
RISTO KUITUNEN
SOC FPGA BASED INTEGRATION TESTING PLATFORM

Master of Science thesis

Examiner: Prof. Jani Boutellier
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 30th August 2017

I

ABSTRACT

RISTO KUITUNEN: SoC FPGA based integration testing platform
Tampere University of Technology
Master of Science thesis, 45 pages
January 2018
Master’s Degree Programme in Information Technology
Major: Pervasive Computing
Examiner: Prof. Jani Boutellier
Keywords: SoC FPGA, HW/SW Integration, Integration testing, Test bench

The complexity of designing SoCs is rapidly increasing and the development of
software has a major impact on the overall design cost. Traditionally, the software
development could only start after the hardware was complete. Prototyping has
brought a left-shift to the software development flow. Prototypes are models of
the hardware and they can be developed in different abstraction levels. With high
abstraction level prototypes application development can start in parallel with the
hardware design. As the project goes further, more accurate prototypes can be made
and the software development can move down to be more hardware centric.

When both hardware and software design are finished, integration testing between
them needs to be done. For this, a hardware accurate prototype is needed to ensure
the correct operation with the final silicon implementation. This HW/SW integra-
tion testing can be done with FPGA prototypes. The final Register Transfer Level
(RTL) description is synthesized to the FPGA fabric and it is connected to a proces-
sor so the software can access the hardware under test. By using an SoC FPGA that
has a processor and the FPGA in the same chip, the physical connection between
the processor and the FPGA is already available, reducing the development effort
required.

In this thesis an SoC FPGA evaluation kit is used to build a test bench for integration
testing for a project that has its RTL design complete. In the test bench, two
hardware Designs Under Test (DUT) are connected to each other and additional
testing blocks are connected to them: a test pattern generator, an error generator
and data capture logic. The DUTs were controlled with the software drivers under
test and the correctness of test data through the DUTs was observed. The test
bench proved to be a viable option for integration testing. Running test cases was
fast with the test bench and the test bench was built in short time , allowing an
early start of integration testing after the RTL is released.

II

TIIVISTELMÄ

RISTO KUITUNEN: SoC-FPGA-pohjainen integraatiotestausalusta
Tampereen teknillinen yliopisto
Diplomityö, 45 sivua
Tammikuu 2018
Tietotekniikan koulutusohjelma
Pääaine: Pervasive Computing
Tarkastajat: Prof. Jani Boutellier
Avainsanat: SoC FPGA, HW/SW Integrointi, Integraatiotestaus, Testipenkki

SoC-piirien suunnittelun kompleksisuus kasvaa nopeasti, ja yhdeksi suurimmista
SoC projektin kululajeista on noussut ohjelmiston kehitys. Perinteisesti ohjelmis-
ton kehitys on voitu aloittaa vasta, kun laitteiston kehitystyö on saatu valmiiksi.
Prototyyppauksen avulla ohjelmistokehityksen aloitusajankohtaa on voitu aikaistaa.
Prototyypit ovat malleja laitteistosta ja niitä voidaan luoda eri abstraktiotasoisina.
Korkean abstraktiotason mallien avulla ohjelmistokehitys voidaan aloittaa laitteis-
tokehityksen kanssa rinnakkain. Projektin edetessä voidaan luoda tarkempia proto-
tyyppejä, jotka mahdollistavat laitteistoläheisemmän ohjelmiston kehityksen.

Kun sekä laitteisto, että ohjelmisto ovat valmiita, niitä täytyy integraatiotestata
yhdessä. Tähän tarvitaan tarkkaa prototyyppiä laitteistosta, jotta toimivuus lop-
ullisella piirillä voidaan varmistaa. Tätä laitteiston ja ohjelmiston välistä integraa-
tiotestausta voidaan tehdä FPGA-prototyypeillä. Laitteiston rekisteristason ku-
vaus syntetisoidaan FPGA-piirille ja se yhdistetään prosessoriin, jotta ohjelmistolla
saadaan yhteys testattavaan laitteistoon. Käyttämällä SoC-FPGA piiriä, jossa pros-
essori ja FPGA ovat samalla sirulla, fyysinen yhteys prosessorin ja FPGAn välillä
on jo valmiina, joten sen suunnitteluun ei kulu resursseja.

Tässä työssä luodaan testipenkki integraatiotestausta varten käyttäen SoC FPGA
kehitysalustaa. Testipenkissä on kaksi keskenään yhdistettyä laitteistolohkoa ja ni-
ihin yhdistetyt testauslohkot: testidatageneraattori, virhegeneraattori ja datankaap-
pauslohko. Testattavia laitteistolohkoja ohjattiin ohjelmistotiimin kehittämällä ohjelmis-
tolla ja laitteistolohkojen läpi kulkevan testidatan oikeellisuutta tarkkailtiin. SoC
FPGA-alustalle kehitetty testipenkki osoittautui hyödylliseksi integraatiotestaustyökaluksi.
Testipenkillä saatiin ajettua nopeasti testiajoja ja se saatiin kehitettyä lyhyessä
ajassa, mikä mahdollistaa aikaisen integraatiotestauksen aloituksen heti laitteiston
rekisteritason kuvauksen valmistuttua.

III

PREFACE

I would like to thank the Nokia SoC SW team in Tampere for giving the topic for
this thesis, it was a fun and a challenging project to make. Thank you Ville for
assisting me throughout the project and the rest of the team for making a great
atmosphere to work in.

I would also like to thank my wife Nina for being a great support and taking care
of our daughter while I was working on this thesis.

Finally, I would like to thank Jani Boutellier for great feedback and advice, especially
in the final stretch.

IV

CONTENTS

1. Introduction . 1

1.1 Motivation . 2

1.2 Outline . 3

2. System on Chip architecture . 4

2.1 Software subsystem . 5

2.1.1 Software stack . 5

2.2 Hardware subsystem . 6

2.2.1 Programmable logic . 6

2.3 Interconnects . 6

2.3.1 AXI4 . 7

3. System on Chip prototyping . 8

3.1 Virtual prototype . 9

3.2 RTL simulation . 10

3.3 FPGA prototype . 10

3.4 Silicon prototype . 11

4. System on chip integration testing . 12

4.1 Logging . 12

4.2 Signal probing . 14

4.3 Data management . 15

4.3.1 Data generation . 16

4.3.2 Data capture . 17

4.4 Fault injection . 18

5. SoC FPGA prototype test bench . 19

5.1 Choosing the prototype . 19

5.2 Used hardware and OS . 21

5.2.1 Xilinx Zynq ZC706 . 22

5.3 Design flow . 22

V

5.3.1 PetaLinux . 23

5.3.2 Vivado . 24

5.4 Test data management . 26

5.4.1 Data insertion . 26

5.4.2 Data capture . 27

5.4.3 Error generation . 27

5.4.4 Test bench controls . 30

5.5 Reusability . 30

5.6 Related work . 31

6. SoC FPGA prototype use case . 34

6.1 Boot . 34

6.2 Function calls . 35

6.3 Logs . 36

6.4 Resets . 36

6.5 Single test run . 36

6.5.1 Configure test bench . 38

6.5.2 Start testcase . 38

6.5.3 Data capture . 39

6.5.4 Generate error . 40

6.6 Chained tests . 40

7. Results . 42

7.1 Speed . 42

7.2 Reliability . 43

7.3 Error generation . 43

7.4 Viability . 43

7.5 Coverage . 44

8. Conclusion . 45

Bibliography . 46

VI

ACRONYMS

ADC Analog to Digital Converter. 6, 26

ASIC Application Specific Integrated Circuit. 6, 11

BSP Board Support Package. 23

DAC Digital to Analog Converter. 6, 26

DUT Device Under Test. 2, 3, 16, 17, 19, 21, 26, 33, 37–39, 44, 45

FPGA Field-Programmable Gate Array. 2, 3, 6, 10, 11, 14, 15, 21, 23, 24, 26, 32,
35, 42, 44, 45

FSBL First Stage Bootloader. 23, 24, 34, 35

GPU Graphics Processing Unit. 15

GUI Graphical User Interface. 24

HAL Hardware Abstraction Layer. 5

ILA Integrated Logic Analyzer. 24

IP Intellectual Property. 2, 6, 7, 21, 25, 38, 40, 45

OS Operating System. 5, 42, 45

PL Programmable Logic. 4, 6, 15, 27

PS Processor System. 4, 6, 15–17, 27, 30

RAM Random Access Memory. 16

RTL Register Transfer Level. 2, 10

RX Receiver. 19, 26

SoC System on a Chip. 2–6, 8, 10, 12, 18, 21, 22, 25, 26, 32, 44, 45

SRAM Static Random Access Memory. 6

Tcl Tool Command Language. 24

VII

TX Transmitter. 19, 26

UVM Universal Verification Methodology. 1

VHDL VHSIC Hardware Description Language. 31

1

1. INTRODUCTION

Embedded devices usually consist of a processor and separate hardware that needs
to be controlled by software executed on the processor. The hardware can be cus-
tom logic such as an ASIC or an FPGA, and custom software drivers need to be
developed to operate the hardware. Modern development flows allow parallel de-
velopment of both hardware and software as shown in Figure 1.1. The hardware
is developed according to specification and can be tested with verification methods
such as Universal Verification Methodology (UVM). Software is developed based on
hardware documentation and is unit tested. After both hardware and software reach
a certain maturity level, they need to be tested together. That is called integration
testing.

Device and I/O description

HW/SW partitioning

HW/SW interface and functional specification

Device driver interface

Device driver design

C/C++ implementation/test

Processor/OS/driver implementation & test

Interface logic

Device and I/O design

HDL implementation

HW logic test

System integration/test

Figure 1.1 Flow diagram of parallel hardware and software design. Adapted from [26]

Integration testing can be challenging if the system is complex. The hardware must
be physically available or simulated to run the software on it. The physical hardware

1.1. Motivation 2

typically arrives at a late stage in a project. If the integration testing has to wait
for it, it makes the project last longer. To avoid the wait, the hardware can be
simulated with software. However, simulating the operating system, hardware and
software simultaneously can be computationally very heavy, making the simulations
last long. With Register Transfer Level (RTL) simulation, booting an operating
system would take years, making it impractical to test [31].

To overcome the slowness of RTL simulation and avoid the wait for a silicon proto-
type, virtual- and Field-Programmable Gate Array (FPGA) prototyping platforms
can be used. Virtual prototyping platforms are high-level abstractions of the hard-
ware based on the specification instead of the actual RTL design, whereas FPGA
prototypes are made by programming the developed RTL design to the configurable
logic of an FPGA.

In this thesis a prototype platform is used to build a test bench for integration
testing. The test bench was designed to be used in a project where the RTL devel-
opment is complete and the software development has reached sufficient maturity
to begin integration testing. An illustration of the project stage is shown in Figure
1.2.

Time

Specification RTL development

Software development Testing

State of the project

Figure 1.2 Illustration of the project status when the design of the test bench began.

A System on a Chip (SoC) FPGA was chosen as the prototyping platform for devel-
oping the test bench. An SoC FPGA is a chip with a processor and programmable
logic integrated to the same chip. The benefit of using an SoC FPGA over a tra-
ditional FPGA prototype is that the software under test can be run on the same
chip as the hardware Device Under Test (DUT), which simplifies the implementing
of connectivity between them.

1.1 Motivation

The request for this test bench came from a software team in Nokia. The software
team was designing firmware for a receiver and a transmitter Intellectual Property
(IP) blocks, which received and sent data in and out of an SoC. They were looking

1.2. Outline 3

for an additional stage to their current integration testing environment. Currently
integration testing for the software was done using an environment developed for
hardware prototyping, and did not fit well in to software testing. It was a platform
where an ARM processor and an FPGA were running on separate boards and a
golden reference emulator was connected to the FPGA to generate data going in to
the transmitter DUT and verify data coming from the receiver DUT. The platform
was located on another site and controlled remotely. It was slow, shared with mul-
tiple users and the remote connection was not stable. The software team wanted to
see if a local test bench could be set up in their site, so they could do testing with
the transmitter and receiver connected to each other (loop testing). With this kind
of loop testing, they could test the basic functionality of the software and when the
software worked in the loop, they could test it against the golden reference emulator
in the hardware prototyping system.

1.2 Outline

Chapter 2 describes briefly the basic structure of an SoC. It explains the fundamental
system on which the test bench is built on. The basic resources such as the processing
system, hardware and the interconnects are explained.

Chapter 3 explains different platforms that can be used for HW/SW integration
development, verification and testing. The advantages and disadvantages of the
platforms are evaluated. The reason why the FPGA platform was chosen for this
test bench is explained.

Chapter 4 tells about testing embedded devices and especially embedded SoC de-
vices. It focuses on the solutions used in designing this test bench and which were
used by the driver developers using this test bench.

Chapter 5 specifies what resources were used to develop the test bench. The devel-
opment board that is used is briefly introduced and the requirements that it needed
to meet are specified. The software tools and workflow is also defined in this chapter.

Chapter 6 shows the usage of the test bench. The basic flow of a test run is shown:
booting the board, calling driver functions and reading the results. How to run
multiple test cases in succession is explained after that.

Chapter 7 analyzes the performance of the test bench. The speed of the test bench
is compared to the existing system that is being used. The reliability of the test
bench is evaluated. Finally, the functionality of the error generator is analyzed.

4

2. SYSTEM ON CHIP ARCHITECTURE

An SoC means a single silicon microchip with multiple resources integrated to it:
multiple processing elements, accelerators, analog components and memories. They
are very popular in embedded devices where form factor and power consumption are
critical features. The components inside the SoC can be divided into two sections,
the hardware and software subsystem [34]. Figure 2.1 shows an example SoC, where
the software subsystem is called Processor System (PS) and the hardware subsystem
is called Programmable Logic (PL).

Programmable Logic
(LUT, DSP, RAM)

Processing System

ARM

Processor
Peripherals

(SPI, I2C, etc.)

AMBA Interconnect

DRAM

Controller

GP AXI HP AXI

DDR3/2

Figure 2.1 Block diagram of a Zynq-7000 SoC. GP AXI stands for General Purpose
AXI. HP AXI stands for High Performance AXI. Adapted from [44].

The hardware and software subsystems are connected with interconnects. There
are usually high-speed buses for large data transfers and lower speed buses for pe-
ripherals and other low speed devices. The high-speed buses connect memories
to components and are used as a backbone for software- to hardware subsystem
communication. The lower speed buses are used in components that use low data
rates such as serial connections. They use less power and require less area from the

2.1. Software subsystem 5

chip.[29]

2.1 Software subsystem

The software subsystem is the processor side of the SoC. It has the memories, I/O
and the hardware accelerators the processor needs [34]. The programs and operating
system of the SoC run on the processor and they control the hardware subsystem
through interconnects on the chip.

The software subsystems’ main resource is the processor. The processor runs general
tasks in the SoC such as Operating System (OS) and application related computa-
tions and management of the hardware. There are two types of hardware manage-
ment systems, bare-metal and operating system controlled. In the bare-metal system
the processor runs a program that directly accesses the hardware without any so-
phisticated resource management or abstraction. Bare-metal systems are very light
weight and fast and they are used either in very small embedded devices or timing
critical systems. Building large-scale bare-metal systems is impractical. However,
in a multiprocessor system a bare-metal application can be run in parallel with an
operating system, if both run on their own processors [17].

2.1.1 Software stack

The software running on an embedded device using an OS can be divided into three
layers: applications, the OS and an Hardware Abstraction Layer (HAL) [34]. The
application layer consists of tasks or threads. The tasks are small programs that are
either running or waiting to be run on the processor. In a single processor system
the tasks are run on the processor one at a time. In a multiprocessor system multiple
tasks can be run in parallel.

One of the OSs jobs is to schedule the tasks in the application layer. If there are
free resources for a task to run, the OS can set the processor to run that task. If
the task is running, but waiting for some slow hardware operation, the operating
system can suspend that task and set the processor to run another task meanwhile.
When switching fast enough, even a single processor system seems like its running
tasks in parallel.

Another job of the operating system is to abstract the hardware for the application
layer. The applications are usually built to be platform independent. They have
functions that want to access some hardware peripherals and it’s the operating

2.2. Hardware subsystem 6

systems and HALs job to translate that function to the specific hardware on the
current platform [34]. The operating system uses device drivers in the HAL to
access the hardware. The device drivers are usually specific for a single model of a
hardware device.

2.2 Hardware subsystem

The hardware subsystem has the application specific collection of components and
their peripherals in an SoC. In communication systems, the hardware subsystem
would hold the RF components such as Analog to Digital Converters (ADCs) and
Digital to Analog Converters (DACs) [9] coming and going from antennas, and
the software subsystem would be used to control what data is sent through the
converters.

2.2.1 Programmable logic

In some SoCs the hardware subsystem consists of an FPGA. The FPGA can be
programmed to fit an application the SoC is used for. An FPGA based SoC is
cheaper in low volume production than an Application Specific Integrated Circuit
(ASIC) SoC, so FPGA SoCs are used in low volume products or in prototypes
[42]. If the FPGA is Static Random Access Memory (SRAM) based, it can be
reprogrammed, which allows quick changes to the hardware when testing it. It also
means that the hardware design in the FPGA can be updated to fix bugs or add
features to shipped products.

2.3 Interconnects

The resources in an SoC are usually connected to each other with a central in-
terconnect or a bus. AMBA and Wishbone are commonly used examples of these
kind of buses. A standardized bus allows easy connectivity between IP blocks. A
hardware engineer can make a design easily integrateable, by offering a standard
bus interface to and from the design. The standardized buses have handshaking
protocols to ensure correct transactions. Some buses can have packet flow controls
that allows multiple reads and writes from different blocks to be interleaved. With
the packet control system, only the core interconnect needs to be high speed, and
the IPs can connect to the high-speed interconnect with slower, simpler buses. An
example of this is the interconnect used in ARM FPGA SoCs . The PS and PL

2.3. Interconnects 7

side are connected with a high-speed bus that allows large data transfers between
them. The external interconnects can be connected to the high-speed bus with more
lightweight buses [29].

2.3.1 AXI4

AXI4 is a set of microcontroller buses designed by ARM. AXI4 has three different
types of buses AXI4, AXI4-Lite and AXI4-Stream. The maximum number of signals
they can have are shown in Table 2.1.

Table 2.1 Comparison of AXI Interfaces [12] [11]

Interface Number of signals, in-
cluding optional

AXI4 41
AXI4-Lite 22
AXI4-Stream 11

The AXI4 is for high speed memory mapped transactions such as DMA. The AXI4-
Lite is a stripped-down version of the AXI4 for simple memory mapped data transfer,
such as accessing control registers. AXI4-Stream is a very high-speed data stream-
ing bus for non-memory mapped transactions. It is used to stream data between
hardware IPs. [6]

8

3. SYSTEM ON CHIP PROTOTYPING

In an SoC project, the hardware can be modeled before it is complete, to start the
software development as early in the project flow as possible [37]. There are many
ways the hardware can be simulated, modeled or implemented for the software
developers to use. A table of common methods is shown in Table 3.1.

Table 3.1 Comparison of prototyping platforms. Adapted from [37]

Virtual
Prototype

RTL Simu-
lation

FPGA
Prototype

Silicon Pro-
totype

Availability Earliest Early Late Latest
Speed Very fast Very slow Fast Very fast
HW Accuracy Inaccurate Exact Exact Exact
HW Debug N/A Full Limited Very limited
SW Debug Very good Extremely

limited
Good Very good

Execution control Very good Very good Average Very limited
Extra development
required

Very high Very low Average Very low

The prototypes described above represent different abstraction levels of the hardware
design. Earliest models for the hardware are virtual prototypes which only tell about
the hardware functionality as transactions. When the hardware development goes
further, more accurate virtual prototype models can be made. When the hardware
design is complete, FPGA and RTL simulation prototypes become available. Finally,
when the design has its first silicon samples come out of fabrication they can be used
to do final prototyping. [37]

Software development can start when the first suitable model is ready. Firmware
drivers need accurate hardware models to guarantee functionality in the real hard-
ware, whereas higher level application software can be developed with the trans-
action models of the hardware. In this chapter a few of the common models of
hardware are explained. [37]

3.1. Virtual prototype 9

3.1 Virtual prototype

Virtual prototypes are software models of the hardware and are made of transaction-
level models of the system [27]. The abstraction level can be adjusted to fit the
development. The virtual prototype can model parts of the system that are under
development at that time. They are used to verify the validity of the architecture
on a high level. Virtual prototyping is very useful in software focused designs.

One type of virtual prototype is the SystemC TLM 2.0 modeling language. It offers
three different abstraction levels: loosely timed (LT), approximately timed (AT)
and cycle accurate (CA). The relation of performance to accuracy of these models
is portrayed in Figure 3.1. [37]

P
er

fo
rm

an
ce

(I
P

S)

0

100

1K

10K

100K

1M

10M

100M

1G

HW Accuracy (%)
50 60 70 80 90 100

LT

AT

CA

RTL

sim.

FPGA

Figure 3.1 Prototype performance compared to their accuracy. LT stands for SystemC
Loosely Timed. AT stands for SystemC Approximately Timed. CA stands for cycle accu-
rate. Adapted from [37]

The loosely timed virtual prototype is the fastest of the prototyping platforms in-
troduced here, the approximately timed prototype is almost on-par with the FPGA
prototype and the cycle-accurate model is slower than the FPGA prototype. The
cost of the faster speed is hardware accuracy. None of the virtual prototypes can
offer full hardware accuracy, so some integration testing has to be done after the
virtual prototyping. [37]

3.2. RTL simulation 10

The main benefit of the loosely timed prototype compared to the other platforms
introduced, is that it can be implemented earliest in the SoC design flow, allowing
software development to start as early as possible. The virtual prototype can be
developed parallel with the hardware, and the software developers can start software
development based on the virtual prototype as shown in Figure 3.2.

Time

Design flow without virtual prototype

Specification Hardware development

Software development Testing

Design flow with virtual prototype

Specification

Virtual Prototype

Hardware development

Software development Testing

Figure 3.2 Project timeline with and without virtual prototyping. Adapted from [19]

Because of the hardware inaccuracy of the virtual prototype, there is still need
for integration testing with a hardware accurate prototype, after all tests that are
possible with the virtual prototype are done. The hardware accurate prototype can
be an FPGA or a silicon prototype. [27]

3.2 RTL simulation

RTL simulation means running the actual hardware design code clock cycle by clock
cycle on a simulator. It allows the hardware engineers to model the system behavior
exactly as it would in the end product. It offers full visibility of all the signals in
the design. However, for large designs RTL simulation is extremely slow. The RTL
Simulation can be over 1000 times slower than an FPGA Prototype [40], which is
discussed in the next subsection. Modeling a software stack on the RTL simulation
is too slow for software developers.

3.3 FPGA prototype

FPGA prototype means that the hardware design is synthesized to an FPGA. The
FPGA prototype requires the hardware design to be available at an RTL level so it

3.4. Silicon prototype 11

can be synthesized. The software is running on a separate processor, where it can
access the hardware as it would in the end product and receive interrupts from real
hardware based events. The hardware runs at a slower speed than ASIC hardware
would, but faster than RTL simulation. The FPGA prototype models the hardware
accurately, but the visibility of the signals is lower than in the RTL simulation and
is therefore suitable mainly for software testing [30]. This kind of a prototype fits
well in to integration testing. It offers fast enough speed for the software developers
and an accurate model of the hardware. The downsides are the lack of accurate
execution control, during debugging, and the limited size of the hardware design
that is possible to synthesize in a single FPGA. Multiple FPGAs can be used to
prototype larger designs, but it increases the design effort to set up the prototype
[41].

3.4 Silicon prototype

When the product has gone through silicon fabrication and the first engineering
samples come out, they can be used for the last stage of prototyping. The silicon
prototypes can be used to identify fabrication faults and software errors in the final
product. The silicon prototypes are the latest available prototypes and fixing the
found bugs can be very expensive. The silicon prototype offers barely any visibility
on the hardware. Only debug ports hard coded into the RTL can be used. Before
modern design tools, most of the testing was done on the silicon prototype and
possibly for this reason many engineers still disregard the earlier possibilities for
testing and leave it to the silicon prototyping phase [38].

12

4. SYSTEM ON CHIP INTEGRATION

TESTING

In SoC integration testing, both the hardware- and software-subsystems need to be
monitored and the operation of the system as a whole needs to be verified. Methods
to achieve these goals are gone through in this chapter. The methods and the
functionality they are meant to verify are shown in Table 4.1.

Table 4.1 System on chip integration testing methods

Method Target Goal
Logging Software subsystem Monitor the operation of the soft-

ware subsystem
Signal probing Hardware subsystem Monitor the operation of the

hardware subsystem
Data generation and
capture

Both subsystems Verify that the hardware and soft-
ware operate together as expected

Fault injection Both subsystems Verify that the system responds
correctly to errors

4.1 Logging

When testing embedded drivers, the debugging possibilities are somewhat limited.
The developer needs to be able to control the program flow. If the developer wants
to debug the software as it were a typical desktop program, he needs to be able
to control the program flow of the embedded device from his development desktop
computer. This can be done with a JTAG connection to the device and with the
help of an IDE such as the ARM DS-5 Debugger [10]. However, it brings another
tool to the development flow and with it possible license costs. Also, the debugged
code is not the actual release code which will be run on the final product. Instead
it is an unoptimized version of the code with debugging additions.

Instead of controlling the program flow, a logging system that writes information
about events to a file or a remote system can be used. Linux kernel debug prints is

4.1. Logging 13

Table 4.2 Linux printk function logging levels [2]

Priority Name Description
0 KERN_EMERG system is unusable
1 KERN_ALERT action must be taken immediately
2 KERN_CRIT critical conditions
3 KERN_ERR error conditions
4 KERN_WARNING warning conditions
5 KERN_NOTICE normal but significant condition
6 KERN_INFO informational
7 KERN_DEBUG debug-level messages

an example of this kind of logging system. [21] By printing status messages during
the program execution it is possible to see in hindsight what the program did, or
tried to do [15]. The programmer can add prints to critical spots such as the start
or end of a function. If the program crashes and there is a print that a function
was called, but not finished, there is obviously a problem in that function. Also,
the values of variables written to hardware can be printed to log. That is a good
way to ensure that the values are valid before writing. If a variable is uninitialized
before writing to hardware, it can hold random data and the developer doesn’t get
any information about it. With a log print this kind of problem is easy to spot.

The developer can set different log levels based on the message severity, e.g. debug
level messages, warning messages and error messages [15]. The debug messages can
be useful during development when the developer wants to see the program flow,
but would make the logs too cluttered in normal situations. The warning messages
can be information for the user that he is doing something dangerous, or that the
system is approaching its limits. The error messages are the most severe type of
message and usually are printed just before the system crashes completely.

The prints can be toggled on or off according to their severity. For example, in
everyday use all prints less severe than warnings could be ignored and not printed.
After detecting an error, the debug level prints could be enabled to get a better
picture on where the error occurred when trying to reproduce the error. This is just
an example of logging levels. For the Linux kernel, there are eight logging levels,
shown in Table 4.2.

The logging system can be very useful in the end-product as well. If a product that
has been sold to a customer has an error, the logging system shows the developer
the chain of events that led to the problem. It makes the attempts to reproduce the
error much easier, which leads to faster bugfixes.

4.2. Signal probing 14

4.2 Signal probing

The two largest FPGA manufacturers Intel and Xilinx offer signal probing capa-
bilities in their FPGAs. Intel calls their software the SignalTap II [3] and Xilinx
their software the Integrated Logic Analyzer [43]. They both work like external
logic analyzers, but are implemented in the FPGA fabric. They can capture the
current data on the signals they are connected to, or use a triggering value to start
capturing. With the logic analyzer it is possible for the software developer to see
the actual state that the hardware is in. If the software engineer thinks that the
hardware doesn’t respond correctly to the software functions it is possible to check
the signals in the hardware. An example capture of data from a Xilinx ILA is shown
in Figure 4.1.

The logic analyzer requires resources from the FPGA and if the design itself takes
all the resources from the FPGA, the integrated logic analyzer cannot be added.
The number of signals that can be probed is limited to tens of thousands [33].

Figure 4.1 A view of Vivado Lab edition where a Xilinx ILA is used to capture data

4.3. Data management 15

The set of signals to be probed cannot be changed easily. They need to be added to
the PL hardware design. The synthesis and place and route procedures need to be
done again, which can take hours, depending on the size of the design and the de-
velopment platform [16]. Panjkov et al. offer a novel solution to this problem where
all the internal signals are connected to a multiplexer network before connecting to
the logic analyzer, which allows full signal visibility [33]. However, their solution
comes at the cost of decreased speed and requires spare resources from the FPGA.

4.3 Data management

The hardware subsystem in the SoC can be a standalone system where the data
for the hardware subsystem comes from the PS as shown in the left side of Figure
4.2. It speeds up the processing of the data compared to doing the calculations

in the PS. An example system would be a Graphics Processing Unit (GPU) in a
computer. Here we define that an accelerator is this kind of component, whose
incoming and outgoing data buses are connected only to the PS. For an accelerator
the data generation for testing is trivial. The data can be sent from the PS just like
it would be in normal use.

HW

PS

Data in Results out

HW

PS

Data in Results out

Control

Accelerator Filter

Figure 4.2 Two example types of data flow in an SoC

Processing logic, for data flow passing through the SoC, is another type of hardware
illustrated in the right side of Figure 4.2. Data comes in to the processing logic

4.3. Data management 16

from an external source and it is modified based on control coming from the PS. We
define this kind of logic to be a filter. The filter concept presented here resembles
to some extent the coprocessor architecture presented in [24] (Fig. 9). Known data
needs to be generated and passed through the hardware from an external source.
Then the data needs to be captured so that the correctness can be verified.

4.3.1 Data generation

One way to generate data for the filter type hardware is to design a custom generator
implemented in the hardware subsystem [35]. The generator can be developed to
use whatever protocol the hardware uses and can send a constant stream of data
for as long as the developer wants. The generator complexity depends heavily on
the protocol used. For simple protocols a generator is easier and faster to make.
However, for more complicated protocols, developing a custom generator can be
unfeasible. Although a generator can offer more features than other data generation
methods, a custom generator takes development time.

Another method is the memory based method. The data can be written to memory
e.g. Random Access Memory (RAM), where it will then be streamed to the DUTs
after triggering a control signal [14] [22]. The data writing to the RAM can be
arbitrarily slow, because all the data that is wanted to be sent, is written to the
memory before the test run. The memory capacity is a limiting factor. If the user
wants to stream large amounts of data, a large memory is needed in the hardware.
If the memory is too small, some test cases can be impossible to implement. If
the hardware requires handshaking, synchronizing or long configuration procedures,
the data might run out before the interesting part of a test case even begins. The
memory also needs to be fast enough that the data can be sent to the hardware at
the rate the hardware processes the data. The biggest benefit of the memory based
method is the fine grain control of the data to be sent. The data can be modified
for each test case byte by byte. However, data generation can become very time
consuming and is prone to errors if no tool is available for automating it.

Using an external component is also a way to generate the data. The device that
provides the data for the hardware in the product can be used. This is called
a hardware-in-the-loop system [13]. By connecting the device to the test bench,
actual use-case data can be used in the test bench. The verification of the data
that is coming in can be problematic. The input device should have some kind of
test-pattern mode or the developers need some other way to verify that the incoming
data is constant across test cases. Using the actual production components for input
data is usually done in the last stages of testing.

4.3. Data management 17

An alternative to the hardware-in-the-loop device can be a pre-verified external gen-
erator or emulator. The emulator is programmed and verified to work with certain
protocols. An example of this kind of emulator is the Sarokal X-Step emulator [7].
With the emulator a transmitter or receiver can be developed and tested against
the emulator counterpart.

4.3.2 Data capture

After the data has been fed to the DUTs, the output data needs to be captured.
Again, for the accelerator type of flow, capture is trivial. The data goes straight back
to the PS where it can be verified. For the filter type of flow the data needs to be
captured from the output data bus with capture hardware. The capture hardware
can be in the SoC e.g. synthesized in the FPGA or an oscilloscope can be used to
probe the data lines or output ports.

The data can be captured and stored in memory for future processing or it can be
verified dynamically as it comes out of the hardware. If the data rate is low, the
dynamical verification can be done in software in the PS by tapping the data bus
and streaming the data in to it. If the interconnect between the PS and hardware
is not fast enough, there needs to be a hardware comparator that verifies the data
as it comes out. The hardware comparison can be challenging because the output
signals can be coded or use protocols that require a lot of processing. However, for
simple signals the hardware comparator is easy to implement with a look up table
for example.

When capturing the data into memory, the memory needs to be large enough to
fit all the wanted data in it. If there is a lot of redundant data coming out of the
hardware, data segmenting can be used to capture only interesting data. Data seg-
menting means that the capture is only triggered at certain events for short periods.
Other uninteresting data is allowed to pass through uncaptured. For example, when
monitoring a system that sends a small packet every second and stays idle between
the transmissions, without data segmenting only the first packet would be captured
and a lot of zeros after that. With data segmenting it is possible to capture a packet,
stop the capture after the packet is caught and trigger again when the next packet
is detected. After the data is captured, it needs to be transferred to the PS to be
verified. One way to transfer the data is with a DMA. The DMA can transfer the
data to the main memory of the PS where it can be read with software. Another
way is to have an interconnect straight to the capture memory block and then the
PS can read the data through that bus.

4.4. Fault injection 18

4.4 Fault injection

One way to test the functionality of the SoC is fault injection testing [25] . In
hardware fault injection testing, vulnerable parts of the system are identified, such
as data links, external parts or even the processor itself. The possible faults that
these parts can have are analyzed e.g. data links shorting to ground and showing
only zeros. These faults can be injected to the system to see how the software
handles them. The faults are artificially generated to single out specific errors.

19

5. SOC FPGA PROTOTYPE TEST BENCH

As explained in 1.1, a small software team was looking for an integration testing
platform for a Transmitter (TX) and a Receiver (RX) module. The TX was used
to send data to a DAC. The DAC would then send the analog data through an
antenna to a receiving antenna which was connected to a ADC. The ADC would
then be connected to the RX module. An error generator was used to model the
DAC-air-ADC channel. In this chapter, a suitable prototype to model the TX and
RX DUTs are chosen. Those models are connected with testing components and a
software subsystem to build a test bench.

5.1 Choosing the prototype

Different prototyping platforms were introduced in 3. To choose a suitable platform
from those options, their advantages and disadvantages need to be evaluated. The
weights of the attributes, shown in Table 3.1, depend on the stage the project is at.
For example, the extra development required by a virtual platform is acceptable at
an early stage of the project, because it shortens the overall duration of the project
[19] by allowing an earlier start for the software development. However, if it is done
too late in the project, the software development could have already been started
before the virtual prototype is finished. Also, the availability can rule out prototype
options, e.g. the silicon prototype can only be ready after the hardware is completely
designed. For this project the weights are illustrated in Table 5.1 where green colour
means the prototype would work well on that aspect, yellow means acceptable and
red means unacceptable.

5.1. Choosing the prototype 20

Table 5.1 Things considered before choosing the platform

Virtual
Prototype

RTL Simu-
lation

FPGA
Prototype

Silicon Pro-
totype

Speed Very fast Very slow Fast Very fast
HW Accuracy Inaccurate Exact Exact Exact
SW Debug Very good Extremely

limited
Good Very good

Execution control Very good Very good Average Very limited
Extra development
required

Very high Very low Average Not yet
available

The virtual prototype would fit to the speed, debuggability and execution control
aspects well. However, the lack of hardware accuracy would reduce the amount of
testing that could be done on the prototype. Moreover, the virtual prototype at
a late stage in a project would require extra development without the benefit of
the earlier start for the software development. A timeline example of this kind of
situation is illustrated in 5.1.

Time

Design flow without virtual prototype

Specification RTL development

Software development Testing

State of the project

Design flow with late virtual prototype

Specification RTL development Virtual Prototype

Software development Testing

Figure 5.1 Timeline of a project where the hardware development is already done and a
virtual prototype is developed in hindsight.

As seen in the Figure 5.1 there are no expected benefits from developing the virtual
prototype. The software development has already begun so there is no left-shift
benefit there. For these reasons the virtual prototype was not chosen for this project.

The next prototype in the Table 5.1 is the RTL simulation. As told in 3 the RTL
simulation is very slow and does not integrate well into software development. For
that reason alone, the RTL simulation option was not chosen for this project.

5.2. Used hardware and OS 21

The silicon prototype was not yet available for this project, so the remaining option
was the FPGA prototype. It was good or average on all the aspects for software de-
velopment. First, it was fast and had good software debugging capabilities. Second,
it was a hardware accurate model so it fit well to the low-level driver development.
Finally, it was relatively fast to develop. Because of these benefits, the FPGA
prototype was chosen for the test bench.

5.2 Used hardware and OS

Xilinx Zynq SoC development platform was used to implement the prototype. It
had all the features needed for this project: an ARM processor that was going to
be used in the end product, an FPGA with enough elements for all the modules to
fit and peripherals that allowed easy connectivity to a development computer.

The DUTs were synthesized in the PL side, as explained in 2.2.1, of the SoC. A
custom data generator module was used to feed the transmitter through an AXI-4
Stream interface, which was explained in 2.3.1. The transmitter modified the data,
encoded it using the 8b/10b encoding protocol [8] and sent it to the error generator.
The error generator could either send the data straight to the receiver or modify
it based on user input. The receiver got the data from the error generator and
decoded the 8b/10b data back to AXI-4 Stream interface. After modifying it the
receiver then sent the data to an in-house-developed capture point IP, which could
then either ignore the data or send it to a FIFO buffer where the user could read it.
The capture point was triggered based on a signal marker in the data flow or by a
user signal. A block diagram of this configuration is shown in Figure 5.2.

5.3. Design flow 22

PS

PL

ARM

Error
generator

DUT
RX

CaptureDUT
TX

Stream
generator

AXI-4 Stream AXI-4 Lite 8b/10b Interface

Figure 5.2 Block diagram of the synthesized test bench

The software subsystem, described in Chapter 2.1, was implemented by embedded
Linux running in the ARM PS, where the drivers would be loaded and used. The
Linux had the same kernel version that was going to be used in the end product,
which removed errors related to kernel version differences.

5.2.1 Xilinx Zynq ZC706

Xilinx has their own product line of SoC chips called the Zynq. It was chosen for
this project due to its similarities with the end product. It has the same processor
and similar interconnects between the PS and PL as the end product [5]. Xilinx
offers an evaluation kit named ZC706 which has the Zynq SoC with enough logical
elements and the needed peripherals for this kind of test bench [4]. In this project
the SD-card reader, ethernet, UART and JTAG were used.

5.3 Design flow

The FPGA prototype development began as a proof of concept. The design needed
to be up and running as fast as possible. Existing tools and resources were used as
much as possible. Because the target development board was from Xilinx, it was

5.3. Design flow 23

natural to use tools and design flows from Xilinx which had native support for the
board. A diagram of the design flow is shown in Figure 5.3.

PetaLinux

Zynq ZC706

Vivado

ARM FPGA

Bitfile
Linux image

rootfs

HW
definition

HW IPTestbench IP
SW

Drivers and Kernel
modules

Testbench
Drivers and Kernel

modules

Kernel
config

Device-
tree config

rootfs
config

U-Boot
config

Block
design

Clocking

Target
HW

Constraints

SW version control
HW version
control

Figure 5.3 Test bench design flow

5.3.1 PetaLinux

The embedded Linux for the project was built using a Xilinx toolset called PetaL-
inux. The toolset can generate a First Stage Bootloader (FSBL), U-Boot and a
Linux image and package them into a bootable binary file. The developer can add
programs, modules and libraries to the Linux image with easy commands or through
the menuconfig of Linux kernel. The PetaLinux comes with a kernel version from
Xilinx, which includes some useful programs and modules for Xilinx FPGAs such as
premade drivers for Xilinx hardware IPs. The kernel could be changed, but in this
project the Xilinx kernel was used. The PetaLinux works exceptionally well with
the Xilinx Vivado suite, which is the hardware development tool of Xilinx. The
hardware designer can export the design information to a PetaLinux project, which
generates a Board Support Package (BSP) and a device-tree based on the hardware
design.

For the example test bench, the drivers and their libraries were compiled using the
same workflow as in the end product, except the cross-compiler was different. The

5.3. Design flow 24

precompiled drivers, libraries and applications were then added to the PetaLinux
project. The board also required some initialization scripts such as loading the
kernel modules. The scripts were also added to the PetaLinux project.

A bootable binary was created with the PetaLinux packaging flow. The binary was
configured to boot at power-on from the SD card where it was stored. The Linux
image was included in the SD card where the U-Boot could load it. A hardware
bitfile which contained the loopback design was included in the binary. The FSBL
would program the FPGA with the bitfile before the Linux boot.

5.3.2 Vivado

To get the test bench programmed into the FPGA a bitfile is needed. For Xilinx
products, the most straightforward way is to generate the bitfile with Vivado. To
make a hardware design the developer can add IP blocks to his project and connect
them with a Graphical User Interface (GUI) or with Tool Command Language (Tcl)
commands. Then Vivado can synthesize the design, do a place-and-route and finally
create a bitfile.

The example project used both existing hardware designs and blocks created just
for this project. With the Vivado suite they were easy to integrate. Every design
was packed into its own IP project where the development would be done. The
new hardware blocks could be designed and tested in their own IP projects. The
Vivado has its own simulator which made the development of the simple blocks very
fast. When all the IP projects were done, they were added in to a final project
as a repository. In the final project all the separate IPs were connected in a block
diagram. Figure 5.4 shows a part of the block design. It has the test bench controller
IP and the stream generators that feed data to the TX block under test. Each of
the stream generators has an Integrated Logic Analyzer (ILA) attached to them so
the data flowing through them can be observed.

5.3. Design flow 25

Figure 5.4 A part of the Vivado block design used in the project.

Vivado offered a board template for the ZC706, which configured all the output pins
of the SoC correctly and offered a preconfigured block file for the Zynq processor.
It also automated the mapping of the AXI-4 memory regions for each IP block that
had an AXI-4 slave interface.

After the block design was completed, all the IP blocks were synthesized. The
resource utilization and timing reports of the design could then be made. The
resource utilization of the test bench project is show in Table 5.2.

Table 5.2 Resource utilization report of the test bench from Vivado

Resource Utilization Available Utilization%
Look up table 193997 218600 88.75
Look up table RAM 1972 70400 2.80
Flip flop 169118 437200 38.68
Block RAM 21 545 3.85
IO pin 3 362 0.83
Mixed-Mode Clock Manager (MMCM) 1 8 12.5

5.4. Test data management 26

The design fit to the device and met the timing requirements so the implementation
run could be launched. The Vivado implementation run does the place and route
for the device the project is configured for. After the implementation the bitfile was
generated which was used to program the FPGA.

The hardware configuration of the system was exported as a hardware design file.
It contained the memory mappings of the components that use the AXI-4 interfaces
and other information about the system. The hardware design file is used in the
PetaLinux to automatically configure the PetaLinux project for the hardware de-
signed in Vivado. Configuring includes the generation of the Linux device tree and
the selection of the processor type.

5.4 Test data management

The TX DUT was designed to be the interface between an SoC and an external
DAC and the RX DUT was the interface between an external ADC and the SoC.
By connecting the TX and RX together, they could be tested without the data
converters between them. To test their operation, data needed to be generated for
the transmitter and the data coming out of the receiver needed to be captured.
Then the data could be inspected by comparing the sent data to the received data.

5.4.1 Data insertion

The software designers required two types of data coming into the transmitter: ramp
data and a fixed pattern. The ramp data was incremental numbers. The data started
from zero and went up by one after each byte sent. The ramp data was used to see
if all packets that are sent are also received. If there was a gap between two bytes in
the captured bytes, an error had occurred. The fixed data was the same data sent
for each packet. The user could define what the fixed data pattern was through the
test bench controls. One feature of the software driver was the ability to change the
ordering of the bytes sent and received. The fixed data pattern was used to check
this functionality.

The test data insertion was done with a custom-made generator, which is explained
in 4.3.1. The generator was developed for this test bench and it could support
different data modes and data rates required by the system. The data generator
output was determined by input signals that were connected to a control register
bank, so the developer could choose the suitable data type and rate for a test case.

5.4. Test data management 27

5.4.2 Data capture

The received data needed to be captured for analysis. To achieve this the data
needed to be moved from the PL side of the SoC to the PS side so the user could
read the data with software. In this test bench the memory based approach from
4.3.2 was used. First the data capture was triggered with a custom hardware block.
The data was captured when a certain byte in the signal was seen in the data flow,
or when the user triggered the capture with a software signal. After triggering the
capture, the data was sent to a Xilinx AXI-4- Stream FIFO [1]. The FIFO data was
then read by the PS using the AXI-4 Lite protocol.

5.4.3 Error generation

As explained in Section 4.4, the error detection capability of software drivers can be
tested by introducing faults to the system. An error generator was inserted between
the transmitter and receiver to produce the faults. The interface between them was
split into multiple wires called lanes. The software was monitoring the system for
coding errors and the delay between the lanes, which used 8b/10b protocol [8]. The
coding errors in the connection were not-in-table errors and alignment errors.

A not-in-table error meant that a character that was not defined in the 8b/10b
conversion table was detected on the lane. The 8b/10b protocol tries to keep the
number of ones and zeros going through a lane in a balance to avoid any DC offset.
It does that by coding 8-bit characters into 10-bit characters using a conversion
table. If a character is not found in the conversion table, it is impossible to decode
it back to 8-bits. The error generator can write 0xFFFFF in hexadecimal to the
lane, which is not in the table. The replacement happens for one clock cycle and
is based on a rising edge on the enable signal. A block diagram of the not-in-table
error generator is shown in Figure 5.5.

5.4. Test data management 28

-
Enable error in

Edge detector

6

-
Lane in

���

PPP

MUX
-

0xFFFFF
-

Lane out

Enable error pulse

Figure 5.5 Block diagram of the not-in-table error generator

The alignment error means that an alignment character was detected out of place in
the lane. The alignment characters should only be sent at certain time intervals at
the start of fixed length frames. To generate a misplaced alignment character, the
information of the current disparity on the lane is needed. In 8b/10b protocol the
disparity of the current character can change. It means a character can be encoded
with two different values to balance out the ones and zeros. The alignment error
generator needs to know which disparity the character is to be encoded in, so that
the receiver won’t generate a not-in-table error. The rest of the alignment error
generator works like the not-in-table error generator. A single character is replaced
on the lane with an alignment character. It is triggered by a rising edge on the
enable input line. The replacing character is chosen with a multiplexer according
to the disparity input which needs to be supplied from outside the alignment error
block. A block diagram of the alignment error generator is shown in Figure 5.6.

5.4. Test data management 29

-
Enable error in

Edge detector
Enable error pulse

6

-
Lane in

���

PPP

MUX

���

PPP

MUX -
-

0xCF07C

-
0x30F83

6Disparity in

-
Lane out

Figure 5.6 Block diagram of the alignment error generator

The delay errors made the lanes be out of sync compared to an outer reference
signal. The transmitter and receiver would first synchronize themselves according
to a sync signal. After synchronization, they would move in to a monitoring state.
The delay error would make them out-of-sync and the software should notice that
error. The error generator was made using a variable-length shift-register. The user
could configure the delay amount and enable the delay using separate signals. A
block diagram of the delay error generator is shown in figure 5.7

Delay enable
6

-
Lane in

-

���

PPP

MUX
Variable length
shift-register

-
-

Delay amount

-
Lane out

Figure 5.7 Block diagram of the delay error generator

5.5. Reusability 30

5.4.4 Test bench controls

The test bench was controlled using a register bank. The register bank was connected
to the PS using an AXI-4 Lite interface. The register outputs were connected to
control signals in the test bench. Once the user would write a value to a memory
address using the AXI-4 Lite, the corresponding register output would change. The
following signals were controllable over the test bench control interface: resets for
both modules under test, error enables, delay amount and capture control.

The software reset allowed very rapid switching between test cases. The developer
could cycle the reset on and off in his test script without the need of a power cycle.
This was one of the major improvements over the system that this test bench was
designed to replace. The old system had to do a power cycle to bring the test
bench back to its initial state. The power cycle was not always stable and it took a
significant amount of time compared to this test bench.

The errors needed to be enabled only after the data flow through the blocks was
started. The software controllability allowed this. The developer could set the
transmitter and receiver up with the driver commands and after that trigger the
errors. The error timings themselves were not critical. The developers didn’t care
about the exact time the error occurred. They only needed to know if an error had
occurred sometime during the testcase. Then they could check if an interrupt was
triggered.

The controllable capture was used to limit the amount of redundant data captured.
The developers didn’t need all the data that went through the blocks throughout
the whole testcase. Instead they needed only small parts of the data to verify the
correctness of the data flow at different time moments. They needed to see that the
data flow starts correctly, stops when wanted, and doesn’t start prematurely. The
developers were also interested in the data just before and after an error. With the
software control, they could trigger the capture just before triggering an error. This
way there was only a small amount of data to go through to spot the possible error.

5.5 Reusability

The reusability factor of the test bench was not of high priority in the design phase,
due to the proof-of-concept nature of this project. The test bench was custom
tailored to this application. However, there are parts of the design that could be
used as a base for future work.

5.6. Related work 31

The test data generator was designed to support data modes that match the input
data for the TX block as explained in 5.4.1. However, the AXI4-Stream interface
is very universal so the data generator could be used in applications that require
static pattern data or ramp data as AXI4-Stream input. The data width and packet
structure of the generator output could be parametrized in the VHSIC Hardware
Description Language (VHDL) files, to make the data generator more generic.

The data capturing blocks were reused in this project, and can be reused in future
projects as well. The combination of the in-house developed capture point and the
Xilinx AXI4-Stream FIFO can be used to capture AXI4-Stream data coming from
any design. The data-widths and other parameters can be configured with VHDL
generics.

The test bench control registers had its output signal widths and amount of registers
fit the needs of this exact application so it could not be used in other applications.
It would be easier to generate a new register bank than to modify it to fit a whole
new purpose. Fortunately, at least Xilinx offers a tool to generate these kind of
register banks with relative ease in their Vivado suite.

Additional software and scripts designed for the test bench were very simple. In
essence, the software only wrote data to few control registers of the test bench by
accessing the physical memory directly. To make the software reusable, a separate
Linux driver could be made for the stream generator. The scripts that set-up the
board can be reused in future test benches with minor modifications, e.g. setting
the correct IP address for the Ethernet interface.

5.6 Related work

Test benches for hardware and software integration have been researched, but they
focus mainly on prototyping the hardware than software testing. A comparison of
the related test benches are shown in Table 5.3.

5.6. Related work 32

Table 5.3 Comparison of FPGA test benches

Test bench FPGA
Chip used

Design size Data inser-
tion

Data cap-
ture

Proposed test
bench

Xilinx
Zynq-7000

193,997
LUT

FPGA
Synthe-
sized
generator

FPGA Syn-
thesized cap-
ture

Xianju Guo et al.
[23]

Altera
EP2C70

3823 LE External
hardware

Oscilloscope

Fei Gong et al. [20] ? ? External
hardware

Oscilloscope

S. Ohashi et al.
[32]

Xilinx
Zynq-7000

? External
hardware

External
hardware

A. Rothstein et al.
[36]

Altera
Cyclone V
SoC

? External
hardware

Oscilloscope

E. Logatas et al.
[28]

Xilinx
Virtex-5

16,594
Slices

SW Gener-
ated

SW Check-
ing

P. Subramanian et
al. [39]

2x Xilinx
Virtex-5

73% Slices FPGA
Synthe-
sized
golden
reference

FPGA Syn-
thesized
golden
reference

Xianju Guo et al. [23] developed a test bench to test an ADC converter and its
control software on an Altera Cyclone FPGA in a hardware-in-the-loop configuration
as explained in 4.3.1. Their test bench was not an SoC FPGA so they had to run the
application on a separate computer. Another test bench made in hardware-in-the-
loop style, was built for a diesel injection system by Fei Gong et al [20]. Ohashi et
al. [32] also used a hardware-in-the-loop configuration, but they used an embedded
processor in the SoC for running the software, like in the proposed test bench. A.
Rothstein et al. [36] used an SoC to run the control software in their test bench,
but they also had to rely on external hardware to generate and analyze the data. E.
Logatas et al. [28] generated an FPGA prototype with SysPy where a softcore Leon3
processor was used to run software in the FPGA. Like in the previous test bench,
data was generated and checked with software on the host computer. The SysPy
approach seems versatile and would help with the reusability issues of the proposed
test bench 5.5. P. Subramanian et al. [39] used also a softcore processor in their

5.6. Related work 33

test bench. They used a golden reference emulator 4.3.1 to verify the functionality
of their DUT.

34

6. SOC FPGA PROTOTYPE USE CASE

In this chapter the usage of the test bench developed in 5 is explained. First the
basic elements of the test bench use are gone through such as the boot sequence
and the function calls. Then a single test run is analyzed step-by-step. Last, the
running of multiple test cases in succession is shown.

6.1 Boot

The test runs begin from the board being powered off. A flow diagram of the boot
sequence is shown in Figure 6.1.

Power on

FSBL

U-Boot

Kernel
boot

Start test
servers

and load
modules

Test bench
ready

Figure 6.1 Flow diagram of the test bench boot sequence

When the user wants to run test cases, he turns the power switch on the board to on.
The board boots the system from the source designated by a jumper on it. In this
test bench it starts the boot process from an SD card. The SD card contains a boot

6.2. Function calls 35

image, which the board loads. First in the boot image is the FSBL. The hardware
image which contains the test bench design is programmed to the FPGA by the
FSBL. After the programming, the FSBL loads U-Boot. U-Boot loads the Linux
kernel image, also located in the SD card, to the system memory. Then U-Boot
tells the processor to start loading instructions from memory location it loaded the
kernel to. It initiates the kernel boot sequence. Linux is up and running after the
kernel boot sequence is done. The kernel modules for the drivers need to be loaded
to the Linux and the test servers need to be started to finish the test bench boot.
After this, the test bench is ready to run test cases.

6.2 Function calls

To test each of the driver functions separately remote procedure calls were used
similar to [18]. It allowed the calling of driver functions with Python scripts through
Ethernet. The user could connect the test bench to a development computer through
Ethernet and send the driver calls by running the Python test scripts from the
development computer. Alternatively, the scripts could be run on the board itself
by connecting to localhost.

Calling the functions with Python instead of running a test program allowed rapid
changes in the testcases without the need of recompiling the test program. A se-
quence diagram of constructing the driver object and a single function call is shown
in Figure 6.2

Interface functions

create

target.run_keyword(Driver())

check_id_reg()

Register value

target.run_keyword(check_id_reg())

Register value

Connect(ip:port)
User Test server

Driver

Figure 6.2 Sequence diagram of function calls

In the Figure 6.2 the user means the developer. The calls from user, means calls from

6.3. Logs 36

the Python scripts the developer uses. First the user connects to the test server.
If the connection is successful the test server returns all the functions the driver
interface provides. The user can then call those functions by sending command

target.run_keyword(<function name >)

where the target is the Python object for the test server. The test server will receive
the command and relay it to the driver. If the function has a return value, the test
server will receive it from the function. The test server then returns the return value
to the user.

6.3 Logs

For each test case a register dump log could be printed, which contained the values in
the hardware register bank at the time of calling the print function. The developer
could verify that correct values were written to the hardware manually from the
register log. Another log file was created that caught all the log writes from the
driver function, which were written in to the source code, in the way explained in
4.1. It had the function return values and possible error messages that the driver
generated.

6.4 Resets

Between each test case run the test bench needed a reset. The parts that needed
a hardware reset were: the hardware blocks under test, the data generators and
the data capture fifo memory. The hardware reset was done with a write of ’1’
to a test bench control register, which pulled the low-active reset of the hardware
blocks described low. The reset could be immediately disabled by writing a ’0’ to
the control register, because the time between the register writes from software was
very long compared to the reset time of the hardware blocks.

The test servers were also reset by killing their processes and then started again.
This was done to ensure that no state data was left form the earlier runs to the
driver.

6.5 Single test run

To launch a single test the test bench needed to be booted up. After the boot
the developer needed to configure the test bench for the testcase, which included

6.5. Single test run 37

setting up the data generators and clock rates for the DUTs. The data generators
needed to send the data at a certain speed and the DUTs could use different clock
rates depending on their configuration. To test that every configuration works, the
developer could choose the clock rate they use for each case.

After the test bench has been set up, the test case script could be run. It was
a sequence of driver calls that synchronized the hardware blocks, configured the
hardware blocks to work at the data rates that the test bench is configured to and
finally started the data flow through DUTs.

When the data flow has started, errors could be generated on the data flow. The
drivers could poll interrupt registers from the hardware and try to see if the generated
error was caught. If the error is critical the driver could reinitialize the link and try
to recover from the error.

The register banks of the hardware blocks were printed to log files as a last step
in the test case. Then the developer could check the driver output log for error
messages and the register dumps for the values stored in the hardware.

Boot

Configure
test bench

Start
testcase

Generate
error?

Set error
on lane

Print
registers

Verify
results

Error
handling

yes

no

Figure 6.3 Flow diagram of a single test case run

6.5. Single test run 38

6.5.1 Configure test bench

The DUTs are designed to run with various data rates and clock speeds. The
transmitter takes in data with three different data rates: quarter, half and normal
rate. The normal data rate means a packet is expected every clock cycle. At half
rate a packet is expected every other clock cycle and in quarter mode, a packet is
expected every fourth cycle. In addition to the data rate, the pattern that is being
sent to the transmitter can be selected. The data can be ramp data or a fixed pattern
as described in the section 5.4.1. A small program that configures the registers in
the test bench control IP is used. The program is called streamcfg and it takes the
following parameters: index of the stream, data rate, CA-adjust, N2-adjust and the
fixed pattern. The CA and N2 adjustments are not relevant to this thesis. Below
is a snippet of console output when the streams are configured with the streamcfg
program.

root@petajesd :/var/ftp# streamcfg 2 0x1 0x1 0x0 0 0xdeadbeef
configuring streamer 2
datasel : 1 samplerate : 1 CAadjust : 0 N2adjust : 0 pattern : deadbeef
streamcfg : 11

After configuring the streams, they needed to be enabled to start the data streaming.
The enabling was done by deasserting their reset signals, which were connected to
a register in the test bench control. The registers bits corresponded to the index
of the streams, i.e. bit 0 controlled the stream 0. Toggling the bit to ’0’ reset the
stream, and toggling the bit to ’1’, enabled the data flow.

The other configurable test bench parameter is the clock speed of the 8b/10b in-
terface between the transmitter and receiver. The DUTs support two clock speeds:
equal to device clock or half the device clock. It can be selected like the stream data
rate. A small program called serdesclk takes a number as a parameter. Then it
writes a value to the test bench control IP which controls a multiplexer that outputs
the wanted clock. Below is a console output showing the clock configure.

root@petajesd :/var/ftp# serdesclk 9
Serdes data rate set to 9830Mb/s

When the data generator and 8b/10b clock speeds have been configured. The test
bench is ready to run a testcase.

6.5.2 Start testcase

To run a testcase script a single call of

6.5. Single test run 39

Python <test script name >

is needed. The test script is a collection of functions called with the remote procedure
calls as described in Chapter 6.2. The function return values are printed out to the
console and to a log file. Below is a snippet from the console output when a testcase
is run. It shows a part where a function check_id_reg is called from the DUT API.

root@petajesd :/var/ftp# Python jesd_LOOP_L1.py
...
jesd_ul_JesdULBasicAPI_check_id_reg called , return value 0
...

The test case also has functions that configure the DUTs and enable the data flow
through them. The data configured in the data generator is expected to be captured
from the test bench, after all the functions in the test script have been called.

6.5.3 Data capture

The data capture is disabled by default. The capture point can be configured to
trigger from a signal in the hardware or by instant trigger from a user call. Another
small test bench program is used to configure the capture point. The program is
called capturectrl and it takes the trigger mode as a parameter. Instant trigger
mode is used with parameter 0 and the signal trigger is used with parameter 2. If no
parameter is given, default value of 0, instant capture, is used. Below is a snippet
of calling the capturectrl after a successful data flow enabling.

root@petajesd :/var/ftp# capturectrl
Capture from CPADDR 83c80000 , FIFO 83c00000 , DATA 43 c01000
Activated capture with operation mode 0
514 bytes in C0 fifo
Read packet length of: 16 from C0FIFO RLR
[000] I: dead Q: beef
[001] I: dead Q: beef
[002] I: dead Q: beef
[003] I: dead Q: beef
...

From the console output it can be seen that the capture fifo has 514 bytes captured
and that the data is the same 0xdeadbeef that was configured to be sent from the
data generator. All the 514 bytes were printed to the console, but only the first four
are shown here.

6.6. Chained tests 40

6.5.4 Generate error

Error generation is done after the data flow has been started. To trigger the enable
error pulse, a program errorctrl is used. It works similar to the previously men-
tioned test bench programs and just controls the registers in the test bench control
IP. The program takes as parameter the lane to which the error is generated and the
type of error wanted. Below is an example call of the function where a not-in-table
error is wanted in the lane number 0.

root@petajesd :/var/ftp# errorctrl 0 nit

The registers from the receiver IP are read after the error generation, to verify that
the error was detected. Below is a comparison of the registers before and after the
error generation made with the Linux diff program.

root@petajesd :/var/ftp# diff regs_before_error.txt regs_after_error.txt
--- regs_after_error.txt
+++ regs_before_error.txt
@@ -211,7 +211 ,7 @@
0x01b0: IntLaneEventS [0]. lane_cgs_ok = 0x00000001 , 1
0x01b0: IntLaneEventS [0]. lane_params_error = 0x00000000 , 0
0x01b0: IntLaneEventS [0]. lane_alignment_error = 0x00000000 , 0

-0x01b0: IntLaneEventS [0]. lane_not_in_table_error = 0x00000001 , 1
+0x01b0: IntLaneEventS [0]. lane_not_in_table_error = 0x00000000 , 0
0x01b0: IntLaneEventS [0]. lane_line_coding_error = 0x00000000 , 0
0x01b0: IntLaneEventS [0]. lane_disparity_error = 0x00000000 , 0
0x01b0: IntLaneEventS [0]. lane_re_sync_req = 0x00000000 , 0

The diff shows that the lane_not_in_table_error lane event register has gone from
0 to 1, which means an error was detected on the lane 0. This proves that the error
was generated and detected correctly.

6.6 Chained tests

To test multiple testcases the tests could be run in groups. A script was created
that looped multiple testcases. A flow diagram of running multiple tests is shown
in Figure 6.4. The test script worked similar to the single test case. Before running
the testcase the test bench was configured. Then the test was run. If the testcase
was not the last one in the group, the test bench needed a reset. The reset was done
by setting the hardware reset signal low in the FPGA side. Also, the test servers
were reset to ensure that no data from the last testcase was stored in it. After the

6.6. Chained tests 41

reset the test bench could be configured to a new setting and another testcase could
be run. When the last testcase was done, the test bench went to an idle state.

Boot

Configure
test bench

Run single
testcase

Last test
case?

Stop

Reset

yes

no

Figure 6.4 Flow diagram of running multiple tests in succession

Compared to the alternative testing platform mentioned in 1.1, the soft reset of the
FPGA in this test bench allowed fast runs of consequent tests. In the alternative
platform the FPGA needed to be reset by reprogramming the FPGA. Also in the
alternative system the processor needed a reset after each test run. In this test
bench the processor did not need a reset, instead the test servers were restarted. It
also had a major reduction between the time it took to start a new testcase.

42

7. RESULTS

There were three objectives for the test bench: to be faster than the existing system,
to be more reliable than the existing system and to have error generation for the
8b/10b interconnects.

7.1 Speed

The test bench needed to be fast in three different ways:

a) The test bench needed to boot up quickly so the user could run a single test
without too much overhead from waiting for the testing environment

b) To run multiple tests in succession without waiting too long between the test
runs

c) The user needed to be able to quickly update the drivers in the test bench.

Booting the test bench took on average 49 seconds. It was considered to be fast
enough. The boot was only needed once when starting a testing session. In future
works the boot time can be reduced by removing unused programs and modules
from the Linux, which came with the default PetaLinux configuration.

The largest speed increases came from the time a single test case lasted and the
setup time between cases. The previous system had to be shut down between each
test case with a remotely controlled power switch. That initiated a boot sequence
that programmed the FPGA platform and booted up the OS. Having to configure
external emulators and managing the communication between the OS and the FPGA
made the test cases last long. The proposed test bench could run test cases after a
soft hardware reset and test bench setup which took less than a second. The test
cases themselves took seconds in the proposed test bench whereas the other system
took might take minutes to run a case.

7.2. Reliability 43

The user compiled the drivers after making changes to them and then sent them
to the test bench. This took only tens of seconds with an FTP transfer. The test
bench had an FTP server running and the user could send the driver libraries and
test scripts to the test bench through the ethernet connection. After the transfer
the test bench was ready to run tests with the updated drivers.

7.2 Reliability

The test bench had to be able to run multiple test cases without crashing between
or during any test. Also, the connection to the test bench needed to be reliable.
The test bench needed to boot up correctly every time the power was turned on.

All the reliability goals were met. The developers were able to run chained test cases
as explained in 6.6 without the test bench crashing. The connection was reliable
because it was only a single ethernet cable between the host computer and the test
bench. The booting was reliable because the FPGA image file was loaded from an
SD-Card that was in the development board instead of loading it through an outside
interface such as ethernet or a serial interface. Finally, if there was a reliability issue,
the test bench could be reset quickly with a power cycle, so the availability of the
test bench did not suffer.

7.3 Error generation

The developer needed to be able to generate errors with a length of a single clock
cycle on the 8b/10b interconnects into the data flow. Two types of error were needed:
a not-in-table-error and an alignment error. The test bench was able to generate
these errors and they were detected by the hardware and the software.

Delay between different lanes was also needed to allow the developer to test if the
synchronization between the lanes could be detected. The test could generate the
delay. The different delay between lanes could be configured before starting the data
flow. However, triggering the delay during the data flow was problematic. After the
delay was triggered the data stayed the same on the lane until the shift register was
filled with new values. This caused encoding errors on the lanes.

7.4 Viability

The initial test bench was ready to run tests after four months. After that, usability
upgrades were made to the test bench software. The development was done by a BSc-

7.5. Coverage 44

grade developer without any prior experience of the tools and environments used.
Also, the protocols used by the DUTs had to be studied before the development.
Those things considered, test bench development was fast. For an experienced
developer, building this kind of a test bench might only take one or two months,
depending on the system complexity. For a project that has a lot of integration
testing and without, or with a slow, integration testing platform, it pays off to
develop this type of test bench.

7.5 Coverage

With the test bench nearly all features of the software were able to be tested. There
were features that relied on external timing components, such as data masking or
synchronizing with a timing controller, that were not modeled in the test bench,
so they could not be tested. To test those parts, more extensive system modeling
would have to be used that incorporates the external components and their drivers
to the designs under test in this test bench. This could not be done on this test
bench alone due to the resource limitation of the FPGA used. Connecting multiple
evaluation boards together to implement the external components, would remove the
simplicity of the SoC FPGA test bench, by requiring extra design effort from having
to implement the connectivity between the boards. The exact timing requirements
of the components also rule out the use of virtual prototypes so the testing of
those features need to be done in a large-scale emulation platform, or in the silicon
prototype.

45

8. CONCLUSION

In this thesis a test bench for testing embedded software for custom hardware IP
was introduced. It was designed to provide an alternative to an existing FPGA
prototyping platform that was considered cumbersome to use. The test bench was
implemented on an SoC FPGA development platform. The test bench hardware
design was built using the design files of the IPs to be tested, reused in-house IPs ,
IPs offered by Xilinx tools and two IPs custom made for this test bench.

The OS support was made with Xilinx PetaLinux, which offered bootloaders and an
embedded Linux platform where the software under test could be run in. PetaLinux
also offered root file system generation, which made the addition of support programs
easy.

The test bench was used to run testcases and met its requirements. It was fast
and reliable. It is a useful tool to be used after software unit testing, and before
testing the software in the actual product. However, it does not replace the need
for further testing the software. The test bench had only a loopback configuration,
where the transmitter and receiver software was developed by the same team. To
verify the compliance of the DUTs with other vendors’ products, it is necessary to
test it against a transmitter or receiver developed by another company, or against
an emulator.

The test bench was ready for use after four months of development. The development
was done by using tools unfamiliar for the developer and without any prior knowledge
of the DUTs. Although the test bench was not designed with reuse as high priority,
it had parts that could be used in future test benches with minor modifications.

46

BIBLIOGRAPHY

[1] “AXI-4 Stream FIFO datasheet,” Xilinx, Available (accessed on 05.07.2017):
https://www.xilinx.com/support/documentation/ip_documentation/axi_
fifo_mm_s/v4_1/pg080-axi-fifo-mm-s.pdf.

[2] “kern_levels.h,” Available (accessed on 21.01.2018): https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/kern_levels.
h?id=HEAD.

[3] “Quartus II Features,” Intel, Available (accessed on 04.08.2017): https:
//www.altera.com/products/design-software/fpga-design/quartus-prime/
features.html.

[4] “ZC706 website,” Xilinx, Available (accessed on 04.07.2017): https://www.
xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html.

[5] “Zynq7000 website,” Xilinx, Available (accessed on 04.07.2017): https://www.
xilinx.com/products/silicon-devices/soc/zynq-7000.html.

[6] “Axi reference guide,” Xilinx, 2011, Available (accessed on 21.08.2017):
https://www.xilinx.com/support/documentation/ip_documentation/ug761_
axi_reference_guide.pdf.

[7] “X-step hardware,” Sarokal, 2011, [WWW] Referenced: 29.09.2017, Available:
https://www.sarokal.com/x-step-trade;+hardware/.

[8] “IEEE Standard for Ethernet,” IEEE Std 802.3-2015 (Revision of IEEE Std
802.3-2012), pp. 55–67, 2016.

[9] J. J. R. Andina, E. de la Torre Arnanz, and M. D. Valdes, FPGAs : Funda-
mentals, Advanced Features, and Applications in Industrial Electronics. CRC
Press, 2017, ch. 5. Mixed-Signal FPGAs.

[10] ARM, “DS-5 Debugger,” Available (accessed on 25.07.2017) : https://developer.
arm.com/products/software-development-tools/ds-5-development-studio/
ds-5-debugger/overview.

[11] AMBA AXI4-Stream Protocol Specification, ARM Limited, 2010.

[12] AMBA AXI and ACE Protocol Specification Issue E, ARM Limited, 2013.

[13] M. Bacic, “On hardware-in-the-loop simulation,” in Proceedings of the 44th
IEEE Conference on Decision and Control, Dec 2005, pp. 3194–3198.

https://www.xilinx.com/support/documentation/ip_documentation/axi_fifo_mm_s/v4_1/pg080-axi-fifo-mm-s.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_fifo_mm_s/v4_1/pg080-axi-fifo-mm-s.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/kern_levels.h?id=HEAD
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/kern_levels.h?id=HEAD
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/kern_levels.h?id=HEAD
https://www.altera.com/products/design-software/fpga-design/quartus-prime/features.html
https://www.altera.com/products/design-software/fpga-design/quartus-prime/features.html
https://www.altera.com/products/design-software/fpga-design/quartus-prime/features.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.sarokal.com/x-step-trade;+hardware/
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/ds-5-debugger/overview
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/ds-5-debugger/overview
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/ds-5-debugger/overview

BIBLIOGRAPHY 47

[14] A. Chandra and K. Chakrabarty, “System-on-a-chip test-data compression and
decompression architectures based on Golomb codes,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 20, no. 3, pp.
355–368, Mar 2001.

[15] B. Chen and Z. M. (Jack) Jiang, “Characterizing logging practices in Java-
based open source software projects – a replication study in Apache Software
Foundation,” Empirical Software Engineering, vol. 22, no. 1, pp. 330–374, Feb
2017.

[16] W. Chen, S. Ray, M. Abadir, J. Bhadra, and L. C. Wang, “Challenges and
trends in modern SoC design verification,” IEEE Design Test, vol. in press,
2017.

[17] X. Chen, Y. Gu, C. Wang, and X. Guan, “Asymmetric multiprocessing for
motion control based on Zynq SoC,” in 2016 International Conference on Field-
Programmable Technology (FPT), Dec 2016, pp. 315–318.

[18] G. G. de Rivera, R. Ribalda, J. Colas, and J. Garrido, “A generic software
platform for controlling collaborative robotic system using XML-RPC,” in Pro-
ceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics., July 2005, pp. 1336–1341.

[19] D. V. D. R. Devi, P. K. Kondugari, G. Basavaraju, and S. L. Gangadhara-
iah, “Efficient implementation of memory controllers and memories and virtual
platform,” in 2014 International Conference on Communication and Signal Pro-
cessing, April 2014, pp. 1645–1648.

[20] F. Gong, M. Vaidya, R. Kora, D. Harshbarger, B. Ulery, and W. Meyer, “A
FPGA based prototype verification in automotive mixed signal integrated cir-
cuit development,” in 2013 IEEE 56th International Midwest Symposium on
Circuits and Systems (MWSCAS), Aug 2013, pp. 1200–1203.

[21] C. Gu, Building Embedded Systems: Programmable Hardware. Apress, 2016,
ch. 6 - Firmware Coding in C.

[22] L. Guan, FPGA-Based Digital Convolution for Wireless Applications.
Springer, 2017, ch. 6.2.2 Matlab-Assisted FPGA Post-implementation Verifi-
cation Platform.

[23] X. Guo, C. Lv, Z. Li, and H. Xu, Lee J. (eds) Advanced Electrical and Elec-
tronics Engineering. Lecture Notes in Electrical Engineering, vol 87. Springer,
Berlin, Heidelberg, 2011, ch. Implementation of Rapid Prototype Verification
for Block-Based SoC.

BIBLIOGRAPHY 48

[24] I. Hautala, J. Boutellier, J. Hannuksela, and O. Silvén, “Programmable Low-
Power Multicore Coprocessor Architecture for HEVC/H.265 In-Loop Filtering,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 25, no. 7,
pp. 1217–1230, July 2015.

[25] C. Hobbs, Embedded Software Development for Safety-Critical Systems. CRC
Press, 2016.

[26] T.-Y. Huang, S.-L. Tsao, L.-C. Wu, E. T.-H. Chu, and K.-Y. Liu, Essential
Issues in SOC Design. Springer Netherlands, 2006, ch. Embedded Software.

[27] T. Kogel, Synopsys Virtual Prototyping for Software Development and Early
Architecture Analysis. Springer Netherlands, 2017, pp. 1127–1159.

[28] E. Logaras, O. G. Hazapis, and E. S. Manolakos, “Python to accelerate em-
bedded SoC design: A case study for systems biology,” ACM Trans. Embedd.
Comput. Syst. 13, 4, Article 84 (February 2014), 2014.

[29] T. S. T. Mak, P. Sedcole, P. Y. K. Cheung, and W. Luk, “On-FPGA commu-
nication architectures and design factors,” in 2006 International Conference on
Field Programmable Logic and Applications, Aug 2006, pp. 1–8.

[30] G. Martin, F. Schirrmeister, and Y. Watanabe, Handbook of Hardware/Software
Codesign. Springer, Dordrecht, 2017, ch. 33 Hardware/Software Codesign
Across Many Cadence Technologies.

[31] P. Mishra, R. Morad, A. Ziv, and S. Ray, “Post-Silicon Validation in the SoC
Era: A Tutorial Introduction,” IEEE Design Test, vol. 34, no. 3, pp. 68–92,
June 2017.

[32] S. Ohashi, M. Yoshida, and T. Yokoyama, “Verification of variable carrier dead-
beat control with digital hysteresis method using SoC-FPGA for utility interac-
tive inverter for FRT conditions,” in 2014 16th International Power Electronics
and Motion Control Conference and Exposition, Sept 2014, pp. 419–425.

[33] Z. Panjkov, A. Wasserbauer, T. Ostermann, and R. Hagelauer, “Automatic
debug circuit for FPGA rapid prototyping,” in 2015 IEEE 13th International
Symposium on Intelligent Systems and Informatics (SISY), Sept 2015, pp. 155–
160.

[34] K. Popovici, F. Rousseau, A. A. Jerraya, and M. Wolf, Embedded Software
Design and Programming of Multiprocessor System-on-Chip. Springer, New
York, NY, 2010, ch. Basics.

Bibliography 49

[35] J. Qin, C. E. Stroud, and F. F. Dai, “FPGA-based analog functional measure-
ments for adaptive control in mixed-signal systems,” IEEE Transactions on
Industrial Electronics, vol. 54, no. 4, pp. 1885–1897, Aug 2007.

[36] A. Rothstein, L. Siekmann, and V. Staudt, “Realization of AHIL concept on a
SoC based FPGA-ARM9 platform for power electronic applications,” in 2017
11th IEEE International Conference on Compatibility, Power Electronics and
Power Engineering (CPE-POWERENG), April 2017, pp. 689–694.

[37] F. Schirrmeister, Software Engineering for Embedded Systems: Methods, Prac-
tical Techniques, and Applications. Newnes, 2013, ch. 2 - Embedded Systems
Hardware/Software Co-Development.

[38] S. Siewert and J. Pratt, Real-Time Embedded Components and Systems Using
Linux and RTOS. Mercury Learning, 2016, ch. 15.9 Configuration Management
and Version Control.

[39] P. Subramanian, J. Patil, and M. K. Saxena, “FPGA Prototyping of a Multi-
million Gate System-on-Chip (SoC) Design for Wireless USB Applications,” in
Proceedings of the 2009 International Conference on Wireless Communications
and Mobile Computing: Connecting the World Wirelessly, ser. IWCMC ’09,
2009, pp. 1355–1358.

[40] N. Sutisna, L. Lanante, Y. Nagao, M. Kurosaki, and H. Ochi, “Unified HW/SW
framework for efficient system level simulation,” in 2016 IEEE Asia Pacific
Conference on Circuits and Systems (APCCAS), Oct 2016, pp. 518–521.

[41] K. Terada, H. Uzawa, N. Ikeda, S. Shigematsu, N. Tanaka, and M. Urano,
“Wire-speed verification schemes for HW/SW design of 10-gbit/s-class large-
scale NW SoC using multiple FPGAs,” in 22nd International Conference on
Field Programmable Logic and Applications (FPL), Aug 2012, pp. 639–642.

[42] S. M. Trimberger, “Three ages of FPGAs: A retrospective on the first thirty
years of FPGA technology,” Proceedings of the IEEE, vol. 103, no. 3, pp. 318–
331, March 2015.

[43] Xilinx, “Integrated logic analyzer,” Available (accessed on 04.08.2017): https:
//www.xilinx.com/products/intellectual-property/ila.html.

[44] ——, “Zynq-7000 block diagram,” Available (accessed on 28.07.2017):
https://www.xilinx.com/content/dam/xilinx/imgs/block-diagrams/
zynq-mp-core-dual.png.

https://www.xilinx.com/products/intellectual-property/ila.html
https://www.xilinx.com/products/intellectual-property/ila.html
https://www.xilinx.com/content/dam/xilinx/imgs/block-diagrams/zynq-mp-core-dual.png
https://www.xilinx.com/content/dam/xilinx/imgs/block-diagrams/zynq-mp-core-dual.png

	Introduction
	Motivation
	Outline

	System on Chip architecture
	Software subsystem
	Software stack

	Hardware subsystem
	Programmable logic

	Interconnects
	AXI4

	System on Chip prototyping
	Virtual prototype
	RTL simulation
	FPGA prototype
	Silicon prototype

	System on chip integration testing
	Logging
	Signal probing
	Data management
	Data generation
	Data capture

	Fault injection

	SoC FPGA prototype test bench
	Choosing the prototype
	Used hardware and OS
	Xilinx Zynq ZC706

	Design flow
	PetaLinux
	Vivado

	Test data management
	Data insertion
	Data capture
	Error generation
	Test bench controls

	Reusability
	Related work

	SoC FPGA prototype use case
	Boot
	Function calls
	Logs
	Resets
	Single test run
	Configure test bench
	Start testcase
	Data capture
	Generate error

	Chained tests

	Results
	Speed
	Reliability
	Error generation
	Viability
	Coverage

	Conclusion
	Bibliography

