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The performance of machine learning methods depends on the data they are given.

Real life data sets can be incomplete and consist of various types of data. However,

many methods are capable of handling only nominal and numerical features without

any missing data, which causes loss of potentially useful information. Thus, this

thesis had two research questions: can the information from hierarchical and interval

values be utilized, and can the treating of missing values be integrated into a model

handling untraditional data types.

In this work we developed a decision tree algorithm (DTHF) that uses hierarchical

data to construct a model. The method requires that all data is preprocessed to

a hierarchical form. In addition to nominal and numerical features, the method

is capable of handling missing data, interval and hierarchical features, and several

values for a single feature.

DTHF was tested using twelve data sets and the results were compared with results

from CART and C4.5 decision tree algorithms. Tests were conducted using data

sets without missing values as well as with sets with various rates of missing data. If

data are not missing, there is no signi�cant di�erence between DTHF, CART, and

C4.5. However, if data are missing CART performs remarkably better than C4.5

and DTHF, which have similar performance.

More tests are needed to give a su�cient understanding of the method's performance.

Especially, there is a need for tests utilizing the DTHF's capabilities. Further rese-

arch topics are expanding the method into a random forest and studying how the

transforming of data to a hierarchical form should be done. Other topics could be

adding pruning and studying how the data set a�ects the performance when data

are missing.
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Koneoppimismenetelmien suorituskyky riippuu sekä koulutuksessa käytetyn datan

määrästä että laadusta. Datasettien laatu ja sisältö voi kuitenkin vaihdella merkit-

tävästi. Monet koneoppimismenetelmät kykenevät käsittelemään vain nominaalista

ja numeerista dataa, jolloin mahdollisesti tärkeää informaatiota ei voida hyödyntää.

Tämä työ pyrkii vastaamaan kahteen kysymykseen: voidaanko datan hierarkisuutta

hyödyntää datan luokittelussa ja voitaisiinko puuttuvan datan käsittely integroida

samaan menetelmään.

Työssä on kehitetty päätöspuumenetelmä (DTHF), joka muodostaa mallin käyttäen

piirteiden hierarkioita kokonaisten piirteiden sijaan. Menetelmää varten data on

esikäsiteltävä hierarkiseen muotoon. Nominaalisten ja numeeristen piirteiden lisäksi

menetelmä kykenee käsittelemään esimerkiksi puuttuvaa dataa, intervallipiirteitä,

hierarkisia piirteitä, sekä useita arvoja yhdelle piirteelle.

Kehitetty menetelmä testattiin käyttäen kahtatoista datasettiä. Testit tehtiin käyt-

täen sekä alkuperäisiä settejä, että settejä joista oli poistettu dataa. Testien tuloksia

verrattiin CART- ja C4.5 päätöspuualgoritmeihin. Jos dataa ei puuttunut, kehitet-

ty menetelmä suoriutui testeistä yhtä hyvin kuin verrokkimenetelmät. Mikäli tietoa

puuttui, CART-algoritmi oli selkeästi paras, kun taas C4.5 ja DTHF suoriutuivat

keskenään yhtä hyvin. Kehitettyä menetelmää olisi kuitenkin testattava datalla, joka

toisi esiin DTHF:n vahvuudet, kuten datan hierarkisuuden.

Tärkein jatkotutkimusaihe olisi menetelmän laajentaminen satunnaismetsäksi, mi-

kä luultavasti parantaisi menetelmän suorituskykyä. Toinen merkittävä jatkotutki-

musaihe olisi tutkia, miten datan muuttaminen hierarkiseksi kannattaisi tehdä. Data

muutetaan intervallipuita käyttäen, mutta itse puiden muodostamiseen on useita ta-

poja. Muita kehityskohtia olisivat muun muassa karsinnan lisääminen menetelmän

toteutukseen sekä jakometriikan vaikutuksen tutkiminen suorituskykyyn.
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1. INTRODUCTION

Collecting, storing, and sharing data is easier and cheaper than ever before. This

has made data, and especially large amounts of data, more accessible. Hence, data

is being utilized in applications more than ever. Machine learning is one of the

�elds which have substantially bene�ted from the amount of available data. Many

problems previously thought to be unattainable, like a computer winning humans

on Go [39], have been solved using e�cient machine learning methods and large

quantities of data.

Usually, a machine learning algorithm is given a data set which it uses to construct

a model. A data set D is simply a collection of similar data instances and each

data instance d ∈ D is a collection of values describing a single object. A data

instance can be for example, a picture, a medical record, or measurements of a

�ower. Since all data instances in a data set represent the same object type, a data

set has a domain it can be applied to. For example, a data set consisting of medical

records can be used for predicting whether a person has cancer but not for predicting

tomorrow's weather. The values in a data instance are called features. A feature f

can be any aspect of the object the data instance represents. It can be, for instance,

a single pixel of a picture, gender of a patient, or length of a petal.

When constructing a model using a machine learning algorithm, the size of the data

set is important but that alone is not enough as the quality of the data is also of

great importance. Unfortunately, many of the available data sets are imperfect in

some way. This is especially the case when the data set is combined from several

sources. Table 1.1 represents such data. In this case, each data instance consists

of four features that describe a company: founded, staff number, industry code

and technologies. Feature founded is a simple numerical feature representing

the founding year of the company. The second feature is the sta� number of the

company. Some sources report an exact number for the feature while others give

an interval. Industry code is stored as ISIC (The International Standard Industrial

Classi�cation of All Economic Activities) code which is a hierarchical value where

the industry classi�cation gets more speci�c with each number. Technologies is a

list of technologies the company uses on their website. The data is also missing a
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Table 1.1 Data set containing information about a company. The data demonstrates the
need for this work as it has many imperfections like missing data and unusual data types.

features founded staff number industry code technologies

data line 1 2016 234 992 [javascript, php]

data line 2 100-300 93 [javascript, node]

value.

The main motivation for this thesis comes from the type of cases described above.

Most commonly data sets consist of numerical and nominal data which is why most

methods can only those data types. However, as seen earlier they are not the only

possible types for data. These diverse data types can contain information that

would be lost if they were simply converted to nominal or numerical values or just

discarded from the data set. Many data sets are also missing data and dealing with

such data is an integral part of data analysis. The research question in this thesis

is two-folded. Firstly, we want to know if the information from hierarchical and

interval features can be utilized in a way that it would bring new insight to the

classi�cation. The scienti�c background for using hierarchies in classi�cation exists,

even though it seems to be a relatively under-researched area. Secondly, we want to

know if missingness can be integrated to the model so that the missing values would

not have to be treated separately.

The main goal in this thesis is to develop a decision tree classi�cation algorithm

which is capable of handling the type of data presented in Table 1.1. This is done

by transforming all features into a hierarchical form and using the hierarchies to

form a decision tree. One of the main questions is, does the hierarchical approach

have any advantages compared to normal decision tree algorithms. This is tested

by comparing the performance of the developed method with existing decision tree

algorithms.

The rest of the thesis is divided into four chapters. Chapter 2 describes the previ-

ously outlined problems like missing data and di�erent data types in more depth and

presents existing solutions to the problems related to them. The chapter also gives

necessary background information about decision trees. After reading the chapter,

the reader should be able to understand the developed method presented in Chapter

3. The method itself consists of preprocessing the data and constructing the model.

In Chapter 4 the method is tested using public data sets and the results are compa-

red with existing well-known methods. Finally, Chapter 5 presents the conclusions

of this work.
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2. ASPECTS OF DECISION TREE LEARNING

Machine learning algorithms use data sets which are collections of data instances

D = (d1, d2, . . . , dn) where n is the number of instances in the data set. All data

instances in a data set have the same form and each data instance di consists of

features di = (fi,1, fi,2, . . . , fi,m) where fi,j is the value of the jth feature on the

ith data instance. The jth feature is denoted by fj. There is no limit for the

number of features in a data instance but in practise it varies from few to hundreds

of thousands. Each instance is also given a label li which is the feature we are

interested in predicting. A label can be for instance the age of a person in a picture,

cancer diagnosis, or species of a �ower.

Table 2.1 gives an example of a data set from Kaggle Datasets [21] ful�lling the above

characterization.The data consists of information about used cars, and the goal is

to predict their prices. In the table, each column represents a feature, whereas each

row is a single data instance. The data set in question has three data instances

d1, d2, and d3 and each instance represents a particular car. Each instance consists

of three features: type, kilometres, and registration year. The fourth column

price is the label.

Table 2.1 Data set containing used cars

f1 f2 f3 l

type kilometres registration year price

d1 Golf 3 1.6 150 000 1993 480

d2 Mazda 3 1.6 Sport 150 000 2004 2000

d3 Renault Clio 1.4 125 000 1999 590

Machine learning methods can be divided into two groups: supervised and unsu-

pervised methods. With unsupervised methods the program is given a set of data

containing no labels for data instances and it has to �nd the characteristics without

further information. An example of this could be giving the program a set of photos

of animals and the problem is to group the pictures by species. In supervised met-

hods the program is �rst given a training data set and the program is told which
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animal is in which photo. The intention is to teach the program the characteristics

of the problem. Using this data, the program constructs a model which is then

tested using a separate labelled data set the program has not seen before. Here an

example could be detecting diabetes from patient's medical records. The algorithm

is given the medical records of both people who are known to have diabetes and

people who are known not to have it. Using this data the program is supposed to

deduce whether a new person has diabetes or not. This kind of learning needs good

training data, since the model can only be as good as the training data it is given.

From now on in this thesis we will only concentrate on supervised classi�ers. [32,

pp. 4�5]

Constructing a model using a supervised method requires training data. It is data

for which the labels of the data instances are known. These labels are stored in a list

L = [l1, l2, · · · , ln], where each label corresponds to an instance in the same index in

D. In addition to training data, many algorithms require test data. While training

data is used to construct the model, test data is used to test the performance of the

constructed model. Test data should be completely separate from the training data

and it should not be used in training.

Training and test data sets are formed by splitting the original data set D in two:

Dtrain = (d1, d2, · · · , dk) and Dtest = (dk+1, dk+2, · · · , dn). The size of the test set

varies but it is often around 30% of the data instances [15, p. 370]. The original data

set D might be shu�ed before making the split in order to make both sets represent

the original data as well as possible. Sometimes validation data is used in addition

to test data to enhance the performance of the model constructed on training stage.

The performance can be enhanced for example by tuning the parameters. However,

even when using validation data, test data is still used only to test the performance

of the model.

Above we discussed making predictions using a trained model. There are two types

of predictions that can be made: class labels and numerical values. In this thesis

we are concentrating on predicting class labels which is called classifying. There

are no limitations for the labels themselves but the set of labels has to be �nite

and discrete. Further, since supervised algorithms use training data there has to be

samples from each label in the training data. The classi�er is not able to predict a

label it has not been shown enough samples of. In addition to predicting labels, it

is possible to make numerical predictions. This is called regression. Here the labels

are numbers and the range of possible labels is continuous and the label can be for

example the price of a car, the income of a person, or the revenue of a company. It

is not necessary to have an instance of each possible value, and this might even be
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impossible. [15, pp. 327�330]

In this chapter we present the necessary background information for this work. The

next section goes through the most common data types found in data sets. Missing

data is discussed in Section 2.2. The section covers the types of missingness as well

as methods of handling missing data. Section 2.3 discusses mixed data: how it can

be a problem and what kind of solutions are developed for it. Hierarchical data and

how it can be used is covered in Section 2.4 and Section 2.5 introduces a machine

learning method called decision trees. The section explains how they can be used,

how they are constructed and what are their strengths and weaknesses. The basic

evaluation methods for machine learning methods are de�ned in Section 2.6. Finally,

the existing methods utilizing hierarchical data are discussed in Section 2.7.

2.1 Data types

Data can be collected from various phenomena and hence the data can be di�erent

by nature, for example a data set can represent customer satisfaction or a scienti�c

measurement. Even in a single data set the features can be of di�erent types and

hence they can have very di�erent properties. This might cause problems when

�tting a model since not all methods can handle mixed data types. Han et al. [15,

pp. 40�44] divide data types into four groups: nominal, ordinal, interval, and ratio.

Nominal features are categorical features which often are symbols or names of things,

for example, features sex, eye color, and nationality are nominal values. They are

not quantitative and they cannot be meaningfully ordered. Consequently, nominal

features cannot be added or divided by each other and, for example, mean is not

de�ned. Instead the most common value, mode, can be de�ned. but this does not

mean that a number cannot represent a nominal value. If a nominal feature has

number as a value it is treated as a symbol instead of a number.

Ordinal features are nominal values which have an order among them. However,

they are not quantitative so the magnitude between the values cannot be determi-

ned. Suppose a feature measuring customer satisfaction which has values satis�ed,

neutral, and dissatis�ed. The values have an intuitive order but the exact di�erence

between satis�ed and dissatis�ed cannot be de�ned.

Numerical features can be divided into two categories: interval-scaled and ratio-

scaled. Interval-scaled features have numerical values which have an order and the

exact di�erence between values can be determined. Their weakness is they do not

have a true zero-point, meaning that value zero is arbitrary and, consequently, ratios
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between interval-scaled values cannot be calculated. An example of an interval-

scaled feature is temperature in degrees Celsius. The exact di�erence between two

temperatures can be calculated for any two values but if temperature is zero, it does

not mean there is no heat since 0◦C is de�ned as the freezing point of water. Ratio-

scaled features are interval-scaled features which have a true zero-point. This makes

it possible to calculate ratios between values and hence mathematical functions are

de�ned for them. Salary, age, and height are examples of ratio-scaled features.

There are also data types which are not covered by the previous groups. One type

are interval features which have intervals as value. Cormen et al. [9, p. 348] de�ne

an interval as a set of numbers presented by an ordered set of numbers [t1, t2] where

t1 ≤ t2. The interval is a set {x | t1 ≤ x ≤ t2} where each number between t1 and

t2 belongs to the set. The endpoints t1 and t2 of an interval might or might not

be included in the set. The previously presented interval is closed since it includes

both of its endpoints. If neither of the endpoints belong to the interval it is an

open interval (t1, t2) and if only one of the endpoints belongs to the interval it is

half-open [t1, t2) or (t1, t2]. The interval can consist of real numbers [t1, t2] = {x |
t1 ≤ x ≤ t2, x ∈ R} or integers [t1, t2] = {x | t1 ≤ x ≤ t2, x ∈ Z}. The length of an

interval is the di�erence between endpoints length[t1,t2] = t2 − t1. Because intervals

cover all values between endpoints, inclusion for closed intervals can be checked by

comparing the endpoints, [t, s] ⊂ [x, y] if t ≤ x and s ≤ y. Dynamic sets of intervals

can be organized and handled using interval trees [9, pp. 348].

2.2 Missing data

Missing data is a frequent problem in real world data sets where there are instances

which do not have a value for all of the features in the data set. There are several

reasons why data might be missing, for example, there was a malfunction while

collecting the data, the data was erroneous, or the respondents did not answer to

all questions [4]. Missing data lowers the quality of a data set and can thus lower

the performance of a classi�er trained with that data. Several methods have been

developed for handling the problem. When choosing a method for a data set, in

addition to the rate of missingness, it is important to take into account the reason

why data is missing from the data set, as it can a�ect the results signi�cantly. The

common taxonomy in literature for data missingness was suggested in 1987 by Rubin

and Little [24]. They divided missingness in three classes:

1. Missing completely at random (MCAR): Missingness depends on neither ob-

served or unobserved data and each value has an equal chance of missing. An
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example of this could be tossing a coin on each value whether to remove it or

not.

2. Missing at random (MAR): Missingness depends on observed data but not on

the unobserved data. In other words, data are missing conditionally at random

where we can control the condition. For example, on a health survey a child

might not give a phone number because she does not have one. This does not

a�ect her health and the missingness of phone number depends on the age.

3. Not missing at random (NMAR): When the missingness is not explained by

MCAR or MAR, it is NMAR. In this case the missingness depends somehow

on unobserved data. It might depend on unobserved predictions or even the

missing value itself. For example, persons who's yearly income is under $20,000

might not want to answer a question about their �nancial situation.

Over the years, several methods have been developed for handling missing data and

they can be divided into �ve categories [23, pp. 19�20] [34, p. 1627]. The categories

presented below do not exclude each other meaning a method can belong to several

of them.

1. Acquire missing values : Sometimes it is possible to get the missing information,

for example by buying it from a third party or by conducting further analysis.

Usually this comes with an additional cost. Acquiring data should be used

if possible when no data treatment method is able to handle the missingness

with an acceptable accuracy or they are not possible to conduct.

2. Procedures Based on Completely Recorded Units : Perhaps the simplest met-

hod of handling missingness is to use only the complete instances. This means

discarding the instances with missing values and conducting a normal analysis

using the remaining data. In order to work properly, the method requires mis-

singness at random, otherwise the resulting data set might be biased. Another

issue with the method is the amount of data since it is possible to end up with

too little data for conducting any further analysis.

3. Weighting Procedures : After the incomplete instances have been removed,

it is possible to weight the remaining instances to make the data represent

better the distribution of the original data. Weights are derived from the

probabilities of missingness. An example of a weighting method is inverse

probability weighting [38].
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4. Imputation-Based Procedures : Instead of discarding data with missing feature

values, these methods keep all of the data instances and �ll in the missing

values using the known values of the data. After �lling in the values, standard

methods for processing the data can be used. There are several methods for

estimating the missing values, for example, using existing values, using the

mean of existing values, and estimating the missing values using regression.

5. Model-Based Procedures : For some problems it is possible to construct a model

of the problem using likelihoods and distribution of the data. Such methods

include maximum likelihood and multiple imputation.

There are also methods which do not fall under the previous categories. An example

of such method is to treat missingness as any other value in the data. This was

proposed by Quinlan [29, pp. 97�98] but he concluded that the approach is not a

good solution to the problem. Nowadays, many scienti�c studies handle missing

data using complete case analysis (CCA) [11] which simply excludes all instances

for which any data are missing. This is a simple approach to data missingness

which explains its popularity despite its weaknesses. Gelman and Hill [14, p. 531]

give two main problems with CCA the main problem being that the data has to be

MCAR. Otherwise, the remaining data set would not represent the original data but

a slightly di�erent data set since if the missing data is dependent on the known data,

excluding instances would cause a bias to the remaining data set. Unfortunately,

often when the method is used in scienti�c studies the reason for data missingness

is completely ignored [11]. Another signi�cant problem with the method is the

amount of data since excluding instances can lead to an insu�ciently small data

set. Especially, if instances have many features it is more likely for at least one of

the values to be missing. Additionally, data can be missing only during the training

phase since the model is constructed using only complete data. The resulting model

assumes the all data is available for each instance resulting that if the test data is

not complete, CCA cannot be used.

Another traditional method is single imputation. Unlike CCA, imputation does not

discard data instances but instead it �lls in the missing values. Single imputation

methods treat the imputed values as real values and do not take the uncertainty of

the imputation in account. There are several methods for �lling a missing value,

for example using the mean of the values, using regression, or matching similar

instances. Mean/mode imputation is one of the simplest ways for performing a

single value imputation. The missing values are replaced with the mean of the

feature if the feature is numerical and with mode if the feature is nominal. This

does not remove data from the set but lowers the variability of the data and the
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method often causes biased estimates [11]. Eekhout et al. [12] compared di�erent

missing data treatment methods and came to the conclusion that mean imputation

results in highly biased data and suggest that any form of mean imputation should

not be used.

Baraldi and Enders [3] argue that traditionally used complete case analysis and single

imputation are often are not adequate approaches. Instead, multiple imputation

and maximum likelihood should be used which were described as the �state of the

art� methods. One of their strengths is that they produce unbiased estimates with

MCAR and MAR data. Multiple imputation takes into account the uncertainty of

imputation by imputing each value several times and thus forming multiple complete

data sets. Multiple imputation is done in three stages: imputation, analysis, and

pooling. In imputation stage the missing values are �lled in. This is done k times

for each missing value and hence k complete data sets are formed. There are several

methods for imputing the values but data-augmentation is the most popular method

for normally distributed data. The imputed data sets are treated as complete sets

and normal analysis is conducted on each of the k data sets. Pooling combines the

results of the k separate analysis into one �nal result.

Maximum likelihood has a completely di�erent approach to the problem as it does

not try to impute the missing values. Instead, it tries to de�ne the most probable

parameters to produce the given data. Once the parameters are de�ned, the missing

values can be �lled using the parameters. The parameters are estimated using log

likelihood which represents the standardized distance between the value and the

parameters. The log likelihood value is calculated for every value in the data set

and the values are summed. These sums are then compared and the parameters that

produced the highest value are chosen. The method uses all available data while

testing the possible parameters.

2.3 Mixed data

In real life data sets can consist of several types of features, and all types can bring

important insight for the problem. Data in which several types of features are present

are called mixed data. For example, a data set describing cities can have a nominal

feature country and a numerical feature population. This poses a problem since

many machine learning algorithms can handle only one type of data.

One solution for the problem is transforming the incompatible data into a proper

form. There are several methods for encoding nominal data to numerical but perhaps

the most intuitive way to encode the nominal values is to simply assign each value a
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number. This is called ordinal coding and while it does not grow the dimensionality

of the feature, it does propose the values have an ordering among them which they

in reality do not necessarily have. However, it is possible that not all values of the

nominal feature are equal. For example, not all directors are as recognized and hence

not as valuable when rating a �lm and in such case it might be bene�cial to weigh

the values. One could also use binary encoding in which the values are �rst encoded

as ordinal and these values are then transformed into a binary number. The digits

from the resulting number are split into separate features. Another methods include

for example, sum encoding, polynomial encoding, backward di�erence, and Helmert

encoding [28].

A more detailed description is given for one-hot encoding [37]. In one-hot encoding

a new feature is created for each value of the nominal feature. Each created feature

has the value of either 1 or 0. Value 1 indicates that the encoded value is the same

the feature represents and 0 that it is something else. Figure 2.1 gives an example

of nominal feature color which has three possible values: red, yellow, and green.

After applying one-hot encoding, the feature is transformed into three features,

one for each value. The problem of one-hot encoding is the number of features

it might produce. Creating a new feature for every nominal value can cause the

dimensionality of the data grow remarkably. Also, some algorithms assume the data

to be normally distributed which one-hot encoded data is not.

color = [red, yellow, green] ⇒
red = [1, 0, 0]

yellow = [0, 1, 0]
green = [0, 0, 1]

Figure 2.1 Transforming nominal feature color into a numerical feature using one-hot
encoding.

Conversion can also be done the other way around, from numerical to nominal.

However, here the problem is loss of data since the accuracy of values is reduced. The

idea is to divide the range of values into separate segments. Each segment represents

a value in the nominal feature. The original numerical value is transformed to the

label of the segment the value falls into. For example, feature weight could be

transformed to nominal using groups underweight, normal, and overweight. There

are several ways for de�ning the groups. This can be done for example by an expert,

or by using binning, clustering or decision trees [15, pp. 115�117].
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2.4 Hierarchical data

Many methods assume the input data to be �at, i.e., a list of independent values and

consequently the potential inner structure of the values is not taken in account in the

model. Of course, not all features would even have a meaningful inner structure,

for instance eye color and blood type could be such features. However, many

features do have a potentially useful inner structure or hierarchy. Hierarchies can be

found for example in geography, biology, and numerical intervals. Figure 2.2 presents

feature home city which is an example of a feature that has a useful hierarchical

structure. For example, the cities can be categorized according to the continent

and the country they are located in. This gives additional information about the

similarities of the cities which could not be deduced using only the names of the

cities. For example, citiesMilan and Beijing are probably more di�erent thanMilan

and Madrid since Beijing is in China while Milan and Madrid are both in Europe.

Home city

Europe Asia

Italy Spain China

Milan Rome Madrid Beijing Shanghai

Figure 2.2 Feature home city which has a hierarchical structure.

Hierarchical features are features which have categorical, i.e. nominal, values organi-

zed in a hierarchical structure [16]. The hierarchical structure is de�ned as (C,≤h),

where C is a set of categories and ≤h is a partial order representing the supercate-

gory relationship (for all c1, c2 ∈ C : c1 ≤h c2 if and only if c1 is a supercategory of

c2) [7]. The actual values of the feature can belong to any level on the hierarchy.

In other words, they do not have to be at the leaves nor do the categories on the
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internal nodes have to be actual values of the feature. The hierarchy can for form

a tree, DAG, or a general graph. The previous example with feature home town is

an example of a hierarchical feature with a tree structure.

Han and Lam [16] discuss the possible use cases for hierarchical features. The

hierarchy represents the a priori knowledge about the feature and how the possible

values relate to each other. This knowledge can be used to tackle problems with the

quality of data. It is possible that all data are not recorded with equal accuracy or

a value is only known to belong to a set of values which might be caused by errors

or the expense of collecting the data. The hierarchical structure can be used to give

a reliable estimate instead of a uncertain precise value. However, the problem with

hierarchical structures is that the number of categories can grow high.

2.4.1 Quinlan-encoding

Most machine learning algorithms cannot handle hierarchical features by default.

Therefore, the hierarchical values have to be encoded into a form the standard

algorithms can handle. When doing this, there are two aspects to take care of.

Firstly, no information about the hierarchies should be lost during the encoding.

Secondly, most machine learning algorithms assume that the data instances they

receive have similar form. This means each instance should have the same features in

the same order and each instance should have an equal number of features. However,

a hierarchy tree might not be balanced which means that all values do not have an

equal amount of hierarchy levels.

Almuallim et al. [2] describe a method for encoding hierarchical values developed by

Quinlan [2, p. 14]. He suggests encoding a hierarchical nominal value fj by creating

a new nominal feature f i
j for each level i of the hierarchy tree, where 1 ≤ i ≤ h and

h is the depth of the hierarchy tree. This means that a single encoded hierarchical

feature consists of h separate nominal features. The possible values for each created

feature f i
j are the values on the ith level of the hierarchy tree. For example, the

hierarchy introduced in Figure 2.2 has three levels. The possible values on the �rst

level are {Europe, Asia}, on the second level {Italy, Spain, China}, and on the third

level the leaves of the tree. Naturally, not all combinations are possible, only the

combinations formed by the paths from the root of the tree to the value. An encoded

value for value Madrid would be fj = [f 1
j , f

2
j , f

3
j ] = [Europe, Spain, Madrid ]. If

some path does not have h levels, it can be made longer by adding duplicate nodes.

The position where the duplicates should be added depends on the hierarchy and

the problem.
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2.5 Decision Trees

Decision trees are a supervised machine learning method that can be used for both

classi�cation and regression. The basic idea behind decision trees is simple: instan-

ces belonging to di�erent classes have at least one di�erent value on one of their

features [20]. This is why the method works by sorting the instances by the values

of the features. Sorting is done by a systematically arranged series of questions so

that each question queries a feature and branches based on the value of the attri-

bute [43, p. 2]. In addition to machine learning, decision trees are used for example

in data mining and operations research [32, pp. 5�8].

The tree in Figure 2.3 is an example of a decision tree. Its purpose is to predict which

type of iris plant a data instance represents: setosa, versicolour or virginica. Each

instance in the data has the following form: d = [sepal length, sepal width,

petal length, petal width] where each value is given in centimeters. In the �gure,

the �rst line on root node and decision nodes is the rule used to split the data called

the split rule. Instances for which the rule is true are passed to the left child of the

node and the rest to the right child. Entropy indicates how similar the instances

in the node are, samples tell how many instances there are in the node and value

shows the distribution of the instances between possible labels. The last line, class,

is the label the node predicts. A new data instance is classi�ed by following the

rules on the nodes from the root to a leaf node. The instance is predicted to have

the same label as the leaf . For example, d = [6.3, 2.3, 4.4, 1.3] would be classi�ed as

versicolour.

Decision trees are directed trees. This means they are directed graphs with no cycles

and satisfy the following properties: the graph has a single root node, the root node

does not have any edges entering it and every other node has exactly one entering

edge, and path from the root to a leaf is unique [35, p. 2]. The graph consists of

root, decision nodes (internal nodes), and leaves [31, p. 5]. Root is the �rst node in

the graph and it contains all of the data. A decision node is a rule used to split the

data and a leaf node indicates the label to predict. In Figure 2.3 the type of a node

is indicated by the color of the node.

Decision trees are constructed recursively. The process starts from the root node

and continues until there are no nodes to split further. On each node a stopping

condition is checked. If it is not met, the node is a decision node. In this case a

split rule for the node is searched and data is split to the new nodes according to

the rule. If a stopping condition is met, the node will not be split further and it

becomes a leaf node. The stopping condition depends on the implementation but it
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petal width (cm) ≤ 0.8
entropy = 1.585
samples = 150

value = [50, 50, 50]
class = setosa

entropy = 0.0
samples = 50

value = [50, 0, 0]
class = setosa

True

petal width (cm) ≤ 1.75
entropy = 1.0

samples = 100
value = [0, 50, 50]
class = versicolor

False

petal length (cm) ≤ 4.95
entropy = 0.4451

samples = 54
value = [0, 49, 5]
class = versicolor

petal length (cm) ≤ 4.85
entropy = 0.1511

samples = 46
value = [0, 1, 45]
class = virginica

entropy = 0.1461
samples = 48

value = [0, 47, 1]
class = versicolor

entropy = 0.9183
samples = 6

value = [0, 2, 4]
class = virginica

entropy = 0.9183
samples = 3

value = [0, 1, 2]
class = virginica

entropy = 0.0
samples = 43

value = [0, 0, 43]
class = virginica

Root node

Decision node

Leaf node

Figure 2.3 A decision tree constructed using the iris data set. The tree predicts the type
of an iris �ower.

can be for example, a split limit which is a requirement of the number of instances

in order to make a split, a limitation to the depth of the tree, or to stop when all of

the instances in a node have the same label. Finding good split rules is of essence

on decision tree construction since they de�ne the distribution of data and hence

the predictions the model can make. Unfortunately, it was shown in 1973 by Hya�l

and Rivest [18] that constructing an optimal binary tree from decision tables is NP-

complete. Since, more conditions have been proven under which the construction

of an optimal decision tree is NP-complete [13, p. 11]. Therefore a heuristic has to

be used to select the split rules. Often the choice of the heuristic is greedy, which

means making the locally optimal choice. Here it means that a rule that divides

the data as well as possible on a single node is chosen. A greedy heuristic does not

necessarily give the optimal solution.

2.5.1 An example of split criteria: information gain

As explained, decision trees are constructed by partitioning the data using split rules.

Usually each node has several potential split rules and the problem is to �nd the rule
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resulting in the best possible split. There are several criteria for determining the best

split. Few of the most common univariate criteria in literature are impurity based,

information gain, and gini index [32, pp. 53�55]. Each criterion has a di�erent

mathematical background and all of them have their strengths and weaknesses.

However, majority of studies have come to the conclusion that there is no signi�cant

di�erence between the criteria [27].

Information gain is a splitting criterion which used for example in Quinlan's C4.5

algorithm [31]. It de�nes the goodness of a split rule by the decrease of entropy

caused by the resulting partition. In information theory entropy is a measure of

impurity of the data. With decision trees it is used to measure the homogeneity of

a node. The more homogeneous the instances are in a node, the lower the entropy.

Entropy is de�ned as

E(S) = −
∑

pi log2 pi,

where S is a data set and pi is the probability for value i. Figure 2.4 visualizes

entropy for a set which has two values occurring with probabilities p and (1 − p).

Entropy E(S) is plotted in Figure 2.4 (a) for such set. The possible values for entropy

in this case are between 0 and 1. The cases where entropy achieves minimum and

maximum value are visualized in Figure 2.4 (b). The maximum entropy is achieved

when the probability for a value is 0.5, meaning the sample consists evenly of two

values and the homogeneity is at its lowest. When the sample consists of only a

single class, entropy is 0 because the set is completely homogeneous.

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4
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(a) The entropy function plotted for all values of p. (b) The upper set
has entropy of 0
and the lower en-
tropy of 1.

Figure 2.4 Entropy for a set with two possible values with probabilities p and (1− p).
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Information gain for a split is de�ned as the di�erence between the entropy of a

parent and the weighted average entropy of its children. When choosing the best

split rule, each possibility is tested by calculating the information gain for all possible

rules. The entropy is calculated for each child with the assumption that feature X

was used to make the split. The weighted entropy for children is de�ned as

E(S|X) =
∑
c∈X

P (c)E(c),

where c is a value of feature X, P (c) is the probability for value c, and E(c) is the

entropy for c. Using the given de�nitions, information gain is de�ned as

Gain(T,X) = E(T )− E(T |X)

The feature which gives the highest information gain is chosen as the split rule.

2.5.2 Missing data in decision trees

Quinlan [30] brings up three problems that arise when decision trees are used with

incomplete data. The �rst problem occurs while �nding the best split rule. The rate

of missingness on each feature might di�er greatly. How should this be considered

while choosing the split rule? The second problem appears after the split rule has

been decided on. How should we treat instances which are missing the value used

as split rule? The third problem is related to the second problem. After the tree is

constructed and we are classifying a new instance, how can we classify an instance

that is missing data?

There are several methods for handling missing data with decision trees. The general

missing data treatments described in Section 2.2 like CCA and imputation can

easily be used with decision trees. These methods do not encounter the second

and third problem described above since they work with complete data. Aljuaid

and Sasi [1] compared imputation methods for decision trees and concluded that

imputing using expectation-maximization works well if the values are numerical and

hot-deck imputation if the data is nominal or mixed. In addition to general missing

data methods, it is possible to integrate handling missing data in the model. The

simplest methods include treating missingness as a separate nominal value, and

adding a rule for missing data to each node. MIA (missingness incorporated in

attributes) is an example of such method. It handles the instances with missing

values as a single group and tries to �nd split that works well even the missing

values are assigned to one of the groups [42]. Treating missingness as a value can
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be e�ective if the missingness is not happening at random because in that case a

missing value tells something about the value itself.

One way to handle missing data with decision trees is to use probabilistic split. The

method is used for example in Quinlan's C4.5 algorithm [31]. In a probabilistic split

the split rule is determined using normal heuristics but using only the instances

which are not missing the value for the feature being tested as split rule. This is not

CCA since an instance can be left out when testing one feature but used in another

test depending on which values are missing from the instance. Once a split rule is

found, the instances are split according to the rule. There are now instances which

do not have the value for the split rule and cannot be split normally. Therefore

in probabilistic split each instance is associated with a weight. The weight is the

probability for the instance to belong in the group it is assigned. The weight is

updated after every split by multiplying the old weight with the new probability.

Instances with known value are assigned weight of 1 since we know for sure where

the instance belongs. Instances that are missing the value for split rule cannot be

assigned to either of the groups with certainty. This is why they are added to both

groups. For these instances, the weight is the distribution of the instances de�ned

by the instances for which the split can be made. The weight is the sum of weights

in the parent divided by the sum of weights in the group.

Another well-known decision tree algorithm CART [40] (classi�cation and regression

tree) uses surrogate splits. In this method each node has several split rules. If the

primary rule cannot be evaluated, a surrogate rule is used instead. If none of the

rules cannot be used, the instance is forwarded to the node with the most instances.

This is called the base rule. The best split is de�ned as normal using only the

instances with required data. After the best split is found, the surrogate splits are

de�ned by �nding splits that produce the most similar splits as the primary split

rule. The surrogate rules must produce a better match than just forwarding all

instances to the larger node. If no such rules can be found, the base rule is used.

[43, pp. 189�190]

2.5.3 Strengths and weaknesses of decision trees

Like every machine learning method, decision trees have their strengths and we-

aknesses. Kotsiantis [20] compared di�erent classi�cation methods and the results

are collected to Table 2.2 as presented in his article with the exception that rule

learners are excluded from the table. In the table there is a list of characteristics

which are evaluated for each method in the table. In the table * means the worst
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performance and **** the best performance. The table shows how di�erent classi�-

cation methods can be and how important it can be to choose the right method for

the problem. This requires being familiar with methods and knowing the problem

and the data. For example, kNN does not train a model but instead it �nds the

nearest instance from the training data. This causes it to be extremely vulnerable

to missing data and makes the classi�cation slow.

Table 2.2 Characteristics of di�erent learning methods [20]. * represents the worst and
**** the best performance.

Decision
Trees

Neural
Net-
works

Naive
Bayes

kNN SVM

Accuracy in general ** *** * ** ****

Speed of learning with respect
to number of attributes and the
number of instances

*** * **** **** *

Speed of classi�cation **** **** **** * ****

Tolerance to missing values *** * **** * **

Tolerance to irrelevant features *** * ** ** ****

Tolerance to redundant features ** ** * ** ***

Tolerance to highly interdepen-
dent attributes

** *** * * ***

Dealing with discrete/binary/
continuous features

****
***

(not disc)

***
(not con)

***
(not

directly

disc)

**
(not disc)

Tolerance to noise ** ** *** * **

Dealing with danger of over�t-
ting

** * *** *** **

Attempts for incremental lear-
ning

** *** **** **** **

Explanation ability/transpa-
rency of knowledge/classi�cati-
ons

**** * **** ** *

Model parameter handling *** * **** *** *

Perhaps the most dominant feature of decision trees is their transparency which is

a big factor in their popularity. The method uses simple yes-no or smaller than

rules to classify an instance. These rules and their signi�cance to the problem can

be understood by a human and it is possible to go through the chain of reasoning
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behind a prediction. Also, as seen in Figure 2.3, it is possible to visualize a decision

tree. Another signi�cant strength of decision trees is the ability to handle diverse

data. They can handle several labels associated to a problem and are good at

handing mixed data. Both of these attributes are explained by the basic idea of

the method. Decision trees also tolerate missing data quite well and several missing

data treatments have been developed for decision trees as discussed in the previous

subsection. Once the model has been trained, it is fast to classify an instance using

the created tree.

Even though decision trees are successfully applied to many problems, they do have

limitations. The most notable limitation might be their prediction power. While

it might be adequate for some problems, there are methods which can reach bet-

ter results in general such as neural networks and SVM (support vector machine).

Decision tree is a high-variance method which means it can create an arbitrarily

complex model of the data. This makes it susceptible to over�tting. The problem

is visualized in Figure 2.5. The green line presents a larger decision tree meaning it

has more nodes and hence more rules for splitting the data. However, although it

represents the test data better than the blue line, it does not generalize the data as

well as the blue line. The larger decision tree over�tted to the test data and learned

individual instances (outliers) of the data instead of the sin curve. Therefore why

smaller decision trees are often favoured over larger ones. Methods like pruning can

be used to avoid over�tting. Another signi�cant problem with decision trees lies

with the data. They have a natural instability which can cause small changes in

Dtrain to cause big changes in the formed model [22]. Also, although the data does

not require much reprocessing, the data should be an even representation of the

labels. Otherwise, the results might get biased in favor of the dominating labels of

the training data.

Classifying instances is relatively fast with decision trees. The speed of the classi�ca-

tion depends only on the constructed tree, and the time taken to classify an instance

is the length of the path from root to a leaf the instance belongs to. However, there

are signi�cant di�erences in the time taken to construct a decision tree. Martin and

Hirschberg [25] proved the time complexity for algorithms using top-down induction,

which include for example C4.5, to be O(m · n2) where n is the number of features

and m is the size of Dtrain. The amount of available data has increased and as the

used data sets become larger and larger, the time complexity becomes an issue and

hence, faster methods are needed for constructing decision trees. However, the speed

of construction alone is not enough and the performance of the new faster methods

have to be approximately as good as the old methods'. Over the years, several

methods have been developed to answer this problem. For example, Su and Zhang
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Figure 2.5 Two decision trees trained on the same data [36]. The decision tree presented
by the blue line is able to somewhat generalize the data but the green over�ts to the training
data.

[41] have developed a method based on conditional independence assumption with

time complexity of O(m · n). This is signi�cantly faster than top-down induction

can provide. They also reported a competitive accuracy with the C4.5 method.

2.6 Evaluation metrics for classi�ers

Once a model is created, the next step is testing it. This often requires test data

but more importantly a measure of goodness. What is considered good, however,

depends on the problem itself. The goal might be to predict a class for an instance,

in which case it is clear whether the classi�er made the right prediction and it is

simple to make calculations based on the number of instances classi�ed correctly

and incorrectly. This is not the case for regression problems since the prediction

cannot be labelled as naively to be right or wrong. A completely di�erent type of

problem are classi�ers recommending new products to a user. The correctness of an

outcome is not so clear since the goodness depends individually on the users. The

mathematically the performance of the system might be good but the users might

still feel the system does not give them good recommendations [26].
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This section uses Han et al. [15, pp. 364�371] as a reference. In this work we

concentrate on the metrics used with classi�cation methods. For simplicity, the

metrics presented in this section are de�ned for cases when there are only two

classes. However, the metrics can be simply generalized to several classes. This can

be done for example by calculating a value for each class and taking the mean of

the values.

Often the amount of data is limited while constructing a model. In addition to

training the classi�er, testing the classi�er requires data. Using the same data for

training and testing does not provide reliable results about how the model performs

when it is given new data. There are several ways of using the data in a way that

produces reliable evaluation results. Perhaps the simplest way is the holdout method

where the data are split into train and test sets. Often around third of the data

is reserved for testing. The problem with this is that the results depend on how

the data are split. One method which does not have this problem is k-fold cross-

validation. The data set is split into k separate subsets of approximately equal size

D = [D1, D2, . . . , Dk]. The evaluation is done k times. In each iteration subset

Di, where 1 ≤ i ≤ k, is reserved for testing and the rest are used for training the

classi�er. The performance estimate is the average of the iterations.

Confusion matrix is a useful tool for understanding what happens inside the clas-

si�er. It does not give a value presenting the goodness of a classi�er but instead it

shows all classi�cations made by the classi�er and it can be used for example, to see

what kind of mistakes the classi�er made. The matrix is a n× n matrix where n is

the number of classes. Each row and column is labelled with one of the classes. A

value vj,i on the matrix tells how many instances of class i are predicted to belong

to class j. Therefore, the columns represent the predicted classes and the rows the

actual classes. An example of a confusion matrix is in Figure 2.6. The data has

two possible classes: class1 and class2. The values on the diagonal are the number

of correct classi�cations so here 51 out of 68 instances are classi�ed correctly. The

matrix also shows that instances of class2 are distinguished well from class1 but not

the other way around.

class1 class2[ ]
class1 20 14
class2 3 31

Figure 2.6 A confusion matrix.

Many evaluation metrics use key �gures which are based on positive and negative

class. Positive class is the main class of interest and negative class represents all
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other classes. There are four commonly used key �gures. Tp is the number of

instances of the positive class that were correctly classi�ed and false positives Fp

the amount of instances of positive class that were incorrectly classi�ed. Figures

true negatives Tn and false negatives Fn are similarly de�ned but for the negative

class. These �gures can easily be seen from the confusion matrix. Let class1 be the

positive class in Figure 2.6. The key �gures are Tp = 20, Fp = 14, Tn = 31, and

Fn = 3.

Perhaps the most intuitive way of measuring the goodness of a model is accuracy

A. It is the ratio of right classi�cations and the number of instances as presented in

Equation 2.1. For example, the accuracy for the model in Figure 2.6 is 51/68 = 0.75.

Accuracy is useful when the data is balanced and gives a starting point for the

evaluation of the model. However, if the data is unbalanced it is favorable to predict

only a single class. For example, a data set could consist of 80% persons who have

cancer and 20% persons who do not have cancer. In this case the classi�er might

learn that it is bene�cial to always predict that the person does not have cancer.

This would give accuracy of 80% but the model has no predictive power. This is

called the accuracy paradox.

Other basic metrics include precision, recall, and F1-score. Their formulas are pre-

sented in equation 2.1. Precision tells how many percent of the positive predictions

are correct, and it can be thought as the exactness of the classi�er. Recall on the

other hand is the percentage of the positive class that is correctly classi�ed. It can

be thought as the completeness of the classi�er. Recall and precision are combined

in the F1-score which is the harmonic mean of the two metrics. Therefore, it can be

thought of as a value that tries to �nd the balance between recall and precision and

can be used for example when recall and precision are equally important. For the

example in Figure 2.6 precision is 20/34 = 0.59, recall is 20/23 = 0.87, and F1-score

is 0.70.

accuracy A =
Tp + Tn

Tp + Tn + Fp + Fn

precision P =
Tp

Tp + Fp

recall R =
Tp

Tp + Fn

F1-score F1 = 2 · P ×R

P + R

(2.1)

As stated before, the problem de�nes how the performance should be evaluated.
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This is true even if we are only concentrating on classi�cation problems. For exam-

ple, the distribution of classes in a data set a�ects the choice of the metric to use,

it might be important that all made classi�cations are correct, or that all instances

of a single class are caught. In addition to accuracy based metrics, there are several

other aspects, like speed, robustness, scalability, and interpretability, that can be

considered. For example, the speed of the classi�er is crucial on real-time applicati-

ons but for a medical application it could be important for the user to understand

why a certain prediction was made.

2.7 Known hierarchical models

Hierarchies have been used a lot in machine learning and they have been applied

to several existing machine learning methods. Usually the hierarchies are utilized

either in the labels or in the features. If the labels are hierarchical, the possible

values form a hierarchical structure which can be for example a graph or a DAG.

An example of such label was shown in Figure 2.2. Using the graph, it is possible to

predict a label from any level of the hierarchy. This can preserve the classi�er from

making an uncertain prediction. However, the labels on the higher levels are not as

accurate and hence usually not as useful as the labels at the bottom of the hierarchy.

It is established in several studies that label hierarchies improve the classi�cation

results [5].

In hierarchical single-label problems an instance has only a single label but the

possible labels are hierarchical. Some developed methods use the possibility of

not predicting a leaf, but some methods require that. An example of a method

utilizing the ability to exchange accuracy with reliability is developed by Chen et

al. [8]. They developed a method for constructing a decision tree using data with

hierarchical class labels and their method proved to be superior to C4.5. In the

literature the approaches for dealing with the hierarchy of the label are top-down

(local) and one-shot (global). In local approach the hierarchy is processed level by

level. On each level new classi�ers are created using only the data in that level and

the method produces a tree of classi�ers. In comparison the global approach creates

a classi�er which handles the class hierarchy as a whole. [7]

The research of using hierarchical labels has been extended to having multiple labels.

In normal multi-label classi�cation an instance can have several labels associated

with it. However, in hierarchical multi-label classi�cation (HMC) an instance can

be associated with several labels which belong to several paths on the label hierarchy.

This is a more complex problem than predicting just a single �at class. Nevertheless,

the problem has a lot of applications which is why a lot of research has been done
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on HMC. It is particularly common for classifying genes but is has been applied for

example also in text classi�cation [33].

Another approach to utilizing hierarchy in machine learning is to have hierarchical

features. However, this seems to be a signi�cantly less studied area. In this approach

each feature can have its own hierarchies but the class label does not have to be

hierarchical. For example, Han and Lam [17] have developed a framework which

utilizes hierarchical features with good results. The hierarchies have been also used

when the values are not equally accurate and the di�erent accuracies are just levels

on the hierarchy. Furthermore, Zhang and Honavar have developed a method that

uses attribute value taxonomies to guide the decision tree construction [44].
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3. DECISION TREE WITH HIERARCHICAL

FEATURES

The goal of this work was to create a classi�cation method capable to handle hier-

archical and interval data while being able to handle missing data. This implies

that the method has to be able to handle mixed and missing data. This is why we

chose decision tree as the base method. It has naturally both qualities as discussed

in Section 2.5.3. One major factor for choosing decision tree was that it is also re-

latively simple to implement from scratch and it does not require massive amounts

of data to work.

One of the strengths of decision trees is that they can endure all kinds of data.

However, there are still cases which decision trees are unable to handle. An example

of such case is a single feature with several data types. This could occur when

all values of a feature are not equally accurate. An example could be company's

sta� number. Some companies report the precise number of workers while others

report only a range. How should this kind of situation be handled without losing

information?

In this work the solution to the problem of several data types in a feature is are

hierarchies. Perhaps somewhat surprisingly, the most common data types can be

transformed to a similar hierarchical form and hence the values can be treated

similarly. This makes it possible to have several di�erent data types in a single

feature. For example, real values and intervals can be combined easily to the same

hierarchy since intervals consist of real values. Using hierarchies has also other

bene�ts. They can contain information that is otherwise unattainable. Hierarchical

data was discussed more in depth in Section 2.4.

Hierarchical data must be preprocessed before they can be used with decision trees.

One known method for this is Quinlan-encoding which was explained in Section

2.4.1. However, this method can have serious drawbacks since the dimensionality

of the data can grow large. This might make it very slow or even impossible to

construct the model. It also requires that every value has the same number of levels

in the hierarchy which is an arti�cial requirement. However, it is possible to use
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hierarchical data with decision trees in a way that gives control of the dimensionality

to the user and even makes computing the model faster.

Most machine learning methods assume each instance to have only one value for a

feature. However, in real life this often is not the case. For example, a company can

be associated with several industry codes or a person can have several employers

simultaneously. Of course, not all instances have several values for the same feature.

One instance might have four values for a feature, another has only one and third is

missing it completely. How should this kind of situations be handled? The developed

method solves this by using a set of values instead of a list of values as input data.

The other goal of the work was to integrate handling missing data as part of the

developed As outlined in Section 2.5.2, there are several existing methods for hand-

ling missing data with decision trees. The developed method uses a similar idea to

what CART algorithm uses for handling missing data. The idea is that if the best

split cannot be used to split the data, we should use the second best. The goal is

to be able to handle missing data without making assumptions and to use all of the

available data to classify the instances with missing data.

In this thesis we have modi�ed the decision tree method to cope better with the

problems discussed above. The method developed in this thesis is referred to as

decision tree with hierarchical features (DTHF). It is a classi�cation tree that uses

data in a hierarchical form. The data do not have to be hierarchical by nature but

the presentation must be. For example, numerical values have a natural hierarchy

but nominal values necessarily do not. In that case a nominal feature can only be

presented as hierarchical. The method assumes all input data are in a prede�ned

hierarchical form. The process of transforming the data to the accepted form is

described in Section 3.1. The algorithm for constructing the hierarchical decision

tree is described in Section 3.2.

3.1 Transforming data

DTHF constructs a model using data that is in a speci�ed hierarchical form. This

is why all input data have to be preprocessed before constructing a model. The

developed algorithm can handle an instance having several values for a single feature.

This makes the mathematical notation for the data remarkably more complicated.

Hence, in this chapter the used notation is for the case where single feature does not

have multiple values. The case for handling multiple values is explained in Section

3.1.5.
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The preprocessing of the data is done in two parts. First, each feature in the data

is given an identi�er idi to distinguish it from other features. The identi�ers are

unique strings, for example a number, a letter, or a word describing the feature.

The identi�er is used to link a value to a feature. Secondly, each value fi,j in di is

transformed to a hierarchical form f̄i,j = (h1
i,j, h

2
i,j, . . . , h

n(i,j)
i,j ). Here hm

i,j is the mth

hierarchic level of ith data instance's jth value and n(i, j) is the number of hierarchic

levels on ith data instance's jth value. For the hierarchy levels it holds that for all

k > m, hk
i,j is more speci�c than hm

i,j. Value (Animal, Mammal, Dog, Poodle) is an

example of such hierarchical value. The number of levels in a transformed feature

depends on the value itself. This means that it is possible for two transformed

values of the same feature have a di�erent number of levels. Each data instance

di = [fi,1, fi,2 . . . , fi,ni
] is transformed to the following form:

d̄i = [f̄i,1, f̄i,2, . . . , f̄i,ni
]

= [(id1, h
1
i,1, h

2
i,1, . . . , h

n(i,1)
i,1 ), (id2, h

1
i,2, h

2
i,2, . . . , h

n(i,2)
i,2 ), . . . ,

(idni
, h1

i,ni
, h2

i,ni
, . . . , h

n(i,ni)
i,ni

)]

In addition to an identi�er, each feature must be assigned a data type. The type

de�nes how the value is transformed to a hierarchical form. Depending on the data

type, some types require also additional parameters. These parameters are explained

in the following subsections. The data types are de�ned using a list having a type

for each feature in Dtrain. Each data type has a unique identi�er which must be used

when de�ning the data types for the features. DTHF accepts the following types:

�at nominal (N), hierarchical nominal (HN), real valued (R), and interval valued

(I). The value in parentheses after a type is the identi�er for the data type. For

instance data_types = [R,R,N,HN ] would be a valid de�nition for feature types.

3.1.1 Flat nominal features

A �at nominal feature consists of discrete categorical values which can be symbols

or names of things as speci�ed in Section 2.1. In the developed method, �at nominal

features are identi�ed using N. This type does not assume an inner structure between

the values and they are treated as completely separate. Values are thought as a

hierarchical feature which has a single level consisting of the value itself. Hence,

the transformation only presents the value in the right form and does not modify

it. Nominal values are transformed to the form f̄i,j = (idi, value). For example,

feature sex that has two possible values female and male would be transformed to

(sex, female) and (sex, male).
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3.1.2 Hierarchical nominal features

Nominal features whose values have an inner hierarchical structure are hierarchical

nominal features. Since the values are nominal, they are not quantitative and they

cannot be ordered. Instead of an ordering, the values have a hierarchy where values

can be generalized to higher concepts. Hierarchical values were de�ned in Section

2.4. The hierarchy might not be given with the data set in which case the user must

de�ne the hierarchy. The hierarchies must form a tree where the values have common

parents. The identi�er for a hierarchical nominal feature is HN. An example of a

hierarchical nominal feature is presented in Figure 3.1. The feature in the �gure is

marital status, which has seven possible values. The original values (at leaves) are

marked with grey color and the white nodes are the higher concepts that group the

original values together.

marital status

married not married

living together not together been married never married

civilian spouse armed forces spouse separated absent widowed divorsed

Figure 3.1 An example of a hierarchical nominal feature. Feature in the �gure is marital
status and it has seven possible nominal values (colored nodes).

The transformed value for a hierarchical nominal feature is the path from the root

to the value being transformed. Hierarchical nominal features are transformed to

f̄i,j = (idi, v2, v3, ..., vk), where vi is the ith value on the path and k is the length of

the path. Root of the tree is left out from the transformation as it has no information.

For example, value widowed would be transformed to (marital, not married, been

married, widowed).

3.1.3 Numerical features

Numerical features have integer Z or real R values and they can be either interval-

scaled or ratio-scaled. Those are de�ned in Section 2.1. The identi�er for a numerical

feature is R. Numerical values are transformed to hierarchical values using an interval
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binary tree. The transformed value is the path from root to the leaf including the

value. The tree is constructed by �rst �nding the minimum and maximum value of

the feature in Dtrain. Those values form the interval in the root of the graph. New

nodes are added by splitting each interval in half. The smaller half becomes the left

child and the larger half becomes the right child. This is continued until the formed

interval is smaller than the split limit. Figure 3.2 is an example of such tree. Here

the range of values for the feature was between 7 and 43 and the used split limit

was 10.

(7, 43)

(7, 25) (26, 43)

(7, 16) (17, 25)

(7, 11) (12, 16)

(26, 34) (35, 43)

Figure 3.2 A graph for transforming a numerical value to hierarchical. In the training
data feature's values were integers between 7 and 43 and the used split limit was 10.

Numerical feature fi is transformed to f̄i,j = (idi, v2, v3, . . . , vk), where vi is the ith

node on the path and k is the length of the path. The transformed value consists

of letters �L� (left) and �R� (right). The transformation is done by starting from

the root of the graph and comparing the new value to the left child of the current

node. If the value is included in the interval of the left child, it is made the current

node and letter L is added to the transformed value. Otherwise the value must

belong to the right child which means it is made the current node and letter R is

added. This is continued until a leaf is hit. For example, using the tree in Figure

3.2, value 13 would be transformed to (L, L, R). If the new value is greater than

the maximum value in the tree, it is always directed to the right child. Accordingly,
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if the new value is smaller than the minimum of the tree, it is always directed left.

For example, value 53 would be transformed to (R, R) and 3 to (L, L, L).

In practice, the tree does not have to be completely constructed at any point of the

transformation. Instead, on the training state the root interval of the graph, i.e. the

minimum and maximum values of Dtrain, are saved. When a value is transformed,

it is compared to the middle point of the interval and assigned L if it is smaller and

R if it is bigger. This is continued until the interval is smaller than the split limit.

The user should de�ne a split limit separately for each numerical feature. A default

value can be used but the sensible value depends on the feature. For example, petal

width and company's revenue are in completely di�erent orders of magnitude. The

split limit controls the number of levels in a transformed value. The smaller the

limit is, the longer the transformed hierarchies are.

3.1.4 Interval features

Features that can have both numerical and interval values are called interval features

which are identi�ed using I. Interval features can consists completely of intervals,

completely of numerical values, or both. However, if the instances in Dtrain have

only numerical values for a interval feature, the transformation is identical to the

transformation done to a numerical feature. The transformation of features with

interval values is done using an interval DAG which is a DAG consisting of intervals.

The intervals are arranged such that an interval on a parent node includes all of the

intervals on its children. A node can have an arbitrary number of children. Since

DAGs are used instead of directed trees, two nodes can have several paths between

them. Therefore, a single value can have multiple transformations. The paths in

the graph are indicated by assigning each node a unique identi�er. An example of

an interval DAG is given is Figure 3.3 where each node has two values: the interval

the node represents and the integer value which is the identi�er of the node.

The transformation of value fi,j is the path from root to interval r which is the

shortest interval for which fi,j ∈ r. The transformed value is f̄i,j = (idi, v2, v3, . . . , vk)

where vi is the identi�er of the ith node on the path and k is the length of the path.

Root node is not included in the value since it is on all paths. For example, in Figure

3.3 the shortest interval including value (20, 25) is (18, 26) so the transformed value

is f̄i,j = (idi, 0, 1, 9). It is important to note that the path does not have to end

to a leaf. This is the case for interval (16, 21) for which the transformed value is

f̄i,j = (idi, 0, 1). In a case where several paths can be formed for a single value, a

transformed value is added for each path. Interval (27, 28) is an example of such

situation because the smallest node including it is (27, 29). There are two paths
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leading to it, meaning there are two transformed values: f̄i,j = (idi, 0, 3, 10) and

f̄i,j = (idi, 0, 1, 10).

(11, 53) 0

(15, 38) 1 (27, 52) 3 (11, 14) 7

(2, 53) 5

(2, 18) 4

(15, 17) 8 (18, 26) 9 (27, 29) 10 (30, 50) 2

(30, 37) 11 (38, 49) 12

(50, 51) 13

(2, 10) 6

(38, 43) 14 (44, 49) 15

Master interval

Interval from train data

Interval between projected points

Half of parent interval

Figure 3.3 An example of an interval DAG that is used for transforming interval features
into a hierarchical form. The �rst part on a node is the interval and the second value the
identi�er of the node. The colors indicate the state the node was added to the graph.

The interval graphs are constructed in four stages and each stage adds nodes to

the graph using di�erent rules. Many of the stages add nodes to the graph de-

pending on the values the interval feature has in Dtrain, this set is denoted by

Vfj = {fi,j | ∀i : di ∈ Dtrain}. The graph in Figure 3.3 is constructed using

Vfj = {(11, 53), (2, 18), (30, 50), (15, 38), (27, 52), 26, 3}. The stages for constructing
a graph used for transforming interval features are described below.

1. Root of the graph: Constructing the graph is started from the root of the

graph. The root has to include all values of the feature and therefore the

root interval consists of the minimum and maximum value of the feature,

root = (min(Vfj),max(Vfj)). This is called the master interval. In the �gure

the master interval is (2, 53).

2. Add intervals in Vfj : Each interval in Vfj is added to the graph. The assump-

tion is that the intervals in the training data also occur in the data to be
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classi�ed. In �gure the added intervals are (11, 53), (2, 18), (30, 50), (15, 38)

and (27, 52).

3. Fill the gaps between the intervals in the graph: At this point the graph consists

of the master interval and the intervals in the training data. It is possible for

a value to fall between intervals added in the second stage i.e. the value would

belong only to the root interval. Another possible problem is that a value

belongs to several nodes. Therefore, the range of values de�ned by master

interval is divided so that the leaf nodes are separate but cover the whole

master interval. This is done by creating a set of the start and end points of

each interval in Vfj and master node. The list is sorted and a interval is added

to the graph between every two consequent points if no such interval already

exists. For example, in the �gure the two smallest values are 2 and 11. There

is no interval between those values so an interval (2, 10) is added to the graph.

4. Split leaves: The leaves of the graph are now completely separate of each other,

meaning they do not overlap with each other. The length of the intervals in

the leaves can di�er greatly. At the last stage the leaf nodes are split further

until the length of a produced interval is smaller than a threshold called split

limit. A value for split limit has to be de�ned for each interval feature. In

the �gure the split limit is 10. After the third stage, the graph has only one

interval whose length is greater than 10. Interval (38, 49) is split in half from

the middle and the nodes are added as its children. Both of the created nodes

have length less than 10 so they are not split.

The process of adding intervals to the graph is illustrated in Figure 3.4. In the

�gure each horizontal line represents an interval in the graph. The red line (A,H)

is the master interval. Intervals from the training data are drawn using a solid

black line: (B,D), (C,E), and (F,G). The projected start and end points of in-

tervals are marked with letters A − H on the master interval. Using the mar-

ked points, we add an interval between every pair of consequent points where

an interval does not already exist. These intervals are drawn with dashed line:

(A,B), (B,C), (C,D), (D,E), (E,F ), and (G,H). Note that interval (F,G) was in

the original data set so it was not added on third stage. The fourth stage is not

shown in the �gure, since it would just split the existing intervals into smaller pieces.

3.1.5 Handling features with multiple values

In various cases, a single data instance may have several di�erent values de�ned for

a single feature. For example, a company may be associated with several di�erent
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Figure 3.4 Forming the intervals based on the training data for the graph used for trans-
forming interval features.

industry codes. However, not all instances necessarily have multiple values for a

feature and some instances might not have the data for that feature at all. In this

case we cannot assume the input data to be in a form where every instance is similar.

Instead, the data can be presented as a set of values where each value is associated

with a feature. For example, letting fi denote the industry code feature and dc

denote a data instance representing company c with industry codes 4624 and 4623,

the data instance dc is de�ned by the list dc = [(fi, 4624), (fi, 4623)].

Generally, in order to handle multiple values for a single feature, a data instance di is

rede�ned as a list of feature-value pairs di = [(fi(1), vi,1), (fi(2), vi,2), . . . , (fi(n(i)), vi,n(i))]

where fi(k) denotes a feature with index i(k), vi,k denotes the corresponding feature

value and n(i) denotes the amount of values in di. Note that feature-value pairs

(fi(k), vi,k) and (fi(l), vi,l), where k 6= l and i(k) = i(l), represent two values vi,k and

vi,l of the same feature fi(k) = fi(l). The feature-value pairs are transformed into

hierarchical form similarly as in the case with only one value per feature.



3.2. DTHF Algorithm 34

3.2 DTHF Algorithm

Many machine learning algorithms handle data instances di as described in the

beginning of Chapter 2. The approach has its strengths, for example it does not

necessarily require preprocessing and it is easy to understand, but it also has dis-

advantages which can create limitations for the data. For instance, there can be

only one value for each feature, some data types cannot be used, and presenting

hierarchical data can be problematic as discussed in Section 2.4. The machine lear-

ning method described in this thesis is a modi�ed version of the classi�cation tree

described in Section 2.5. The modi�cations aim to construct a decision tree which

addresses the previously discussed problems. The developed method has four main

di�erences compared to the standard decision tree method:

1. Input data is transformed into a hierarchical form.

2. Split rules are hierarchic levels hk
i,j instead of complete feature values.

3. Data instances can have di�erent numbers of values for a feature.

4. Missing data creates a new branch where the missing feature cannot be used

to make a split.

Usually decision trees handle data instances di as a list of features. Each di has a

similar form, meaning they have the same features in the same order. This conven-

tion is not used with DTHF. Instead, the input is a set of hierarchical values. The

form for the hierarchical values was introduced in Section 3.1. Since the input is a

set of values, an identi�er is used instead of a position in the input to link a value

to a feature. This modi�cation makes it possible for an instance to have several

values for a feature. However, this is not mandatory and each instance can have an

arbitrary number of values associated with them.

Hierarchical data is especially useful with decision trees since the hierarchies can

be used to make splits. Instead of the whole feature, in DTHF hierarchical levels

are used as split rules. The hierarchy levels must be used from general to speci�c,

for example hierarchy level Poodle cannot be used before Dog is used. This allows

to �rst make a rough division of the data and then �ne tune deeper in the tree if

necessary. In a standard decision tree, each available value is tested as a split rule.

With DTHF the possibility of values to test is smaller because the hierarchies group

values together. Therefore, constructing a decision tree is faster.
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Handling missing data is integrated in DTHF. If there are instances for which the

outcome of split rule cannot be de�ned, a third node is created where the missing

feature cannot be used. So, if there are missing data, the method uses the second

best split rule in the third branch. This is similar, but not the same, approach as

CART algorithm uses. This causes the missing data to be handled accurately on

di�erent hierarchy levels, which is a major advantage.

Figure 3.5 visualizes a tree constructed using DTHF. The tree is trained using only

complete data instances and it cannot handle missing data. However, it would have

been possible to construct a tree which could handle also missing data using the same

Dtrain as for the tree given in the �gure (see Section 3.2.2). Classifying instances is

done identically as with a standard decision tree. However, Figures 3.5 and 2.3 do

not present information similarly. Previously, each decision node displayed the split

rule that was used to split the data in that node. Here each node has the split rules

that have been followed to get to that node from the root. Therefore, each instance

in a decision node ful�ls the split rules listed on that node.

[['gender'],
['age'],

['work']] 
dist: [23075, 7650]

[['gender', 'Male'],
['age'],

['work']] 
dist: [14270, 6523]

[['gender'],
['age'],

['work']] 
dist: [8805, 1127]

[['age', 'R'],
['gender', 'Male'],

['work']] 
dist: [1829, 1204]

[['age'],
['gender', 'Male'],

['work']] 
dist: [12441, 5319]

Figure 3.5 An example of a decision tree constructed by DTHF. The tree was constructed
using data without missing values.

Each node has two lists: Xp and dist. The �rst list on a node is Xp and it is used for

keeping track of the used split rules. The split rules are sorted by the features they

belong to and therefore Xp has a list for each feature in Dtrain. Once a hierarchy level

is used as a split rule, it is added to the list of the corresponding feature. The newest

split rule is always the last value of �rst element of Xp (see Figure 3.6). Initially Xp

consists of the identi�ers of all possible features in Dtrain so Xp = {idi | fi ∈ Dtrain}.
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For example, in Figure 3.5 initially Xp = [[gender ], [age], [work ]]. Figure 3.6 gives

an example of how Xp's value changes as new split rules are added.

Xp =[[Work, Is working ], [Hometown, Africa], [Gender ]]
⇓

New split rule; feature: Hometown, value: Nigeria
⇓

Xp =[[Hometown, Africa, Nigeria], [Work, Is working ], [Gender ]]
⇓

New split rule; feature: Gender, value: Female
⇓

Xp =[[Gender, Female], [Hometown, Africa, Nigeria], [Work, Is working ]]

Figure 3.6 An example illustrating how adding new split rules a�ects Xp.

The second list dist is the class distribution of instances in that node. The root

node contains all instances of Dtrain. When there are no missing data, the number

of instances is the same on every level of the tree. In Figure 3.5, there are 30,725

instances in total, and 23,075 belong to the �rst class and 7,650 to the second class.

The �rst split divides the data so that there are 20,793 instances on the left child

and 9,932 instances on the right child.

3.2.1 DTHF with complete data

The pseudo-code for constructing the tree introduced above is presented in Algo-

rithm 1. In this version of the algorithm only complete instances of the train data

are used to construct a tree and it can be used to classify instances with no missing

data. The main idea of the algorithm is similar to constructing a standard decision

tree. The algorithm starts by checking whether the current node is a leaf node

using stopping condition. If it is a leaf node, no further processing is done for that

node. The split rules on the path from the root to the current node are stored in

Xp. Initially the list has a list containing an identi�er for each feature in the data

Xp = [[id1], [id2], . . . , [idn]]. Firstly, the algorithm identi�es the possible split rules

Xc which are the next unused hierarchical levels on each value. Once the possible

split rules are found, each rule is tested using a heuristic for determining the best

split rule. These heuristics were discussed brie�y in Section 2.5. Once an optimal

rule is found, the data is split according to the rule and new nodes are created by

making a recursive call to the grow function for each child.

An instance can have several values for a feature. In such a case it may be ambiguous

whether or not an instance ful�ls the split rule since an instance can have a value
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matching and di�ering the split rule. In these cases, the instance is always thought

to ful�l the split rule. Hence, it is sorted to the left child.

Algorithm 1: Tree growing recursion with hierarchical attributes,
grow(Xp, S).

while stopping condition do
De�ne candidate features:
Xc ← {hk

i,j | di ∈ S ∧ hk
i,j ∈ di ∧ hk−1

i,j ∈ Xp[idj] ∧ hk
i,j 6∈ Xp[idj]}

Find optimal splitting feature hk
i,j from Xc

Split data according to split rule.
So = {d̄i | d̄i ful�ls split rule}
Sd = S \ So

Continue recursion:
Optimal:
Xo = Xp

add hk
i,j to list corresponding to idj in Xo and raise that list as the

�rst element of Xo.
grow(So, Xo)

Di�erent:
grow(Sd, Xp)

end

An example of constructing a hierarchical decision tree is provided using UCI's

adult data set [19]. The goal of the data set is to predict whether a person's yearly

income exceeds $50,000. Here the data set itself is not signi�cant and the details are

ignored. For demonstration purposes we take three di�erent types of features from

the data set: age, work class, and gender. Gender is a nominal feature which has

values Male and Female, age is a numerical feature ranging between 17 and 90, and

work class is a hierarchical nominal feature for which the hierarchy is presented in

Figure 3.7. Algorithm 1 handles the case when no data are missing. Therefore only

complete instances from the adult data set are used for this example.

The top of the hierarchical decision tree is visualized in Figure 3.8. Bottom of the

constructed tree is left out because it is constructed in a similar manner as the top of

the tree. The tree was constructed using 30,725 instances and there are two possible

classes for each instance: over or under $50,000 per year. Constructing the tree

starts by creating the root node. Because no splits have been made, it has all of

the data instances. In the de�nition of the algorithm it is stated that initially Xp

consists of the �rst levels of the hierarchies. These values are the identi�ers for the

features. In the constructed tree the features are gender, age, and work. The grow

function described Algorithm 1 is called for this node. The possible split rules for

the node are the values on the �rst level of the features: male, female, has worked,
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work class

has worked never worked

paid without pay

self employed government private

inc not inc local state

Figure 3.7 The hierarchy for feature work class. This tree is used to transform a value
of the feature to a hierarchical form.

never worked, L, and R. Note that the features that are transformed using a tree do

not use the root as a split limit since it is same for all the values and using it would

not split the data.

On the root node, the best split was determined to be gender feature's value Male.

This can be seen from root's left child where the feature on the top of the node

and the last value was chosen as the split rule on the parent. Root's left child

now includes all the instances for which the feature gender has value Male. The

right child has all the instances for which the value of gender is something else, in

this case Female. Constructing the tree continues by �nding split rules for the new

nodes. For the root's left child, the possible split rules are has worked, never worked,

L, and R. From these, the best split rule was feature age and value R which means

the person is older than 54. For the right child of the root, possible split rules are

same as they were for the root. However, all the instances have now value Female,

so the gender feature will not be chosen as split rule. Instead work feature's value

has worked gets chosen. Again, all the instances which have something else as value

of the feature work go to the right child. This node has only two instances and they

both belong to the same class so the node is de�ned to be a leaf node and it is not

split further. The rest of the tree is grown in same manner.
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[['gender'],
['age'],

['work']] 
dist: [23075, 7650]

[['gender', 'Male'],
['age'],

['work']] 
dist: [14270, 6523]

[['gender'],
['age'],

['work']] 
dist: [8805, 1127]

[['age', 'R'],
['gender', 'Male'],

['work']] 
dist: [1829, 1204]

[['age'],
['gender', 'Male'],

['work']] 
dist: [12441, 5319]

[['work', 'has_worked'],
['gender'],

['age']] 
dist: [8803, 1127]

[['work'],
['gender'],

['age']] 
dist: [2, 0]

[['work', 'has_worked'],
['age'],

['gender', 'Male']] 
dist: [12436, 5319]

[['work'],
['age'],

['gender', 'Male']] 
dist: [5, 0]

[['work', 'has_worked', 'paid'],
['age'],

['gender', 'Male']] 
dist: [12431, 5319]

[['work', 'has_worked', 'paid', 'private'],
['age'],

['gender', 'Male']] 
dist: [9611, 3562]

[['work', 'has_worked', 'paid'],
['age'],

['gender', 'Male']] 
dist: [2820, 1757]

[['age', 'L'],
['work', 'has_worked', 'paid', 'private'],

['gender', 'Male']] 
dist: [9611, 3562]

[['age', 'L', 'R'],
['work', 'has_worked', 'paid', 'private'],

['gender', 'Male']] 
dist: [3674, 2680]

[['age', 'L'],
['work', 'has_worked', 'paid', 'private'],

['gender', 'Male']] 
dist: [5937, 882]

[['age', 'R'],
['work', 'has_worked'],

['gender']] 
dist: [1109, 150]

[['age'],
['work', 'has_worked'],

['gender']] 
dist: [7694, 977]

Figure 3.8 An example of a hierarhichical decision tree

3.2.2 DTHF with missing data

As previously stated, DTHF is capable of handling missing data. Figure 3.9 illus-

trates a case when there are missing values in Dtrain. The only di�erence to the

case when data are not missing is that nodes can have three children. The two �rst

children are similar as previously explained. The data instances for which the split

rule is true are passed to the left child and instances for which it is false are passed

to the right/middle child. If there are instances for which the truth value cannot be

determined, i.e. the data is missing, a third child is added. All the parent's data is

copied to the third node and the feature used in the parent's split rule can no longer

be used. This is indicated by adding value �END� to Xp. For example, instance d̄i

= [['gender', 'Male'],['age', L, R], ['work']] would be classi�ed to the rightmost leaf

of the tree in the �gure.

The pseudo-code for the case when data are missing is presented in Algorithm 2.The

pseudo-code is very similar with the pseudo-code of Algorithm 1. The only exception

is adding the node for missing data. Figure 3.9 gives an example of a hierarchical

decision tree when data are missing. Only the top of a tree is presented but the

rest of the tree is constructed in a similar way. On the root the split rule was

de�ned to be gender feature's value Female. In the data there exists 876 instances

which are missing the gender feature so a third node is created for instances missing

the feature. The second node is similarly as with complete data. For the missing

data node work feature's value has_worked is chosen as split rule. There are 1,375
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[['gender'],
['age'],

['work']] 
dist: [18579, 5842]

[['gender', 'Female'],
['age'],

['work']] 
dist: [7143, 876]

[['gender'],
['age'],

['work']] 
dist: [11436, 4966]

[['gender', 'END'],
['age'],

['work']] 
dist: [18579, 5842]

[['work', 'has_worked'],
['gender', 'END'],

['age']] 
dist: [17325, 5719]

[['work'],
['gender', 'END'],

['age']] 
dist: [2, 0]

[['work', 'END'],
['gender', 'END'],

['age']] 
dist: [18579, 5842]

Figure 3.9 An example of a decision tree constructed by DTHF when there are missing
data.

instances which do not have a value for that feature. The two �rst nodes are created

normally, but in addition a third node is added. This node consists of all 24,421

instances of the parent. Because the parent node's split rule used feature work, it

cannot be used on the child. This is marked by adding 'END' at the end of that

feature's list in Xp.

It is worth noting that, unlike on the complete case, the number of instances in the

children of a node is not necessarily the same as the number of instances on the

parent. This is caused by the third node. The two �rst nodes cover the instances for

which the value for the split rule can be determined, meaning they do not cover the

instances with missing values. Instead of just the remaining instances for which

the value cannot be determined, the third node has all the parent's data. So,

the complete cases are there twice but the instances with missing value are there

only once. Note that the proposed method for handling missing data is similar to

the reduced-models approach which in some cases outperforms other missing data

handling methods with a large margin [34].

Missing data handling example

In the following we compare Algorithm 2 to �ve common methods for handling

missing data: probabilistic split, CCA, reduced model, mode imputation, and missing

data as value. These methods were described in Sections 2.2 and 2.5.2. The example

data are presented in the �rst two columns of Table 3.1. There are eight values in

the example data set. Each value consists of a feature with two hierarchy levels and

a class label A, B, or C. Missing data are marked using �?�. Each method is �rst
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Algorithm 2: Tree growing recursion with hierarchical attributes,
grow(Xp, D).

while stopping condition do
De�ne candidate features:
Xc ← {hk

i,j | di ∈ S ∧ hk
i,j ∈ di ∧ hk−1

i,j ∈ Xp[idj] ∧ hk
i,j 6∈ Xp[idj]}

Find optimal splitting feature hk
i,j from Xc

Split data according to split rule:
So = {d̄i | d̄i ful�ls split rule}
Sd = S \ So

Continue recursion:
Optimal:
Xo = Xp

add hk
i,j to list corresponding to idj in Xo and raise that list as the

�rst element of Xo.
grow(So, Xo)

Di�erent:
grow(Sd, Xp)

Missing:
Xm = Xp

add �END� to list corresponding to idj in Xm and raise that list as
the �rst element of Xm.
grow(S, Xm)

end

used to train the decision tree and then each tree is tested with the training data.

The results of the decision tree classi�cation for the input data is shown in Table

3.1.

Table 3.1 An example of data where DTHF performs well.

Hierarchical

feature

Class probabi-

listic

split

CCA Reduced

model

Mode

impu-

tation

Missing

data as

a value

DTHF

1, ? A A - A A A A

1, ? A A - A A A A

1, ? A A - A A A A

1, 4 C A C A A C C

1, 4 C A C A A C C

2, 3 B B B C B B B

2, 4 C C C C C C C

2, 4 C C C C C C C

Classi�cation score (out of 8) 6 5 5 6 8 8

As can be seen from the Table 3.1, most of the mistakes made were caused by

the similarity between instances missing data and the instances (1, 4) with label C.

CCA is not fooled by the similarity since it does not care about the instances with
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missing values and the method which uses missing data as a value is able to predict

all instances correctly since the instances with missingness have all class A. Mode

imputation and probabilistic split however are fooled by the similarity and classify

the 4-5th instances as A instead of C. There is not enough data with class B for the

reduced model and therefore it is not capable of predicting class B at all. DTHF can

predict all the instances correctly and there are situations where DTHF is better

than the comparison methods.
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4. EMPIRICAL RESULTS AND ANALYSIS

In this chapter we present the results from testing DTHF. The tests were divided

into two parts: testing the method using data with no missing values and using

data with varying rates of missingness. The results were compared to CART and

C4.5 decision tree algorithms which both can handle missing data, and nominal

and numerical features. In Section 4.1 we describe the data sets used for the tests.

The performance of the algorithm is discussed in Section 4.2 which is divided into

testing without missing data and with missing data. Results obtained from running

the algorithms on complete data sets are presented in Section 4.2.1 and in Section

4.2.2 the algorithms are tested with incomplete data sets.

4.1 Description of the used datasets

The tests were made using 12 publicly available data sets from UCI Machine Lear-

ning Repository [10]. The sets were to selected to have somewhat di�erent qualities

by choosing sets with di�erent types of features and varying number of instances.

Table 4.1 summarizes the used data sets and tries to give the reader a better idea

of how the data sets di�er from each other. From each data are presented set name,

the number of instances, the number of complete instances, the number of features

in the data set, the number of classes in the data set, and the types of the features.

None of the data sets are especially large or have a large number of features. Howe-

ver, there are a few data sets with thousands of instances and there is some variation

between the number of potential classes. The class distribution of the data sets is

not presented in the table but it varies between data sets and some of the data sets

like segment are perfectly balanced while others are not. In addition to the size of

the data sets, none of the data sets have any hierarchical features and hence, only

the numerical hierarchies are tested.
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Table 4.1 The data sets used in testing. The table lists some of their qualities to illustrate
the di�erences between the data sets.

data set instances complete features classes data types
autos 205 159 26 7 nominal and numerical
balance 625 625 4 3 nominal

breast-cancer 699 683 10 6 nominal
german 1000 1000 20 2 nominal and numerical
glass 214 214 10 7 numerical

hepatitis 155 80 20 2 nominal
iris 150 150 4 3 numerical
letter 20000 20000 16 26 numerical

mushroom 8124 5644 22 3 nominal
segment 2310 210 19 7 numerical
sonar 208 208 60 2 numerical

soybean 307 266 35 19 nominal

4.2 Performance

The performance of DTHF was evaluated by running tests using the previously

presented data sets. The results were compared to CART and C4.5 decision tree

algorithms by running the same tests with same parameters to all the algorithms.

These two methods were chosen as the comparison methods because they are both

well-known decision tree algorithms, they can naturally handle both numerical and

nominal data, and they have an integrated way of handling missing data as discussed

in Section 2.5.2.

The tests were run on each data set using each algorithm and all combinations

were 10-fold cross-validated. All three algorithms were run without pruning and the

required minimum number for instances in a node for a split was 20 for all tests.

The results are reported using F1-score, since there is no preference over precision

or recall and some other performance metric could have been used as well. However,

accuracy was not used because of the problems that unbalanced label distribution

might cause as discussed in Section 2.6. For complete data we reported also the

standard deviation of the cross-validation to give the reader an idea of the stability

of the method.

The DTHF method was implemented using Python programming language. Infor-

mation gain, which was discussed in Subection 2.5.1, was used as the split metric.

The results were calculated using sklearn.metrics library's f1_score function be-

cause it supports calculating the score also for cases when there are more than two

possible labels. The standard deviation was calculated using numpy package's std

function.
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Both CART and C4.5 algorithms were run on R programming language. CART was

tested using rpart library. The library does not prune the tree on default but it

was given parameter xval=1 to prevent it from doing cross-validation during model

construction. C4.5 algorithm was tested using RWeka library's J48-method. The

method was given parameter U=TRUE to prevent it from pruning the tree. Only

the predictions were done using R, and the numerical results were calculated using

the same Python-functions as with DTHF.

4.2.1 Performance with complete data

The data used for the tests was conducted by taking only the complete instances from

each data set. The results of the tests are presented in Table 4.2 which consists of 10-

fold cross-validated F1-scores and standard mean deviations of the cross-validations.

The best F1-score for each data set is highlighted using green and the worst using

red color. The standard deviation of the F1-score demonstrates the stability of

the model although, this is not the most informative measure but it was simple to

calculate and gives the reader some insight to the matter.

Table 4.2 10-fold cross validated F1-scores and standard deviations of unpruned DTHF,
CART, and C4.5 algorithms using split limit 20 on various data sets. Green color indicates
the best performance and red the worst.

data set DTHF CART C4.5
autos 0.644 ± 0.146 0.728 ± 0.087 0.577 ± 0.179
balance 0.761 ± 0.044 0.796 ± 0.057 0.741 ± 0.070

breast-cancer 0.913 ± 0.022 0.938 ± 0.030 0.940 ± 0.031
german 0.69 ± 0.037 0.751 ± 0.044 0.718 ± 0.046
glass 0.709 ± 0.102 0.709 ± 0.048 0.586 ± 0.077

hepatitis 0.789 ± 0.120 0.809 ± 0.174 0.852 ± 0.108
iris 0.872 ± 0.097 0.922 ± 0.056 0.953 ± 0.052
letter 0.524 ± 0.027 0.510 ± 0.021 0.791 ± 0.007

mushroom 1.000 ± 0.00 0.997 ± 0.002 1.000 ± 0.000
segment 0.815 ± 0.026 0.831 ± 0.079 0.828 ± 0.104
sonar 0.75 ± 0.085 0.718 ± 0.127 0.705 ± 0.108

soybean 0.799 ± 0.117 0.788 ± 0.084 0.671 ± 0.087

The average F1-score of all data sets for CART was 0.79, while it was 0.78 for

C4.5 and 0.77 for DTHF, indicating that the algorithms do not have a signi�cant

di�erence in overall performance. However, this was not surprising since, as stated

in Section 2.5.1, studies have shown that the split criteria does not cause a signi�cant

di�erence to the performance of decision trees. Even the three algorithms did not

have a signi�cant di�erence in overall performance, CART seemed to be the most
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robust algorithm. It had the worst performance in only two of the data sets while

both C4.5 and DTHF were the worst �ve times.

C4.5 and DTHF use the same split metric so in theory the algorithms should work

similarly when the data set is complete and all the features are nominal. However,

DTHF's results seem to be closer to CART than C4.5, and in some cases, like for

the soybean data set, the results di�er remarkably between C4.5 and DTHF. This

is likely caused by the di�erences in the implementation of the algorithms, but a

closer analysis on the matter would be needed to con�rm this.

The di�erent aspects of the data sets did not seem to correlate with the reciprocal

performances of the algorithms. Each algorithm performed well on both smaller and

larger data sets, and the number of features did not seem to be a signi�cant factor.

Even the distribution of labels did not seem to a�ect the results signi�cantly. A

better analysis would probably need some domain knowledge on the data sets. The

standard deviations are quite similar for all algorithms, and they seem to tell more

about the complexity of the data set rather than about the algorithm.

In conclusion, results for DTHF when using complete data is comparable to exis-

ting decision tree algorithms. The conducted tests did not include data sets with

hierarchies, and more tests are required to see whether the method is able to bene�t

from them. If this would not be the case, using the method might not be sensible

since the method requires a lot preprocessing for the data. The implementation of

DTHF was also signi�cantly slower than for comparison algorithms but this was

expected as the implementation of DTHF was not optimized in any way whereas

the implementations of comparison methods were from publicly available packages.

4.2.2 Performance with missing data

The incomplete data sets were created by randomly removing values from the origi-

nal data sets. The rate of missingness varied between 10% and 90% every 10 percent.

Each data set was created independently of the previous data sets, meaning that a

data set missing 10% of its values might have missed completely di�erent values than

a set missing 20% of its values. All tests were made using 10-fold cross-validation

and performance was measured using F1-score. For each rate of missingness the

data set was created only once and all of the algorithms were given the same data

on each missingness rate. Each algorithm was tested on all data sets and on all nine

missingess rates. The results from the tests are collected to Table 4.3.

The results have some cases where algorithms give better results with less data,
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Table 4.3 F1-scores of DTHF, CART, and C4.5 using 10-fold cross-validation on data
sets where data has randomly been removed.

data set method
percentage of removed data

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

autos

DTHF 0.15 0.06 0.05 0.06 0.06 0.05 0.05 0.06 0.05
CART 0.59 0.55 0.55 0.54 0.47 0.44 0.41 0.43 0.45
C4.5 0.38 0.44 0.03 0.03 0.03 0.03 0.03 0.03 0.03

balance

DTHF 0.66 0.61 0.62 0.58 0.50 0.49 0.48 0.45 0.47
CART 0.77 0.74 0.74 0.71 0.63 0.60 0.61 0.60 0.60
C4.5 0.76 0.74 0.65 0.67 0.59 0.63 0.20 0.19 0.14

breast-
DTHF 0.49 0.84 0.82 0.78 0.707 0.74 0.71 0.64 0.73

cancer
CART 0.95 0.94 0.93 0.92 0.92 0.90 0.90 0.86 0.80
C4.5 0.89 0.85 0.79 0.79 0.79 0.79 0.79 0.79 0.79

german

DTHF 0.58 0.57 0.58 0.58 0.57 0.58 0.57 0.62 0.58
CART 0.73 0.72 0.75 0.78 0.76 0.75 0.78 0.78 0.81
C4.5 0.69 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82

glass

DTHF 0.45 0.32 0.41 0.37 0.33 0.25 0.22 0.25 0.25
CART 0.70 0.66 0.57 0.64 0.53 0.52 0.46 0.41 0.46
C4.5 0.61 0.52 0.52 0.49 0.48 0.48 0.49 0.49 0.48

hepatitis

DTHF 0.76 0.79 0.75 0.74 0.77 0.67 0.69 0.71 0.71
CART 0.84 0.80 0.86 0.77 0.82 0.82 0.80 0.83 0.88
C4.5 0.88 0.34 0.33 0.32 0.32 0.33 0.33 0.33 0.33

iris

DTHF 0.93 0.84 0.83 0.80 0.69 0.59 0.58 0.39 0.29
CART 0.96 0.91 0.86 0.83 0.81 0.67 0.64 0.58 0.43
C4.5 0.906 0.647 0.47 0.49 0.50 0.48 0.48 0.49 0.49

letter

DTHF 0.05 0.05 0.04 0.04 0.03 0.02 0.02 0.02 0.01
CART 0.45 0.38 0.29 0.25 0.20 0.15 0.09 0.07 0.07
C4.5 0.56 0.30 0.10 0.07 0.08 0.08 0.08 0.08 0.08

mush-
DTHF 0.85 0.81 0.76 0.71 0.66 0.61 0.54 0.47 0.36

room
CART 0.99 0.97 0.95 0.93 0.91 0.89 0.84 0.78 0.70
C4.5 0.82 0.68 0.68 0.65 0.65 0.65 0.66 0.66 0.65

segment

DTHF 0.47 0.43 0.31 0.27 0.34 0.31 0.25 0.20 0.22
CART 0.82 0.77 0.67 0.59 0.54 0.44 0.36 0.29 0.18
C4.5 0.20 0.25 0.23 0.24 0.24 0.24 0.24 0.25 0.25

sonar

DTHF 0.52 0.43 0.40 0.54 0.53 0.41 0.38 0.49 0.50
CART 0.73 0.73 0.63 0.62 0.61 0.63 0.53 0.53 0.61
C4.5 0.58 0.62 0.62 0.63 0.63 0.655 0.62 0.62 0.60

soybean

DTHF 0.26 0.20 0.13 0.14 0.08 0.12 0.02 0.12 0.09
CART 0.66 0.67 0.51 0.43 0.45 0.35 0.31 0.23 0.22
C4.5 0.15 0.06 0.05 0.06 0.06 0.05 0.05 0.06 0.05

for example, breast-cancer set for DTHF, and german for C4.5 and CART. This

demonstrates how sensitive to changes in the data decision trees are, and even small

di�erences in the training data set can produce a very di�erent tree as discussed

in Section 2.5. As the tests were conducted using data sets from which data were
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removed randomly, the results depended heavily on the generated data set. This

could have been compensated by cross-validating each missingness rate. Several

data sets could have been created for each rate and the cross-validation could have

been conducted for each set. The �nal result would have been the mean of the

cross-validation results.

Statistics calculated from the results would probably have no signi�cance because

of the way the tests were conducted. However, Figure 4.1 could give some insight to

the performance of the algorithms. The �gure illustrates the average performance

of each of the algorithms on all rates of missingness. The percentage of missing

data is on the x-axis and the average F1-score for all data sets on a certain rate

of missingness is on the y-axis. The �gure reveals that even all of the algorithms

have almost the same starting point, as more data are missing CART performs

signi�cantly better than DTHF and C4.5. The performance of C4.5 and DTHF

drops quickly but the decline stabilizes after the �rst 20% whereas CART has a

linear drop on performance.

Figure 4.1 Average of F1-scores for methods for each missingness rate.

DTHF's performance is not consistent, and the drop on performance seems to de-

pend on the data set. For some data sets, like the german and hepatitis data sets, the
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loss of information did not a�ect the performance remarkably. This could indicate

that the data sets are easy, which was the case for hepatitis, but the german data

set was not as easy to any of the algorithms. However, on the letter and soybean

data set the performance drops dramatically as soon as data are missing. This is

noteworthy since DTHF had the best performance on the soybean data set when

data was not missing. The reasons why the algorithm behaves this way are unclear,

and a more in-depth study would be needed on the matter.

The test results propose that the missing data handling in DTHF is not e�cient

compared to CART. This was a somewhat surprising result since DTHF and CART

both create an alternative split rule that is used when data are missing. Instead,

DTHF seems to perform similarly to C4.5 algorithm which has a clearly di�erent

kind of approach for handling missingness. The similarity in results could however be

explained by the similar split heuristics. One factor in CART's superiority could be

that data were missing completely random. Calculating a surrogate split that creates

as similar split as complete data would make works well on completely missing data

since it does not assume anything on the randomness. However, DTHF creates a

completely separate branch if data are missing and thus the algorithm assumes that

even missingness has information. C4.5 has a probability based approach which

passes instances with missing values to both branches. Methods that CART and

C4.5 use for handling missing data were explained in more detail in Section 2.5.2.
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5. CONCLUSIONS

The goal in this thesis was to create a classi�cation method capable of handling

several di�erent data types in addition to traditional nominal and numerical types,

such as intervals and hierarchical values. This was done by developing a decision tree

classi�cation algorithm, DTHF, which uses hierarchic features to construct a model.

Decision tree was selected as the base method because it is easy to implement and

it is naturally good with mixed and missing data. The developed method is capable

of handling numerical, nominal, hierarchical nominal and interval features as well

as missing data.

Before constructing a model, DTHF transforms all data into a hierarchic form. Each

feature is transformed to the same form, which allows a single feature to have several

data types associated with it. The hierarchies are also utilized in the split rules as

DTHF uses hierarchic levels as split rules instead of the whole feature. The levels

are used from general to more speci�c and this makes constructing the tree faster

since there are less possible split rules at a time. This also makes it possible to make

�rst a rough split, and then go into more detail deeper in the tree if necessary. For

example, instead of asking in the root whether the home town is Madrid, the �rst

question could be whether the home town is in Europe.

Using hierarchies has also negative e�ects. All input data must be preprocessed,

which can take a lot of resources, especially if there is a lot of data. The trans-

formed data also takes more space than the original data. Because new data must

be transformed in the same way as the training data, the parameters for the trans-

formation have to be saved on creation and loaded every time new data is being

evaluated. In addition, using hierarchies from generic to more speci�c as split rules

might cause a larger decision tree than just using the complete feature would. In

total, there are more potential split rules since every level of a hierarchy is a possibi-

lity. It is also possible that values which have common higher levels are not similar

in the aspect of the problem. For example, even though Madrid and Tampere are

both in Europe, their populations are in di�erent order of magnitude.

The performance of DTHF was evaluated by testing with twelve UCI Machine Le-
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arning Repository's data sets and the results were compared with CART and C4.5

decision tree algorithms. The performance was tested with both complete data and

data with missing values. DTHF method was implemented using Python, and the

other methods were tested using R. All results were however computed using the

same Python function.

The main results of the work are presented in Table 5.1 and two main points can be

seen from it. Firstly, when data are not missing, DTHF is comparable to existing

decision tree algorithms. Even though CART seems to be the most robust method,

the di�erences between the methods are not signi�cant. The other main result is

that when data are missing, CART is remarkably better than DTHF and C4.5. The

average F1-scores behave similarly for DTHF and C4.5 which is visible in Figure

4.1. This was unexpected since both DTHF and CART create a surrogate split rule

while C4.5 has a probabilistic approach. Another interesting point in the results

was how dependent the on the data set the drop of DTHF's performance was. One

future research topic could be to �nd out what are the factors behind method's

performance on missing data.

Table 5.1 Average F1-scores from all tests for each method on both complete and missing
data.

complete data missing data
DTHF 0.77 0.48
C4.5 0.78 0.49
CART 0.79 0.65

The main limitation of the work was the testing of the developed algorithm. DTHF

would need to be tested with data sets utilizing the possibilities of the method. Such

data set could have naturally hierarchical features, several values for a feature, or

intervals. However, such data sets could not been publicly found and thus such tests

could not be conducted. Also, the tests with missing data should be improved by

cross-validating the data sets which would make the results less dependent on the

generated data set. Another limitation of the work is the lack of justi�cation for the

algorithm, we have argued why the algorithm has taken the approaches it does but

the method was not studied in a more analytical way.

DTHF is a new method and there is still room for improvement in both the algorithm

and the implementation. The performance could be boosted by adding pruning or

applying the hierarchical construction of decision trees into an ensemble method like

random forest. For standard decision trees this is known to enhance the performance

of the classi�er and therefore it is probable it would do the same for DTHF [6]. The

method itself has also aspects that should be studied more. Such things would be
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for example, how should the transforming of data to a hierarchical form be done,

and does the choice of split metric have an impact on the results.
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