction. Reason to use two bits for two
directional movement is to have three different states for axis movement: open, close and
stop. Torque control bit is the third bit of control bit frame.

Speed control bit is used mainly for joystick movements. During joystick movement, i.e.
operator turns joystick left and holds it there, the speed control bit should be true during
the movement and movement should stop when speed control bit goes to false or end
position is reached. Speed control bit is the fourth bit in control bit frame.

Enable bit is used to enable any of the commands for the axis. This means that in normal
operation all the enable bits should be true all the time and the axis shouldn’t move if
enable bit is off. Enable bit is the fifth and last used bit of the control bit frame, the unused
reserve bits are not considered to be part of control bit frame.

Target position is a real value which defines the target position where the axis should
move. Target position is the position of cylinder stroke, which can be defined to start from
start or from the end of the cylinder. Position directions are supposed to be chosen so that
zero is always towards centre of lathe spindles or towards ground. In case of tracking the
position gives the offset value to tracking. All the positions are typically given in 1/10"
to 1/100" of millimetre accuracy. All the target speeds, accelerations and decelerations
are given in same scale with target position of that axis. Target position is the first value
of the target value frame.

Target speed defines the maximum speed axis is allowed to move during action. Target
speed is not necessarily reached if target acceleration and deceleration are not high
enough, or the target position is very close. Target speed should be set to be higher in
normal operation and slower or ramped in joystick operated movement. Target speed is
the second value of the target value frame.

30

Target acceleration defines maximum acceleration for the movement to reach the target
speed. Target acceleration should be defined high enough so that the target speed can be
reached. Target acceleration is the third value in target value frame.

Target deceleration defines deceleration used to start decelerating the movement to full
stop at target position. Very high deceleration value might cause end effector to jerk in
end position, low deceleration makes the movement slow as the deceleration needs to
start much earlier. The low deceleration in joystick control might cause it to feel sloppy,
as the end effector starts slowing down with given deceleration as the joystick is released,
causing end effector to move even after the release. Target deceleration is the fourth value
in target value frame.

Target torque, or target pressure, is for those open close type movements where we set
certain pressure and we move axis without conditions to either of the end positions with
the given hydraulic pressure. In the real system, too high grab pressure could break the
wood block and low pressure may not provide enough grip strength during peeling. Target
torque is last value in control value frame, as the reserve values are not considered to be
part of the control value frame.

Parameters explained here are configured separately for each different command for each
axis. For example, for one axis there might be 5 different position control commands each
with different position, speed, acceleration and deceleration. This allows moving the axis
to various positions but also with various speed profiles. The structure of the send DB is
illustrated in Figure 13.

3.1.3 Feedback values

As the real system needs information of the system states for control and diagnostics, so
does the control system of the virtual machine. The simulation needs to send only a few
diagnostics of the axes. In addition to axis information some sensor data is also sent.

Enable bit is sent from each axis to tell that the axis is doing well. The enable bit can be
used for diagnostics on the PLC side, or to test operation on actuator failure.

In position bit is set to be true once the target position of the desired movement is reached
and reset to false as the new command is initiated.

Actual Position is the sensor data of the axis position. The axis position is measured using
absolute position sensor. Actual position is returned as the same scale as the target posi-
tion is given.

Actual Speed is the actual piston movement speed of the axis. The speed is returned in
same scale as the target position is given. Actual speed isn’t normally measured by any
actual sensors in any but rotational axes, in which the speed is calculated from pulses

31

using rotational encoders. But as the interface is desired to be uniform for all the axes, the
actual speed is measured for all the axes (since simulated sensors are free and easy to
implement).

These 2 bits and 2 real values are returned for each axis of the machine. There are also
reserve bits which could be used for more specific status information of the axes.

Sensor data and simulation data are additionally returned from the simulation. As most
of the sensor data is already returned as position data of the axes and no safety sensors
are not needed, only few additional sensor information is needed. Only the most crucial
sensor data for operation is gathered from simulation. These sensors measure pre-centring
distance for pre-centring calculation and increment sensors for detecting the block in the
feeder steps. The simulation data consists only of simulation time of the system. This
information is used in the system to recognize that the simulation is not running, and the
states of the state machines are reset once the simulation restarts.

Axis 1
Controldata

' Send DB

Axis n ‘
Controldata

Axis 1 data

E:ieceive DB

Axis n data
Sensordata

Figure 13. F igure showing database structures used for communication

-

YR

=

<<strnict>>
Control data

==3truct== +Control bits: 16 bit Struct
+ Target position: Real

+ Target speed: Real

+ Targel accelerafion: Real

+ Target deceleration: Real

+ Target torgue; Real

+ Reservel: Real

+ FHesamve?: Real

<<struct>>
Axisdata

<<Siruct=> +5tatus bits: 16 bit Struct
+ Actual position: Real

+ Actual speed: Real

32

33

3.1.4 Command types

Various command types are needed to control axes in different ways. In simple cases the
axis is ordered to move from one position to another or is ordered to move until is ordered
to stop. Each of the needed command type need to be defined in the interface for the
controlling system to understand which type of command to initiate. The needed com-
mand types can be generally divided to four different categories: position control, speed
control, torque control and tracking.

Position control is most commonly used of the control commands. It moves the axis to
target position with given target speed, target acceleration and target deceleration dis-
cussed in previous chapter. Position control is initiated by raise of execute bit while ena-
ble is true. Actual speed curve of position control command can be found in chapter 4.2.
Figure 24, a control voltage curve in Figure 23 and example control bits and control val-
ues for the movement in Figure 22.

Position control is used for all normal go-to type movements. By parametrizing the de-
celeration and speed can accuracy be increased and vibration in end position reduced, this
comes with obvious cost of slowness of movement. On the other hand, speed of the move-
ment can be increased simply by increasing all the values. All the desired speed and ac-
celeration values are given as absolute values. The motion controller interprets the direc-
tion of the movement from current position and target position. From the direction of the
movement, the controller decides if the speed should be negative or positive.

Once the parameters with command bits are sent to interface, the simulator script gener-
ates a quadratic or triangle shaped target curve for the speed in which to move to target
position, area of this quadratic speed curve being the moved distance. This target speed
curve is then tried to be followed by the control script. The control script has table of
control values, flowrates of the valve and the area of the piston. With this knowledge the
script can calculate the feedforwarded control value of the virtualized control signal to
achieve desired movement speed at any given moment.

Speed control is mainly used for joystick movements by operator. Joystick movements
typically drop the automation cycle of the program and hence only should be used in
special cases. Such special cases can be spin-outs, maintenance or other non-predefined
situations.

Speed control is initiated by raising edge of execute bit while holding speed control bit
true throughout the joystick movement. Speed control needs all the same parameters as
the position control. Like in position control the speed control takes speed and accelera-
tion values as absolute values. The direction of the speed is decided in controller which
decides the movement speed from the target position. Target positions for these move-
ments should be unreachable end positions of the axes.

34

Similar as position control the speed control curve might look quadratic or triangle shaped
even though the internal implementation is different. Internally the control tries to follow
given acceleration until target speed is reached and when the joystick is released it should
follow given deceleration until stopped.

Torque control command is used to move axes from end position to end position, or at
least try to move from end to end, with given pressure set by proportional valve. Torque
control enables us to move axes to squeeze the log with pressure and by doing so grabbing
it firmly to spindles or clamps. Even though the variable is named torque, it is the control
value for maximum pressure in cylinder.

The torque control is only enabled to use on few axes, clamps and spindles. These axes
are used to clamp the log by the ends, as the log length is not always known, and the axes
need to hold the log with some pressure, it cannot be controller purely by position, but
rather by pressure or torque depending on actuator. Torque control doesn't care about
reaching positions, although the logic following the position might care, torque control
only sets certain pressure on either side of the piston and hopes for the best.

Torque control is used so that reserve or "close" bit is frue and torque control bit false
while we are moving the axes towards the log. The bits are inverted when unclamping.
This movement, like others, is initiated by rising edge of execute bit. The usage of two
bits for two direction movement is reasoned by detecting the power out situation if both
bits are 0.

When using torque control only target torque is needed. The directions are set by the
control bits. The speed of the movement is decided by the nominal flows of the hydraulic
components. The pressure is often wanted to be lowered after the initial stroke, since the
grip is achieved from the initial stroke. Long duration high pressure might crack the log
in the real world.

Tracking is used by few axes during peeling. These axes need to follow the distance of
the knife carriage from the middle of the spindle centre. The knife carriage distance from
spindle centre is assumed size of the log. Each of these axes has different kind of action
during tracking.

Knife carriage tracks the rotation of lathe spindles and moves forward target peeling
thickness forward for each full rotation of lathe spindles. Peeling thickness is given as
target torque parameter to knife carriage interface. Peeling is the only time that the feed-
back loop duration is desired to be sufficiently short in the system. In the feedback loop
the PLC reads the position of the knife carriage and controls the rotation speed of the
spindles to keep the peeling speed (peeling speed is the linear speed of the resulting ve-
neer mat) as static as possible.

35

Backup rolls (Top and bottom roll) distance should be about the same from the spindle
centre as the knife carriage during peeling, as the log peels in spiral-like fashion and the
distance to centre of log from different parts of the log is different. Backup rolls should
support the peeling and prevent the log from bending from the middle. The bending of
the log cause lower quality veneer as the log peels differently from ends and from middle.
Backup rolls receive possible offset value to target position value in case the log is desired
to be pressured towards the knife with even greater force or if the force is desired to be
lowered.

Backup roll rotation during tracking causes backup rolls to rotate so that linear speed in
the surface is the same or slightly more than the linear speed of the block surface speed
(or peeling speed). This should support the rotation of the spindles against peeling forces.

Pitch angle (the cutting angle of the knife) follows given curve during peeling. Different
kinds of curves can be used for different kinds of wood as the wood core and outer wood
layer properties depend on the species. Also, there is an offset to the angle which can be
adjusted depending on the wear of the knife.

3.2 Debugging the original program for simulation use

The principle in the program debugging is that the changes made to the code could be
easily separated from the original program code. If there are changes to be done to pro-
gram blocks, the changes should be made in the beginning of block to be easily separated
from the code. Ideally the changes to program should be done in separate program blocks
which could be turned on for the simulation use and off for real machine control. This
allows the program blocks to be easily reused in other programs and projects with some
changes if the function blocks are made to be reusable.

Original program is used for real machine, not virtual one, which can cause some issues
if one desires to use the same program for virtual machine. As there are some natural
simplifications in simulated system, there some inputs which don’t exist in simulation.
There is also some code that needs wants to know the states of the inputs. The inputs that
are simplified out of the simulation program check if the axis is in end position, check if
motor is running, monitor the oil level or temperature. The inputs that sense axis end
position need to be replaced with the interpreted end position from the position infor-
mation of the axis. The difficulty is that the axis might be “in position" earlier or later
than they would be in real system and initiate a next step too early or too late, so the
position needs to be carefully adjusted, much like sensor position is adjusted within the
real system. The faults with motor run information can be fixed by either forcing the input
bit of the motor, or by bypassing the input each time the it is used. The bit forcing is easier
to implement and to manage, since it doesn’t need as much code to be changed and it can
be changed in one position of the code. In the Siemens TIA development environment,
the forcing can be done anywhere in the code (even the input bits can be forced!), as long

36

as the bit forcing function is called before the bit is used the first time. For that reason,
the bit forcing function is called in the beginning of the program cycle.

Peeling line has two separate logics, one controlling charger and another controlling lathe.
The practical separation to two logics has been made on the basis that these can be deliv-
ered separately, so the program has been separated in to two parts. This also allows faster
deployment as the programming and commissioning can be done by two people easier,
also this allows easier separation of programs if either of the machines is sold separately.

Totally integrated automation portal (TIA-portal) is selected to be used to program logic
code, as it is only development environment supported by given logics. Programming
languages in logics are all written in IEC61131-3 standard based languages: ladder dia-
gram (LAD), function block diagram (FBD), in statement list (STL) and structured con-
trol language (SCL).

Program code for charger and lathe was given by Raute Corporation from a program
which is used to control the real version of the simulated machine. Although the code is
the same, the real project is done with two Siemens s400 series logic, whereas this project
uses next generation s1500 series logics. Both logics support same programming lan-
guages, but some standard library functions are changed or removed, and the internal
operation of the PLCs is changed.

The actual interface that connects logic to simulation has already been discussed previ-
ously. As the logic program receives the data from simulation, the data should substitute
the actual data from the real interface.

The actual data transfer between simulation and logic is done using buffer databases
(DB). There should be data to simulation DB and data to simulation buffer DB. Only the
data to simulation block is manipulated in various parts of the program and before the
sending the data is copied to buffer block which is then sent to simulation. Same goes for
received data, data received is captured to data from simulation buffer which is then cop-
ied to data from simulation DB which is then read in the program.

Each axis position data is read in individual function block inside the PLC code, these
blocks read status and position information of the axis and write the information to DB
for other functions use. For simulation usage, the position data is overwritten in these
function blocks as well as the necessary status bits are forced to correct states. As the data
is overwritten in these functions, should the axis information spread to all other blocks
correctly.

As the PLC program uses control and feedback values as integers and the interface has
the values as real values. The real values have much wider value range compared to inte-
gers so possible overflow in the conversion must be taken in consideration. Fortunately,
in this case the overflow is already considered in the interface definition. In the interface

37

definition the maximal usage of integer scale is desired with easy-to-understand scale. As
example axis of 650mm in length is given in 1/100"™ mm precision, making the axis use
value range of 0-65000, as unsigned integer scale isn’t exceeded (16bits provides range
from 0 to 65535 in unsigned format). Axis of 750mm uses 1/50" mm precision as the
1/100™ exceeds the integer value range (1/50™ precision creates range from 0 - 37500 and
1/100™ scale create range of 0-75000 causing overflow in integer).

One problem with this structure is that the PLC program use integer values to save un-
signed integer values for some reason. These two datatypes share the same bitlength and
format, but integer value has most significant bit (MSB) as negative value. This results
so that integer value flips to -32768 after 32767 and continues to positive direction, where
unsigned integer continues with positive values. This easily causes confusion as the val-
ues are monitored. Also, the conversion from integer format to real value format requires
one intermediary step to unsigned integer to convert the initial value to real value cor-
rectly. If 50000 is to be saved in integer and directly converted to real, this real value
would then contain -15536. This doesn’t cause problems in communication with Delta
RMC as the Delta uses unsigned integers as data type and data type is lost in the trans-
mission and the value is understood “correctly” as 50000.

The previously mentioned conversions must be done somewhere. Previously mentioned
buffer DBs provides good interface to convert the data. The data could be received to
interfacing “receive buffer DB”, and after that the data is moved to the actual receive DB
after which the datatype is converted, and the axis direction is corrected. Respectively as
the data is sent, the data is first moved to buffer DB, after which the data is converted,
and the axis direction is corrected. The solution provides that the interfacing buffer DB
has data which is in correct format for the simulation to understand, and the normal DB
has the data in format that is good for the PLC. Other option is to change the axis direc-
tions in the simulation to correspond the directions of the PLC program.

Motion control blocks are used to generate commands and send them to interface. Nor-
mally in the logic there are function blocks that send command number to Delta real-time
motion control (Delta RMC). For point-to-point movement delta RMC has move absolute
command, which moves axis in closed loop to requested position from where axis hap-
pens to be, using requested speed, acceleration rate and deceleration rate. The axis stops
at the requested position and hold it in closed-loop control. (“Delta RMC User Manual,”
2017)

38

Legend: — Target Velocity = Target Acceleration
10- ‘ e
- I/’ -\\
7 A'/' \..‘l'.
- ,f‘ ll'l
5-f - 3) B—
- II\. "Al
- \ /
\ /
] ‘\\‘ //
0_ -
oos 0.00s 0.400s 0.600s '
Acceleration Constant Velocity Deceleration

Figure 14. Example movement control curve, using 2" order acceleration coefficient
(“Delta RMC User Manual,” 2017)

Since the project is not using Delta motion control in between the simulator and PLC the
control done in Delta RMC had to be done somewhere else. As mentioned in chapter 3.1
axes control data imitate the data that is used by Delta RMC. The simulator side has the
actual motion control programmed inside, scripted in python. Unlike in the motion control
of the Delta which uses 2™ order acceleration coefficient (see Figure 14), the acceleration
used by python script uses 0" order coefficient but provides satisfactory accuracy for fair
presentation simulation.

Each axis has control function which write data corresponding to desired action to its own
section of the control interface DB. These are simple functions that are ran under main
program. Each function takes command pulses from motion control block which used to
send commands to Delta RMC. Each command pulse runs one line of code where it sets
new target values to communication interface block. Once values are changed, it goes to
set the execute bit for a short period of time. Depending on command type the function
block also sets the control bits according to the command. These bits encrypt the com-
mand type, such as speed control for joystick movement or tracking for following curve.

The simulation model itself does nothing with previously mentioned inputs from the PLC
even though the inputs are defined in the model, but python scripts which are called by
the model do. In most cases the python code is used to control the input voltage to 4/3
valve controlling the flow to axis cylinder chambers since the hydraulics are simulated
within the simulation.

3.3 Considerations on virtual machine applications

In chapter 2.3 are discussed potential applications for virtual machines. The initial goal is
to create a showcase simulator for a fair. Here further goals can be discussed. As men-
tioned in chapter 2.3 the virtual machine has many applications each of which has been

39

proposed to improve the product quality, reduce the product lifecycle or increase product
value. In this chapter applications are discussed and how each aspect could be put in use
in this scope.

The virtual prototyping is an action of generating virtual model of the proposed machine.
The virtual prototype can be used in product development and it can reduce the through
time of product development as the mishaps of mechanical design can be spotted in a
glance.

The virtual prototyping can be used in case of peeling machines to reduce the product
development time. Although the device considered in this thesis already existed and no
prototyping is needed, the virtual prototyping has already been proven to be useful in
another peeling machine project.

Virtual commissioning is an action of generating PLC program against virtual model and
commissioning the PLC program against the simulation model. The virtual commission-
ing has been proposed to reduce the ramp up time on site and improve the PLC code
quality.

Applicability of going through virtual commissioning for a project can be debated. The
company needs fair amount of expertise to generate simulation models for each project.
The expertise would most likely require hiring of new personnel or using subcontractors
to generate new models. Also, the project lifecycle management would need to be
changed, the personnel and the management needs to adopt to new project lifecycle. On
the other hand, if each of the new machines go through virtual prototyping, the models
are ready for virtual commissioning afterwards. Also, the virtual commissioning could be
tested on one project and the benefits and costs of virtual commissioning could then be
reported.

Possibly the most obvious use for simulator is training purposes. Training simulators have
been implemented multiple fields; in airplane pilot training, unmanned aerial vehicle
(UAV) operator training, some lifting crane companies have developed simulators for
training purposes. These have few things in common: the machines are expensive, they
need expertise to control and faulty operation can cause severe damage and costs. Peeling
machine is no different in this respect. Peeling line is costly, the control variables need
deep understanding of the process and the faulty operation can cause damage to machine.
Although, unlike many other training simulators which control mobile machines, peeling
machine sits on foundation.

Even though the real machine sits on foundation, it doesn’t reduce the need for operator
training. The machine is expensive, collisions are possible, downtime is not desired and
product quality has high requirements. Even with automatic control, the machine still
needs to have some parameters operated manually and faulty situations handled correctly

40

and preferably quickly to maximize the production. To reduce these expenses in produc-
tion, operator training via simulation can be implemented. The operator training via sim-
ulation can be split in few objectives, each of which have different requirements of the
simulation system:

e The first and easiest objective is to train the operator the functionalities of the
controls interactively, this gives safe environment for operators to get familiar
with the controls.

e Second objective is to practice certain faulty scenarios, in our case these could be
such as spin-outs and splinter stuck in knife gap, more of faulty scenario imple-
mentation in following chapter.

e Third objective, as the peeling process is simulated, the effects of control variables
can be seen in peeling process simulation. The process simulation gives operator
comprehensive understanding of variables, and effects of variables on process and
resulting veneer.

Applying one or more of these layers will add to operators’ comprehension of the ma-
chine. The comprehension should reduce operator training time with the actual machine
and so should increase value to customer.

Implementing different layers for simulation requires different levels of reality of the
simulation system. For the first objective the simulation system doesn’t need to be real-
istic, the system simply needs to be visualized and the controls need to be interactive.
Additionally, the system dynamics should function correctly. For the second layer, all the
requirements of first layer are needed as the system should be ran normally before the
error occurs. Additionally, these error cases need to be implemented somewhere, typically
in the model or in the controlling software. More of the fault injection in the following
chapter. Finally, the third objective for operator training requires the actual process sim-
ulation, in addition to the mechanical simulation. The process model simulation could
possibly give actual information of the resulting veneer and generate errors of the second
layer by itself. As the process could cause errors itself, the human generated errors by
faulty parametrization can be reduced as the reasons for the faults are learned.

Fault injection is an action which observes the operation of a system after a different kind
of fault. The fault injection is claimed to improve the PLC code quality and the product
safety. Fault injection defines three types of injected faults: model implemented (MIFI),
software implemented (SWIFI) and hardware implemented fault injection (HWIFI).

Each of previously mentioned fault injections could be implemented in our case. Software
implemented faults could be forcing various bits to faulty state and to see if the state of
the machine stays manageable. Software injected errors give critical data of the program
to see which sensor faults could cause critical errors in the system functionality. Hardware
implemented fault injection could be done by forcing a pin of desired input to see if the
response is correct. Forcing pins in hardware can be redundant as this forcing can also be
done in programming environment. If hardware implemented faults are desired to be

41

tested, more actual hardware should be used. Model implemented faults could be very
interesting as the hardware faults, that are normally nearly impossible or too expensive to
test, could be tested in simulated environment. The more sophisticated the tests for faulty
scenarios are, the more specific error messages can be given. The more informative error
message is, the faster the fault can be localized and fixed.

42

4. TESTING THE CONTROL AND INTERFACE

In this chapter the control and communication system designed in chapter 3 is tested and
proven that the communication and the control system works as it is desired. In chapter
4.1 the communication is studied through the overheads, efficiency, cycle time and band-
width usage. Chapter 4.2 the correct functionality of the logic control is studied among
with the correct functionality of control interface through example of command execu-
tion.

4.1 Communicating through TCP/IP

The control interface stack uses socket interface on transmission control protocol over
internet protocol (TCP/IP) which is transferred over Ethernet. The socket communication
is used between Siemens PLCs and Mevea-10 (input-output) interface.

In our case the socket connection is in place to replace the conventional 1O interface and
fieldbus interfaces of the real physical system. Fieldbuses are used to connect peripheral
IO devices, motor drives and controllers to main PLC.

The socket interfaces need to gather all the communication interfaces together and com-
municate with that information between simulation instead of peripheric devices. There
is also need for conventional 10 for joystick, lights, switches and buttons that are con-
nected to PLCs IO cards, as the operators bench is used to operate with the simulation.

The most data consuming part of the interface is the control interface that control each of
the axes. The control data sent to each axis contain information of the desired movement.
This way the data sent to interface has relatively large payload, especially as the integers
are sent as real values. Real value has length of 4 bytes where integer has length of only
2 bytes. Control data is sent to simulation every 10 milliseconds for each axis. This data
is sent even if no change in control values has happened. Also, the usage of the only-send-
data-as-a-reply cycle failed as the Mevea IO client sent messages every 10ms (or any
other given interval) and it seemed to break the normal receive-respond cycle within the
PLC program.

In chapter 2.2 are considered the communication protocols used for this application. The
environment is TCP/IP over Ethernet. To look in to the transmitted bits and bytes, either
an oscilloscope to listen to actual changes of voltage level over cables is needed, or soft-
ware to show the captured messages on our network card is needed. Due to practical
reasons, such as, that the transmission is difficult to read from 4B5B coded and MLT-3
modulated message and the lack of oscilloscope resulted in the use of software to capture
the messages. The software used to capture messages from our network card is WinPcap

43

and software used to analyse and show the messages is Wireshark, both of which are
freeware software.

Figure 17 shows various messages that are captured, each row marks one message and
information such as message type, length (actual length and data length), time (relative to
start capture time), protocol, sender and receiver IP and port as well as flags (PSH, ACK)
used. These messages can be opened to be analysed, the analysis tool shows the message
in binary or hexadecimal format (Figure 16). For convenience, the hexadecimal format is
used for it is shorter and easier to read by human eyes, in hexadecimal format each byte
is represented by two digits from 0 — F (0-9 then letters A-F, letters A-F represent decimal
numbers from 10-15). The message analysis can be seen in second picture of Figure 16.
In Figure 16 there are marked different overheads of the different protocols. Overhead of
Ethernet II frame shown on orange, IP overhead on blue and TCP on green and the actual
data is marked on red. The Ethernet II overhead is incomplete, the Ethernet II frame over-
head should be 18byte long whereas the figure shows only 14 bytes. The cyclic redun-
dancy check (CRC) bytes are missing from the end of the message, also the preamble and
SFD are missing. The reason for missing bytes in header is simply due to network card,
which strips these parts from the message before passing it on to application. Addition-
ally, the Ethernet II physical layer protocol has defined inter-frame gap which is defined
as minimum gap to wait before sending another packet, the IFG is 12 bytes long.

In Figure 15 the nesting of the message inside of other protocols can be seen. As the
message is passed along to lower protocol, an overhead is also added to the message. In
the figure, there is a Telnet message, in our application there is the command data to
simulation or status information from simulation to PLC, but the message is encapsulated
in similar manner. The result of the encapsulation can be seen in Figure 16 as the outer-
most layer is Ethernet II frame, then IP and finally TCP as the innermost layer.

Upped part of Figure 18 showing the resulting data structure on PLC side of one axis
information that is according to the designed structure of chapter 3.1. First the control
data bits are in structure, named accordingly. After control bit frame there are control
values containing the information how the command should be executed. Lower in the
Figure 18 the same structure is parsed accordingly so that the data can be stored in the
Mevea IO pool.

44

IP Header IP Data
IP Datagram
TCP Header TCP Data
TCP Segment
Telnet Data
Application Protocol/Data

Figure 15. Encapsulation of Telnet data inside TCP/IP inside Ethernet Il frame (Mil-

ler and Cummins, 2000)

20 |2c 41 38 14 04 a2 28 63 36 2C
e C

[y
»H
n

n

[
(2]
S
w

n
n
Q

@
50

OO0 e
IS

0 ee 13 45
0 46 20
70 43

0

SEr8883588838385855888
S8 SIS
SHS8"83838338588E8&8 s

T QN
® G

QP
D0
DO O 0 G

S638SSS3SISSSRST 8RS
SSSSSR5ESSSSSSSISSIES
S8~ 83838w 88
SISV E-SSSS5838&88
388853838338 838R 85338588
SIS IS58385888883 &K
SIS 83 58
SSSSSISSXSSRESISE5S88838
83883832383 S38X 83838 al%
SS8SSSISISSXSE5585888888
3883338383283 8338383888
8838383858553 88588
SSSSSISISSSSCSSSSIRNSS

Frame 299871: 414 bytes on wire (3312 bits), 414 bytes captured (3312 bits) on interface ©

|Ethernet II, Src: Siemens- 2c:14:ee (28:63:36:2c:14:ee), Dst: HewlettP 14:04:22 (2c:41:38:14:04:a2))
Internet Protocol Version 4, Src: 192.168.0.1, Dst: 192.168.0.20 |

Transmission Control Protocol, Src Port: 49157, Dst Port: 2009, Seq: 25508161, Ack: 12173633, Len: 360 |

Data (360 bytes)

Figure 16. Raw data capture from Lathe PLC to PC

45

364 143.271155 192.168.0.1 192.168.0.20 TCP 60 149157 » 2000 [ACK] Seq=1 Ack=1 Win=4096|Len=0

365 143.271828 192.168.0.1 192.168.0.20 TCP 414 [49157 » 2000 [PSH, ACK] Seq=1 Ack=1 Win=4096|Len=360

367 143.291091 192.168.0.1 192.168.0.20 TCP 1 414 149157 » 2000 [PSH, ACK] Seq=361 Ack=135 Win=40896 |Len=360
369 143.311603 192.168.0.1 192.168.0.20 TCP 414 149157 > 2000 [PSH, ACK] Seq=721 Ack=269 Win=4896 |Len=360
371 143.331789 192.168.0.1 192.168.0.20 TCP 414 49157 > 2000 [PSH, ACK] Seq=1081 Ack=403 Win=409¢ Len=360
373 143.351659 192.168.0.1 192.168.0.20 TCP 414 149157 » 200@ [PSH, ACK] Seq=1441 Ack=537 Win=4894 = =
366 143.282181 192.168.0.20 192.168.8.1 TCP 188|2000 » 49157 [PSH, ACK] Seq=1 Ack=361 Win=64240 Len;%
368 143.294227 192.168.0.20 192.168.0.1 TCP 188| 2000 » 49157 [PSH, ACK] Seq=135 Ack=721 Win=63880 |[Len=134
37 143.314177 192.168.0.20 192.168.6.1 TCP 188| 2000 » 49157 [PSH, ACK] Seq=269 Ack=1081 Nin=GSSZé Len=134|
372 143.331852 192.168.0.20 192.168.8.1 TCP 188| 2000 » 49157 [PSH, ACK] Seq=403 Ack=1441 Win=63169 Len=134)
16710 278.484785 192.168.0.2 192.168.0.20 TCP 60 51607 » 2001 [ACK] Seq=1 Ack=1 Win=8192 Len=0

L6711 278.493356 192.168.0.2 192.168.0.20 TCP
L6715 278.513556 192.168.0.2 192.168.0.20 TCP
16720 278.534092 192.168.0.2 192.168.8.20 TCP 3
16724 278.554443 192.168.0.2 192.168.2.20 TCP
L6728 278.569806 192.168.0.2 192.168.0.20 TCP
16713 278.493881 192.168.0.20 192.168.0.2 TCP
16717 278.513666 192.168.0.20 192.168.0.2 TCP
16721 278.534220 192.168.0.20 192.168.0.2 TCP 4
16725 278.554503 192.168.0.20 192.168.0.2 TCP
16729 278.569870 192.168.0.20 192.168.0.2 TCP

444|51607 > 2001 [PSH, ACK] Seq=1 Ack=1 Nin=8192
444|51607 » 2001 [PSH, ACK] Seq=391 Ack=131 Win=8192 [Cen:
44451607 » 2001 [PSH, ACK] Seq=781 Ack=261 Win=8192 [Len=390
44451607 » 2001 [PSH, ACK] Seq=1171 Ack=391 Win=819
444151607 - 2001
184|2001 » 51607 [PSH, ACK] Seq=1 Ack=391 Win=6424
184|2001 » 51607 [PSH, ACK] Seq=131 Ack=781 Win=63850|Len=130@
184|2001 » 51607 [PSH, ACK] Seq=261 Ack=1171 Win=6346¢ Len=130@
184)2001 » 51607 [PSH, ACK] Seq=391 Ack=1561 Win=6307¢ Len=130
2001 » 51607 [PSH, ACK] Seq=521 Ack=1951 Win=6424¢ Le

Figure 17. Collection of captures of sent and received data

[Data_TO_Mevea
Name Data type Offset Start valnL 1 I
1 @ v Static
2 ﬂl = v Step_Feeder [Struct
5 €@ = v ControlBits Struct
4 @ = Execute Bool
5 4@ = Reserve Bool
6 @ = TorqueControl Bool
7 <] - SpeedControl Bool
8 @ = Enable Bool
9 @ - Reserved Bool
10 @ L} Reserve5 Bool
11 @ = Reserve6 Bool
12 @ L] Reservel10 Bool
13 @ = Reserve101 Bool
14 4@ L Reserve102 Bool
15 @ L] Reserve103 Bool
16 4@ = Reserve104 Bool
17 <@ = Reserve105 Bool
18 4@ = Reserve106 Bool
19 @ L Reserve107 Bool
20 = TargetPosition Real
21 @ = TargetSpeed Real
22 4@ - TargetAcceleration Real
23 4@ L TargetDecceleration Real
24 @ L TargetTorque Real 0
25 @ = reserve_real Real 0.0
26 4@ = reserve_real_1 Real 0.0
Signal / BitIndex Input Signal Name =
1/0 OUT _Step_feeder_Exe (E Name 2 OUT Step_feeder_T
/2 OQUT _Step_feeder_Res
1/2 OUT _Step_feeder_Torque e
33 QUT _Step_feeder_SpeedControl Data type
1/4 QUT _Step_feeder_Enable
2 ControlBits1_dummy Signal value scaling:
3 OUT _Step_feeder_TargetPos Input min 0
4 OUT _Step_feeder_TargetSpeed
5 OUT _Step_feeder_TargetAcc Input max 0
6 OUT_Step_feeder_TargetDec
7 OUT _Step_feeder_TargetTorque MIO min 0
8 dummy MIO max 0
9 dummy2
10/0 OUT _Linear_loader_exe
10/1 OUT _Linear_loader_Res [Apply,] [Sancel
10/2 OUT _Linear_loader_Torque
10/3 OUT _Linear_loader_SpeedControl
10/4 OUT_Linear_loader_Enable
1 ControlBits2_Dummy
12 QOUT linear Inader TarnetPac S

Figure 18. Axis data structure on PLC side (1) and on PC side (2).

46

To calculate the protocol stack efficiency, the payload size must be divided by the actual
frame size and multiplied by 100%. The answer seems trivial, both, the frame sizes and
payload sizes are shown in Figure 17. As mentioned earlier, there are parts of the Ethernet
protocol frame that are not shown by the analysis tool. The CRC, preamble and SFD
surely need to be added to the Ethernet frame size shown in Figure 17. Adding these
components increase the frame size shown in Figure 17 by 12 bytes. Also, as each of the
messages need 12-byte inter-frame gap (IFG) before sending another packet, the effect
on efficiency of the interpacket gap should be also taken in consideration.

With the payload size and the actual packet size the protocol efficiency can be calcu-
lated by

o Payload size
Protocol stack efficiency= Packet size. *100% ()

where the payload size is the actual data that is desired to be transmitted. In the O is cal-
culated the relevant TCP/IP packet efficiencies using equation 1.

Table 3. TCP/IP packet efficiencies

. . Size with Effi- Effi-
Payload size | Frame size IFG ien ciency
CIENCY | with IFG
Charger PLC 360 426 438 845% | 82,2 %
to simulation
Simulation to o o
charger PLC 134 200 212 67.0% | 632 %
Lathe PLC to 390 454 468 859% | 83,3 %
simulation
Simulation to 0 o
Lathe LC 130 196 208 663 % | 62,5 %
Maximum 1460 1526 1536 95.7% | 95,1 %
packet size
Minimum 6 7 84 83% | 7.1%
packet size

This way calculated efficiency is 63,2% at worst and 82,2% at best, not taking in-
terpacket gap in calculation. Whereas the best possible efficiency for TCP/IP over
Ethernet package with 1460-byte payload and 1526-byte packet size is 95,1%.

Even though the communication is not robust send / reply loop that sends only as re-
sponse, the communication delay is an interesting parameter to be measured. Typically,

47

the interesting parameter is so-called loopback duration, which measures the time from
request to reply. As the sequence is not request-reply, but rather two hosts pushing each
other information which is sent on certain interval, the most interesting variable for real-
time control is the average and maximum time interval that it takes for control system to
get information from simulation and maximum and average time that the control infor-
mation reaches the simulation.

Wireshark is a tool that is used to capture and analyse the communication parameters. For
analyse, only the messages with “push” flags are interesting, as only these contain data
from simulation or control data to simulation. The analysis dataset contains tens of thou-
sands of rows of data which is to be analysed, the relevant information of the dataset can
be seen in Table 4.

Table 4. Table showing average TCP push intervals between various components

Dataset Average | Max delay | Min de- Variance (ms)
count delay (ms) (ms) lay (ms)
PC to 7907 15,61 35,34 1,39 0,01742
Charger
PC to Lathe 9993 15,61 38,85 2,00 0,01700
Chalﬂgcer to 12298 10,03 31,11 7,98 0,00094
Lathe to PC 15426 10,11 20,88 7,54 0,00154

Assuming the connection delay on wire to be 1ms, the status information at any given
moment from simulation is 8,8ms old information on average, 40ms old on maximum
and Ims on minimum. Assuming the processing and sending of TCP/IP packet on PC
side doesn’t have any internal delay, meaning that when packet is sent from PC the infor-
mation is up to date. Also, there is program cycle delay in the PLC end of the system,
data is only read at the time the receiving function block is called. If the data reaches PLC
right after the receiving function is called, it takes full program cycle before receiving
function block is called again and data is registered to database.

The table shows that PLC to PC connections work much more robustly, having lower
average time and having over tenfold lower variance. The difference in robustness is not
a surprise, as the traditional computer isn’t meant for real-time control. The PC did how-
ever, send ACK messages with no data to PLC, which are not accounted in this calcula-
tion. Also, the accuracy of the capturing software is unknown. To understand the oddities,
such as minimum delay being less than 10ms in PC side socket client even though the
supposed interval is 10ms, deeper understanding in processor core functioning and see
the underlying socket client program code is needed.

48

The throughput is calculated from the use of the actual bandwidth. The throughput calcu-
lation can be interesting to see how much does the communication use of the given trans-
mission medium. In the framework of this thesis the communication medium is Ethernet
CAT 5e cable having full duplex features. The bottleneck of the communication is from
switch to PC where one medium carries the communication of both PLCs. As the medium
is full duplex, it is not interesting to sum all the communications together, only one di-
rectional communication together. The throughput can be calculated from formula

Th hout Packet size 2)
rousiput= Send interval
where the packet size in this case is the total size of the package without interpacket gap.

The ideal and actual interval is discussed in the following chapter.

The ACK packets also use the transmission medium, so the packets should be taken in
consideration in the actual throughput calculation. The throughput of ACK packets is
calculated from average time to send one of ACK messages to either of the PLCs. There
is no need to separate these packets in calculation, as they are all the same size and share
the same direction in this medium. ACK package has the size of minimum TCP/IP over
Ethernet packet, which is 66 bytes. The relevant throughputs in the PC — switch channel
is calculated in the Table 5 using equation 2.

49

Table 5. Throughput of each of the connections and total throughput in the PC — switch

channel
Package size Throughput with Throughput with
Packet from / to without IFG ideal 10ms interval actual interval

(bits) (bits/s) (bits/s)

Lathe PLC to PC 3632 363200 359250

Charger PLC to PC 3408 340800 339638

Total from PLCs 7040 704000 698888

to PC

PC to Lathe PLC 1568 156800 100475

PC to Charger PLC 1600 160000 102528
ACK packages (to

lathe and charger) >28 0 34887
Total from PC to

PLCs 3696 316800 237890

The actual total throughput from PLCs to PC is 698,9Kbit/s (Table 5). Kilobit (Kbit) is
1000 bits and megabit (Mbit) is 1000 kilobits, not to be confused with kilobytes and meg-
abytes which have 1024 conversion ratio. The channel usage €%y of the 100Mbit/s
channel in percentage is:

698,9/1000

OIN— T * 1000/0:(),6990/0 (3)

for incoming packets to PC. The total usage of the outgoing channel €%y from PC can
be calculated similarly:

. 237,9/1000 . .
C /OOUT: T *100% = 0,238 Yo (4)

With interframe gaps the percentages are slightly greater, but with these usage percent-
ages and transfer intervals the transmission medium usage would still be relatively low.

50

4.2 Considerations on PLC program

The PLC program ends up being somewhat mixed composition of easily detachable parts
of code and some changes inside the code. The program ends up working as intended
since the control program cycle works similarly to the real system. However not all the
aspects could be tested yet in the simulation system, the centring of the block to middle
of the lathe is only done by perfectly cylindrical blocks since the simulation was yet only
able to produce only perfectly cylindrical blocks. Captures of peeling machine simulation
in operation can be seen in Figure 19, Figure 20 and Figure 21. In Figure 19 the block is
in centring spindles (often called XY-spindles) being centred to be moved by the transfer
arms to lathe spindles to be peeled. In Figure 20 the block is being peeled, so axes are on
tracking mode and the back-up devices are supporting the peeling. In Figure 21 the out-
coming veneer ribbon can be seen as the block is being peeled, the figure also shows the
whole peeling machine.

Figure 19. Block in centring spindles

51

Figure 20. Block being peeled

Figure 21. Outline of peeling machine

The HMI program works as intended on most parts, including parametrizing the offsets,
peeling thickness and peeling speed. However, some alarm messages of the program leak
to HMI screen. The alarms typically are about lubrication error or pump not running,
which should not be a problem in simulated environment.

The PLC program can be studied by letting people use the system who have used the
system before. The system was tested by the Raute staff who have designed peeling ma-
chine programs before. The testing resulted in comments such as “this axis movement
should be faster”, “this action is lacking” or “this movement is to wrong direction”. This
resulted with a program that imitate real system actions much more accurately. In the

52

Ligna fair, the system was tested by corporative CEOs, engineers, children and random
people who just happened to pass by. The control program state stayed in designed limits
of the real peeling machine, even with tens of people testing the simulator. So it is safe to
say that the program controls function reasonably well and the control state machines and
sequences work as intended.

Example of a movement that is executed by the position control command can be seen in
the figures below. The Figure 22 shows a capture from Mevea IO pool, where the control
script reads the control parameters. In the Figure 22 target values can be seen in the order
that is explained in the chapter 3.1.2, target speed being the second value of the frame,
and thus the second value of the values that are squared. The digital inputs in the Figure
22 lower part showing the control bit frame for linear feeder axis movement. At the time
of the capture the linear feeder axis control bits are commanding the linear feeder for
position control movement since only enable and execute bit are “1”. Figure 23 shows
the output control voltage to 4/3 valve controlling the movement of the “linear feeder”
axis, this control voltage is controlled in the scripts defining the real-time control. Figure
24 showing the linear feeder axis velocity. As can be seen that the speed control reaches
the 8000 as maximum speed which is the target speed of the control value frame shown

in Figure 22.
Analog outputs l Digital outputs: Analog inputs Dtguta! mputs:
0 1 2 3 4 5 6 7 8 9 10

bk 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
bk 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
bk 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
bk 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
bk 4 0.00 8000.00 15000.00 15000.00 0.00 I 6300.00 8000.00 15000.00 15000.00 0.00 13950.00
bk 5 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 100.00 0.00

Analog outputs I Digital outputs | Analog inputs | Digital inputs

0 1 2 3 - 5 6 7 8 9 10
bk 0 0 0 0 0 0 0 0 0 0 0 0
blk 1 0 0 0 0 0 0 0 0 0 0 0
bk 2 0 0 0 0 0 0 0 0 0 0 0
bk 3 0 0 0 0 0 0 0 0 0 0 0
bk 4 1 0 0 0 1 | 1 0 0 0 1 0
bk 5 0 0 1 0 1 0 0 1 0 1 0

Figure 22. Capture of Mevea 10 pool containing control information

Time

216.83
458

-0.38

215.94 216.12 216.31 216.49 216.67 216.85 217.03 217.22 217.40 217.58 217.76

Figure 23. Control voltage to simulated valve of linear feeder

Time

51.60

8282.99

7373.86

6464.74

5555.61

4646.48

3737.35

2828.22

1919.09

1009.96

100.83

-808.30

Input__DCV_LinearfeederlnputValue
4.426000e+00

AO__ Linearfeeder_ActualSpeed
2.985445e-01

_— ‘ })l\/} ==
I

5158 51.77 51.95 5213 52.31 52.49 5267 52.86 53.04 53.22 53.40
Figure 24. Plot of actual speed of linear feeder cylinder

53

54

5. CONCLUSION AND FURTHER WORK

The resulting control works as is desired to work, since the actions of the automatic peel-
ing cycle as well as the joystick movements work similar as they would in real machine.
The communication interface could work faster, in more robust fashion and could have
less data transmitted, but for this application these imperfections are acceptable since it
is not used for real-time control.

The objective of the thesis was to create functioning interface from PLC to simulation to
present a peeling machine simulator in Ligna fair. The TCP/IP socket interface is used as
there is no other options available for the used PLCs. The interface resulted in two inter-
faces, one for each PLC. The interfaces have one interface to send and one to receive data.
Further, each of the interfaces are split to similar interfaces among each axis. The result-
ing interface has some excess information as not all the axes need all the information that
is exchanged, but each interface is similar from one to another and the motion control
functions are easier to program to simulator scripts. Also, the adding of a new axis with
new motion control script is easier using interface with similar interfaces.

Another objective was to modify the control program to work with the simulation, mean-
ing that the inputs come from simulation and outputs control the axes in the simulation.
The changes needed to the actual program included mostly forcing some input bits and
bypassing the input data to come from simulation. For control the actual program didn’t
need to be changed, only functions which changed the interface control data as the com-
mand triggered in the actual program.

For reusability, PLC program for simulation communication is done to be easily detach-
able from the actual control program and easily attachable to new program, still requiring
some expertise to detach and attach the right parts. Also, some overwriting and removal
of some code manually is still necessary, but the improving code reusability could be
point of improvement. Naturally the axes would need to be redefined for another project.

The goal to get everything working smoothly and to look nice so that the simulator can
be presented in Ligna fair was a success. The schedule for testing was tight as the system
could only be tested with the physical controls for only two days before sending it off to
the fair. After the system was presented, the development was continued to other aspects.

Used TCP/IP connection provided reliable connection with high baud rate and suffi-
ciently small connection delay. The send rate on both ends could be faster, and would be
needed to be faster on some other applications, but for this application the send rate is

55

sufficient. The interface has some downsides, such as it could be downsized and opti-
mized, but the fact that the interface is the same for all the axes eases the use of the inter-
face.

One goal was to study if the created simulator system is applicable to be used as anything
else but fair presentation. From the study it seems that there are more applications for
simulator than for what it is used currently. The use of the simulation as program or prod-
uct development tool takes lots of bravery and trust in new technology from the company.

5.1 Points of development and further work

Even now as the communication interface is ready and working there are some areas that
could be developed further or tested. The goal is to improve the reliability, reusability and
add some new features to interface.

Even as the interface on PLC side is already easily detachable to be used on another ap-
plication, the interface should be developed so that the interface is a neat package which
could be detached to a new machine control program where only standardized reconfig-
uration is needed. This reconfiguration would include, the number of axes to be con-
trolled, the end positions of axes, the control type of each axis and which signal is used
for each command. All the parameters to be reconfigured should be configured as easily
as possible. The package could have some documented instructions how to attach the
communication interface to a project and how to reconfigure the parameters.

Another development is in the communication between the simulator and PLC. The com-
munication between the two seems excessive, as all the data is sent every cycle even
though no change has happened. The interface could be changed to send values only when
parameters of one axis has changed, or the interface could only send the command num-
ber which would then be read on the PC side and interpret the command values from the
command number. These changes would reduce the amount of data transmission between
the two and make the configuring of the axis movements much easier. Another thing is
to reduce the hold time of execute bit, this could be done by some response bit telling that
the rising edge of execute bit has been noted and the execute bit could be set back to zero
afterwards. The reduction in execute bit hold time could increase the amount of com-
mands that can be sent to one axis in certain time period.

The interface could carry more diagnostic information from the simulation. These diag-
nostics could be the status or error information of the given device which is normally read
from the device interface. If the status and error information is received from the system
as it is from the real system, the program response to the information could be studied.
These statuses could be used for previously mentioned model implemented fault injection
to observe the response to fault.

56

As further work the virtual machine applications should be applied to machine. Currently
the simulator is used as fair presentation machine to promote sales. The simulator could
be used to debug the peeling machine logic program and to improve the core program
without the risk of collisions or delay in delivery time.

57

REFERENCES

Alani, M.M., 2014. Guide to OSI and TCP/IP models, Springer-briefs in computer sci-
ence. Springer, Cham Heidelberg.

Ameri, F., Dutta, D., 2005. Product Lifecycle Management: Closing the Knowledge
Loops. Comput.-Aided Des. Appl. 2, 577-590.

Auweraer, H.V. der, Donders, S., Mas, P., Janssens, K., 2008. Breakthrough Technolo-
gies for Virtual Prototyping of Automotive and Aerospace Structures, in: Product
Engineering. Springer, Dordrecht, pp. 397—418. https://doi.org/10.1007/978-1-
4020-8200-9_20

Bartak, J., Chaumes, P., Gissinger, S., Houard, J., Houte, U. van, 2000. Operator training
tools for the competitive market. IEEE Comput. Appl. Power 13, 25-31.
https://doi.org/10.1109/67.849022

Delamer, I.M., Martinez Lastra, J.L., 2007. Factory information systems in electronic
production, Ist ed. Tampere University of Technology, Tampere, Finland.

Donahoo, M.J., Calvert, K.L., 2009. TCP/IP sockets in C: practical guide for program-
mers, 2. ed. ed, The Morgan Kaufmann practical guides series. Morgan Kauf-
mann, Amsterdam.

Dubey, A., 2011. Evaluating software engineering methods in the context of automation
applications. IEEE, pp. 585-590. https://doi.org/10.1109/INDIN.2011.6034944

Edwards, J., Bramante, R., 2009. Networking self-teaching guide: OSI, TCP/IP, LANs,
MANSs, WANSs, implementation, management, and maintenance. Wiley, Indian-
apolis, Ind.

Gerlach, L., Tholin, S., Hass, V.C., Mandenius, C.-F., 2016. Operator Training Simulator
for an Industrial Bioethanol Plant. Process. Basel 4, 34. http://dx.doi.org.lib-
proxy.tut.fi/10.3390/pr4040034

Henning, C.,2016. SWITCHED ETHERNET NETWORKS FOR PROFINET DETER-
MINISM.

Hloska, J., Kubin, M., 2014. Virtual Commissioning of Mechatronic Systems with the
Use of Simulation, in: Mechatronics 2013. Springer, Cham, pp. 33-40.
https://doi.org/10.1007/978-3-319-02294-9_5

Ko, M., Park, S.C., 2014. Template-based modeling methodology of a virtual plant for
virtual commissioning. Concurr. Eng. 22, 197-205.
https://doi.org/10.1177/1063293X14531423

Koponen, H., 1998. Puulevytuotanto. Gummerrus Kirjapaino Oy.

Leino, S.-P., 2015. Reframing the value of virtual prototyping. Intermediary virtual pro-
totyping - the evolving approach of virtual environments based virtual prototyp-
ing in the context of new product development and low volume production. Tam-
pere University of Technology.

Markovic, J., Popovi¢, R., Trebuna, P., Pekarc¢ikova, M., Kliment, M., 2015. Virtual
Commissioning as a Part of Mechatronical System. Appl. Mech. Mater. 816,
521-525. https://doi.org/10.4028/www.scientific.net/ AMM.816.521

Mehta, B.R., Reddy, Y.J. (Eds.), 2015. Industrial Process Automation Systems: Design
and Implementation. Butterworth-Heinemann, Oxford.
https://doi.org/10.1016/B978-0-12-800939-0.00030-9

Miller, P., Cummins, M., 2000. LAN technologies explained. Digital Press, Boston,
Mass.

58

Oppelt, M., Urbas, L., 2014. Integrated virtual commissioning an essential activity in
the automation engineering process: From virtual commissioning to simulation
supported engineering. IEEE, pp. 2564-2570. https://doi.org/10.1109/IE-
CON.2014.7048867

Pigan, R., Metter, M., 2008. Automating with PROFINET: industrial communication
based on industrial Ethernet, 2., rev. and extended ed. ed. Publicis Publ, Erlan-
gen.

PROFINET System Description, System manual, 2018.

Reinhart, G., Wiinsch, G., 2007. Economic application of virtual commissioning to
mechatronic production systems. Prod. Eng. 1, 371-379.
https://doi.org/10.1007/s11740-007-0066-0

RMC70/150 Motion Controllers And RMCTools Software User Manual, 2017.

Rosch, S., Vogel-Heuser, B., 2017. A Light-Weight Fault Injection Approach to Test
Automated Production System PLC Software in Industrial Practice. Control Eng.
Pract. 58, 12-23. https://doi.org/10.1016/j.conengprac.2016.09.012

Shahim, N., Moller, C., 2016. Economic justification of Virtual Commissioning in au-
tomation industry. IEEE, pp- 2430-2441.
https://doi.org/10.1109/WSC.2016.7822282

Shi, S., Walker, J.C.F., 2006. Wood-based composites: plywood and veneer-based prod-
ucts, in: Primary Wood Processing. Springer, Dordrecht, pp. 391-426.
https://doi.org/10.1007/1-4020-4393-7_11

Stone, R., 2001. Virtual reality for interactive training: an industrial practitioner’s view-
point. Int. J. Hum.-Comput. Stud. 55, 699-711.
https://doi.org/10.1006/ijhc.2001.0497

Varis, R., 2017. Puulevyteollisuus. Suomen Puuteollisuusinsindorien Yhdistys Ry.

Vergnano, A., Berselli, G., Pellicciari, M., 2017. Interactive simulation-based-training
tools for manufacturing systems operators: an industrial case study. Int. J. Inter-
act. Des. Manuf. IJIDeM 1-13. https://doi.org/10.1007/s12008-016-0367-7

Vieira, M.F.Q., Neto, J.A.N., Scaico, A., Santoni, C., Mercantini, J.-M., 2010. A Real-
time Interface Simulator for Operator Training: A Proposed Architecture. SIM-
ULATION 86, 53-63. https://doi.org/10.1177/0037549709346281

Wilamowski, B.M., Irwin, J.D. (Eds.), 2011. Industrial communication systems, 2. ed.
ed, The industrial electronics handbook. CRC Press, Boca Raton, Fla.

Zucker, G., Dietrich, D., 2011. ISO/OSI Model, in: Industrial Communication Systems,
Electrical Engineering Handbook. CRC Press, pp- 1-9.
https://doi.org/10.1201/b10603-3

Zurawski, R. (Ed.), 2015. Industrial communication technology handbook, Second ed.
ed, Industrial information technology series. CRC Press, Boca Raton.

