TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

VILLE-VEIKKO EKLUND
AUDIO DATASET CREATION

Bachelor of Science thesis

Supervisor: M. Sc. Aleksandr Diment
Submitted for examination on
8th December 2017

ABSTRACT

VILLE-VEIKKO EKLUND: Audio dataset creation

Tampere University of Technology

Bachelor of Science thesis, 16 pages

December 2017

Bachelor's Degree Programme in Computing and Electrical Engineering
Major: Signal Processing

Supervisor: M. Sc. Aleksandr Diment

Keywords: environmental audio, audio dataset, Freesound, supervised learning

The goal of this thesis was to build an easily accessable and approachable environ-
mental audio dataset for benchmarking machine learning algorithms. The samples
in the created dataset were collected from Freesound, which is an online databa-
se consisting of sounds uploaded by its users. The dataset consists of three classes,
each containing 50 instances of original recordings with annotations for 5-second
segments. The classes are ’dog’, 'bird’ and ’rain’, and the dataset was therefore gi-
ven the name DBR dataset. Additionally, a script for evaluating support vector,
random forest and k-NN classifiers with the dataset was written. The building and
evaluation stages were documented step-by-step and a Jupyter notebook tutorial
for using the dataset was created. The dataset, the scripts and the notebook were

published online.

IT

PREFACE

This thesis was written for the Bachelor’s Seminar in Signal Processing during fall
2017. T would like to thank Aleksandr Diment for the guidance and feedback during
the project. I would also like to thank Joni Kémérdinen for organizing the seminar,
Toni Heittola for providing the thesis topic and Tuomas Virtanen for introducing

me to the right people.

Tampere, 8.12.2017

Ville-Veikko Eklund

IT1

CONTENTS

1. Introduction 1
2. Background and toolso Lo 2
2.1 Datasets 2
22 Datosetbuilding : < s v : s s us saans s o s ns s aasssans 4
2.8 PFreggoimd : c o : cuss: tumuws smmus semes 888 8865 4
2.4 Dataset evaluation Lo L)
3. Building 7
4. Evaluation L 11
B CIOREIIRIONS + o « v & ¢ 3 6 @ % 1 ¢ 8% 9 ¢ ¢ 8 w5 ¢ 8 6585 18685 €0 @8 14

Bibliography 15

LIST OF ABBREVIATIONS AND SYMBOLS

API

CC license
k-NN

SVC

SVM
MFCC

Application Protocol Interface
Creative Commons license
k-Nearest Neighbors

Support Vector Classifier

Support Vector Machine

Mel Frequency Cepstral Coefficient

1Y

1. INTRODUCTION

Supervised learning is a machine learning scenario, where a machine makes predic-
tions on unseen data based on labeled examples. The process of supervised learning
consists of five main steps: acquisition of data, labeling the data, extracting features,
training a classifier, and evaluating the classifier. Datasets in supervised learning are
complete collections of labeled examples intended for evaluating classification met-
hods.

There are several datasets for machine learning tasks distributed over the Internet.
These datasets consist of images, sound clips or anything that can be easily classi-
fied. For example, in image processing there is ImageNet [4], audio processing has

AudioSet 9], and in emotion recognition there is Recola [16].

At the moment, the field of audio processing suffers from the lack of a standardized
dataset, like CIFAR! in image processing. Furthermore, there are only a handful of
open and precisely labeled datasets available due to licensing and the amount of

work labeling requires.

The goal of this thesis is therefore to introduce a new, although concise, dataset
to address the problem. The dataset consists of environmental audio samples that
are collected from an online audio database Freesound [8]. After acquisition the
data is manually labeled and the functionality of the set is then tested with popular
classification algorithms. The code written for building and evaluating the dataset is
distributed with the dataset. A Jupyter notebook tutorial for testing classifiers with
the dataset is also released to make audio datasets more approachable for people

unfamiliar with audio processing.

In Chapter 2, the available datasets and the tools used in building and evaluation
are reviewed. Detailed documentation of the dataset building process is found in
Chapter 3. Chapter 4 covers the evaluation of the dataset, and conclusions and

further discussion are in Chapter 5.

lhttps://www.cs.toronto.edu/ kriz/cifar.html

2. BACKGROUND AND TOOLS

In this chapter, the state of environmental audio datasets and the tools used in

dataset building and evaluation are reviewed.

2.1 Datasets

A dataset in supervised classification consists of data records, examples, with special
target attributes called class labels. Classes are comprised of examples with similar
attributes and same class labels. A classic example of a dataset is the Iris flower
data set [7], which consists of 3 classes of different types of iris plants, each class

containing attributes of 50 instances.

Audio signals are usually divided into three categories: music, speech and environ-
mental audio. Environmental audio is the large group of sounds and audio events
related to the environment as its name suggests, that is they are not recorded in a
laboratory. Such sounds are for instance noises of animals, traffic noises and sounds
related to weather phenomena. An environmental audio dataset can therefore be a

collection of recordings of dogs barking or glass breaking for example.

Publicly available environmental audio datasets and their properties are listed in
Table 2.1. According to the table it is evident that large and open datasets are
somewhat difficult to find. A decreasing factor in the number of open datasets is the
restriction of datasets to research purposes, which means accessing them requires
authorization and their use in commercial applications is limited. The scarcity has
recently inspired the creation of datasets such as UrbanSound, ESC and AudioSet.
However, none of the available datasets has yet become a standard in the field, which

makes baseline classifier comparison difficult.

The UrbanSound dataset by Salamon et al. from 2014 [19] was created in response
to the lack of large annotated data but also to the missing common taxonomy in
audio datasets. It used Freesound database as its source of data and as a result the
Urban Sound Taxonomy and the largest free dataset of urban sounds was created.

The samples in the dataset are original recordings with durations ranging from 1 s to

2.1. Datasets 3

30 s. Another dataset, the UrbanSound8K, was constructed with a constant sample
length of 4 seconds. The original code used in building and evaluating the datasets

is not publicly available.

Table 2.1 Available environmental audio datasets [21].

Dataset name ‘ Type Classes Examples Size (min)
Sound Scenes

Dares G1 recorded 28 123 123
DCASE 2013 Scenes recorded 10 100 50
LITIS Rouen recorded 19 3026 1513
TUT Sound Scenes 2016 recorded 15 1170 585
Environmental Sounds

ESC-10 collected 10 400 33
ESC-50 collected 50 2000 166
NYU Urban Sound8K collected 10 8732 525
CHIME-Home recorded 7 6137 409
Freefield 1010 collected 7 400 33
CICESE Sound Events collected 20 1367 92
AudioSet collected 632 >2 mil > 340k
Sound Events

Dares G1 recorded 761 3214 123
DCASE 2013 Office Live recorded 16 320 19
DCASE 2013 Office Synthetic | recorded 16 320 19
TUT Sound Events 2016 recorded 18 954 78
TUT Sound Events 2017 recorded 6 729 92
NYU Urban Sound collected 10 3075 1620
TU Dortmund Multichannel recorded 15 1170 585

Yet another dataset built on Freesound samples is the ESC dataset by Karol J.
Piczak in 2015 [15]. The ESC-50 dataset consists of 50 classes of 5-second-long
labeled environmental sounds, and the ESC-10 is simply a subset of the ESC-50. A
bigger dataset consisting of 250 000 Freesound samples called ESC-US was also
created with more or less weak automatic labels drawn from sample metadata.
Piczak put more weight on the accessibility of original code and ease of use for
the dataset, which is a step forward from UrbanSound in terms of openness. The
Jupyter notebook released with the dataset contains also spectrograms of samples

and a large amount of analyses.

It is notable that AudioSet [9] with its over 2 million examples and 632 classes is far
bigger than all the other datasets shown in the table. AudioSet, created by Google
in 2017, consists of samples from Youtube videos’ audio tracks. Although AudioSet
is easily accessible, the downloadable dataset contains only the pre-extracted featu-

res and no original audio. There are also problems with labeling accuracy: All the

2.2. Dataset building 4

original samples in AudioSet are 10-second clips containing a target sound with a
class dependent quality estimate, which for a large number of classes is closer to 0 %
than 100 % [1]. Furthermore, because the examples in the dataset are taken from

Youtube videos, the dataset is vulnerable for content deletion.

It is worth mentioning also the DCASE (Detection and Classification of Acoustic
Scenes and Events) datasets, which have been created for three DCASE challenges
in 2013, 2016 and 2017. The first DCASE challenge was organized by researchers
in Queen Mary University of London to stimulate research in machine listening,
and the following challenges were held by Tampere University of Technology. The
datasets used in the challenges consist of audio scene recordings in specific locations.
For example, the TUT Sound Events 2017 dataset [14] contains 24 audio recordings

from a single acoustic scene.

2.2 Dataset building

Dataset building consists of the selection of source of data, collecting, and labeling
the data. Important requirements for the source are suitable licensing options for
the samples and the ease of searching and retrieving data. Freesound was chosen
as the source of samples because it satisfies both of these requirements, which is

explained more thoroughly in section 2.3.

Building a dataset requires also a tool for labeling the samples. Labeling is the
process of assigning class labels to examples in a dataset. With audio files, this
involves inspecting the waveforms, selecting suitable segments, annotating them and
saving the starting and ending times. This process can be done with Audacity!, which

is a free audio recording and editing software.

2.3 Freesound

Freesound is an online sound database designed for research and artistic purposes.
The sounds in the database are recorded by Freesound’s users, and the sounds
are rated and commented by Freesound’s active community. Since an application
protocol interface? (API) was introduced in 2011, Freesound has been the source of
data in a wide range of publications [11, 12, 18, 17]. With Freesounds free client

libraries * designed for several programming languages searching and downloading

lhttp://www.audacityteam.org/
2http://freesound.org/docs/api/index.html
3https://freesound.org/docs/api/client_libs.html

2.4. Dataset evaluation 5)

samples is simple and efficient. The Python client was used in this project, which is
explained in Chapter 3.

Samples in Freesound are licensed under four different kinds of Creative Commons

(CQC) licenses. The license types are:

e CC Sampling Plus 1.0*
e CCO1.0°
e CC BY 3.0°

e CC BY-NC 3.07

All of these licenses allow sampling and redistribution, which is desirable for dataset
building. It is notable, that CC BY 3.0 license requires attribution to the author, and
CC BY-NC 3.0 and Sampling Plus 1.0 licenses forbid commercial use in addition.
CCO0 1.0 license is the most allowing since it does not require any action from the

user.

2.4 Dataset evaluation

The validity and applicability of a dataset can be confirmed by developing a mac-
hine learning application. Developing such an application requires tools for data

preprocessing, extracting features and providing classifiers.

Preprocessing of data means optimising the data somehow for feature extraction,
which in turn is the act of reducing the amount of data while preserving relevant
information. For example, audio samples can be preprocessed by segmenting them
into frames, which are easier to handle than the original waveforms. Features, such
as Mel-frequency cepstral coefficients (MFCCs) [13], can then be extracted from the
frames. MFCCs are coefficients derived from a mel-scaled short term power spectrum
of a sound, and they are often used in speech recognition and music information
retrieval. The mel scale is a widely used model of human frequency perception [20].
Preprocessing and feature extraction can be done with librosa®, which is a Python

package designed for music and audio signal processing.

‘https://creativecommons.org/licenses/sampling+/1.0/
Shttps://creativecommons.org/publicdomain/zero/1.0/
Shttps://creativecommons.org/licenses/by/3.0/
"https://creativecommons.org/licenses/by-nc/3.0/
8https://github.com/librosa/librosa

2.4. Dataset evaluation 6

Scikit-learn?

is a machine learning module for Python, which provides classifiers
for machine learning tasks. Choices for classifiers include support vector machine

classifier (SVM classifier), random forest classifier and k-nearest neighbor classifier.

The standard support vector machines (SVMs) algorithm [3] is a non-probabilistic
binary classifier, which divides the training set examples, as points in a plane, into
distinct groups by a gap as wide as possible. To make the class separation possible, a
high-dimensional feature space may be used instead of the space, where the problem

was originally stated.

Random forest [10] is another popular algorithm used in classification and regression
problems. It is a set of decision tree classifiers, which are tree-like structures con-
sisting of nodes with test questions about the attributes of a sample. The answers
of each question lead to the most fitting class. Predictions of individual trees are
collected and the prediction with highest votes gets chosen as the final predicted
class of the random forest. Because overfitting is not intrinsic for random forests,

increasing the number of trees improves prediction accuracy.

K-nearest neighbors (k-NN) [2] is a simple non-parametric machine learning algo-
rithm, whose output is dependent only on the k closest examples in the feature
space. The class with the highest number of instances among the neighbors becomes

the prediction.

An important step before training a classifier is to standardize the features of the
data, because it is expected by many classifier algorithms. Standardizing means
processing the features such that they become standard normally distributed data
with zero mean and unit variance. Scikit-learn offers the class StandardScaler (),

which takes care of the standardization.

Evaluation, the process of measuring a trained classifier’s prediction accuracy, works
as a measure of the dataset’s validity. Evaluation methods differ in the way the da-
taset is split into training and test sets. One of them is Monte Carlo cross-validation,
also known as repeated random subsampling, where the data is split randomly se-
veral times into training and test sets. The final prediction accuracy is the mean of
accuracies for each split. [5]. For a three-class balanced scenario a suitable goal for
average prediction accuracies would be 80-90 %, because it implies the classification
problem is sufficiently hard but still solvable.

https://github.com/scikit-learn/scikit-learn

3. BUILDING

This chapter focuses on the implementation of the data retrieval code and the process
of selecting and labeling the samples. The script is available in the public repository
of the dataset!.

The constructed audio dataset has the following specifications:

three classes: 'dog’, 'bird’, and ’rain’

50 samples per class

sample length five seconds

samples are continuous segments of the original sound

The number of classes in the dataset was limited to three and the number of samples
per class to 50 in order for the dataset to be finished in the time constraints of this
work, but also that the dataset would be big enough for testing. The duration of
samples was set to five seconds so that a sufficient amount of data per sound would
be gathered. The classes were chosen to be 'dog’, ’bird” and ’rain’ because searching
sounds related to them yielded a high amount of results. Lastly, the use of continuous

segments also reduces the workload.

The sound samples in this work were downloaded from Freesound using their free
Python client?, which was developed for the Freesound API. The Freesound API
documentation thoroughly covers the usage of the API, and the client comes with
an example file consisting of different types of queries and analyses on samples.
Freesound.py in the client library offers all the needed functions and classes to query,
filter and download sounds. However, to be able to download the original high quality
sound files, Freesound requires Oauth2 verification. Unfortunately, the official client

does not implement Oauth2 in it, but there is an extension library available® that

lhttps://github.com/vvekl/dbr-dataset
’https://github.com/MTG/freesound-python
Shttps://github.com/xavierfav/freesound-python-tools

3. Building 8

takes care of the verification. The file manager.py contains the improved class Client,
which overrides the official class.

The first step in downloading files from Freesound is applying for API keys. Registra-
tion to Freesound is required to be able to apply for the keys. Once an account is set
up, the keys can be applied for on Freesound’s website in the Developers section®.
The application consists of basic information and the keys are awarded instantly

after submission.

Connecting to Freesound API is done by creating a Client object.

client = manager.Client ()

The client asks for the API keys and the user is directed to Freesound’s webpage
where the connection is established. The keys are asked for only on the first time
connecting to Freesound API with Python, and they are saved in a .py-file automa-

tically for subsequent reconnections.

The searching with the client is done with the text_search() -method found in the
file freesound.py. The method has several parameters, but the most important ones
are 'query’, filter’ and ’fields’. Query is the keyword to be searched, filters specify
the search, and fields define what metadata is saved for the results. The method
returns a pager object that lists the results of the search, 15 results per page by
default. These results are sound objects, whose attributes are the metadata fields

specified in the search.

The following is an example of a search for rain samples with results saved to a
pager object 'results pager’.
results_pager = client.text_search(
query="raining",
filter="duration:[10 TO 20] samplerate:[44100 TO *] type:wav",
fields="id ,name ,description,duration,samplerate ,username,license"

The classes chosen in the dataset were 'dog’, 'bird’, and ’rain’, and the keywords used
in searching were ’dog barking’, ’bird chirping’ and ’raining’ respectively. Printing
out the metadata after a search proved useful in determining whether the used
keyword was suitable. The field parameters used were ’id’, 'name’, description’,
duration’, samplerate’, 'username’, and ’license’. The filters were only used to control

the samplerate, sample length and type. The minimum samplerate was set to 44100

‘https://freesound.org/help/developers/

3. Building 9

Hz and the type to wav to filter out low quality samples.

The duration of a sample in the final dataset was set to five seconds. Therefore,
the durations of the searched samples needed to be at least 10 seconds to make it
possible to choose a five-second continuous segment with the target sound. The goal
amount of samples per class in this work was 50, so it was optimal to reach for
approximately 250 results in the search. This is due to high frequency of samples
in Freesound with too much background noise and samples that have misleading
titles. The upper limit of the duration can be used to limit the number of results

effectively.

The sounds were downloaded with the sound object method retrieve() in free-
sound.py. The method’s first parameter is the download directory and the second
is the file name. If a filename is not specified, the sound attribute 'name’ will be
used instead. The files were named after their unique Freesound id’s to prevent over-
lapping with names. To avoid mixing, samples of different classes were downloaded
to separate folders. During the downloading process, the metadata, i.e. id, name,
description, duration, samplerate, username and license, was saved in a dictionary

format into a yaml file to assist with the process of choosing samples later.

When the downloading was complete, the types of licensing used with the samples
were checked. This was done by extracting all the metadata dictionaries in the yaml
files in to a list, then selecting only the license fields in to another list, and finally
looking for unique entries in the license list. The samples in the dataset use all four
types of licenses listed in section 2.3, and therefore the dataset can not be used for

commercial purposes.

The id and the corresponding username fields of the sounds were also saved into
class specific csv files. This makes it possible to keep track and control the number
of sounds from the same user in the dataset. In the testing phase, when samples are
split to training and test sets, the same user’s samples must be restricted to only

one of the two sets to pass cross-validation.

Next, the listening process and choosing of samples began. It took on average three
rounds of listening to gather the required 50 samples. On the first round, if a sample
clearly contained the target sound, it had little to none background noise and the
description of the sound proved it real, an x was marked in the csv file on the
row with the matching id to keep track of suitable samples. The following rounds
consisted of more careful listening to reach the 50 sample mark, and only in the case

of dog samples it was possible to leave out excess samples.

3. Building 10

| ¥}
X| 96926 v
Stereo, 44100Hz

|

X| Merkkirata W

E}Projektin naytetaajuus (Hz): Nappaa kohtaan: Valinnan alku: (O Loppu (® Pituus
=1

Pois v [00n00m01.766sv [00n00m05.000s~
|

Figure 8.1 A segment is chosen from a bird sample and marked with the class tag 2.

The samples in this dataset were set to be five-second consistent clips without cutting
the silent parts. Consequently, the starting time point, offset, had to be chosen and
saved for later use. This was done with Audacity (Figure 3.1) by marking the
starting and ending points (although the ending is not needed due to the fixed
length) with a class tag and saving the marks into a text file with the same id as the
sound. The tags for different classes in this work were as follows: "1’ for dog, '2’ for
bird and ’3’ for rain. Including the class tag in the time offset files takes also care

of labeling.

After this procedure, there were three folders for three classes, each containing 50
sounds, 50 metadata yaml files and 50 time offset/class tag text files. The next step
was to test the dataset with a machine learning application, which is covered in

chapter 4.

11

4. EVALUATION

In this chapter, the implementation of the machine listening application is reviewed
and the evaluation results are discussed. The evaluation code is also available in the

public repository of the dataset!.

First, a list containing the ids of all samples was created, and time offsets and class
tags were read into lists from the text files created with Audacity. A list containing
full file paths was also created to make processing files more efficient. The wav files
were loaded into a matrix according to the offsets with librosa, and the sample rates
of the samples were saved into another list. The MFCCs were then extracted with

librosa and the means of each set of features were saved into a feature list.

At this point, numpy random state generator was seeded and a RandomState was
generated. Thus splitting, which includes shuffling the samples with numpy, would
be different every round and the classifiers would use the same RandomState while
supporting reproducibility of the results.

np.random.seed ()

rnd = np.random.RandomState (42)

Next, all the examples in the dataset were split into training and test sets. To
maintain same proportions of classes in both sets, the examples were split inside

their respective classes.

The split process went as follows: All the unique usernames were collected from
sample metadata and shuffled, and a list of sample ids was created in the order
of the shuffled usernames. Next, the samples were split into 0.70/0.30 sets and the
borderline samples’ username fields were compared to ensure there was no flowing
of same user’s sounds into both sets. If a user had sounds in both sets, the split was
done again until both sets had unique usernames. Once all the classes had been split
into their own training and test sets, the sets were combined into one training and

one test set.

lhttps://github.com/vvekl/dbr-dataset

4. Evaluation 12

After the split, the feature data and the corresponding class tags were collected for
both sets from the lists created in the beginning. Lastly, the resulted feature lists

were scaled with scikit-learn’s StandardScaler ().

The classifiers used for evaluation were scikit-learn’s SVC (), RandomForestClassifier ()
and KNeighborsClassifier (). They were initialized with random_state as rnd as
defined above for SVM and random forest classifiers, penalty parameter C as 0.1
and kernel type ’'linear’ for SVM, number of decision trees for random forest as 500
and number of neighbours as 8 for k-NN. These settings were also used in evaluation

of the ESC dataset, which helps in comparing results.

clf = svm.SVC(C=0.1, kernel=’linear’,random_state=rnd)
clf2 = RandomForestClassifier(n_estimators=500, random_state=rnd)
clf3 = KNeighborsClassifier(n_neighbors=8)

After training the classifiers with training set features and corresponding labels, the
classifiers were made to predict the classes of the test set’s examples from their
features. Accuracy was then calculated by comparing the predicted classes with the
correct labels. Below is an example of the process for the SVM classifier.

clf .fit(X_train,y_train)

y_pred = clf.predict(X_test)

accuracy = metrics.accuracy_score(y_test,y_pred)

accuracies_svm.append (accuracy)

The samples were split randomly five times and the results for classifiers trained
with each set are listed in Table 4.1.

Table 4.1 Prediction results for SVM, random forest and k-NN classifiers.

Classifier 1st 2nd 3rd 4th 5th | Avg. Std.
SVM 822% 733% 844 % 5% 844%|80.0% 4.7%
Random forest | 80.0 % 822 % 822% 86.7% 733% | 80.9% 4.4 %
k-NN 60.0% 63.9% 600% 66.7% 689% | 649% 4.1%

According to the results, the average accuracies for SVM and random forest classi-
fiers were in the wanted range of 80-90 %, while the k-NN classifier’s results were
somewhat lower. Still, when compared to a random classifier’s accuracy of 33 % all

the classifiers’ performances can be considered quite successful.

Reported accuracies for SVM, random forest and k-NN classifiers for the ESC-10
dataset were 67.5 %, 72.7 % and 66.7 % respectively. The evaluation setup with
ESC-10 was identical to the one used here with the only difference of 10 classes

4. Evaluation 13

In [4]: dataset_path = "C:\\dataset"
class_names = [“dog","bird","rain"]
dirpath_1 = os.path.join(dataset_path, class_names[@])
dirpath_2 = os.path.join(dataset_path, class_names[1])
dirpath_3 = os.path.join(dataset_path, class_names[2])

Now we need a list of all the sample ids because they are used in managing the training and test sets.

In [5]: entries = list_of_entries(dirpath_1)+list_of_entries(dirpath_2)+list_of_entries(dirpath_3)
ids = [entry['id'] for entry in entries]

With the function sounds_info() we can create lists for full sample file paths, time offsets and class tags. All the lists will be in the order of the sample ids.

In [6]: | fpaths, offsets, classes = sounds_info(ids, dataset_path)

A function for loading the sounds needs to be defined here. Because only a 5-second segment is loaded of every sample, the time offset needs be given as a
parameter to the librosa.load()-function. The function returns also the original sample rates, which are used in extracting features.

In [7]: def load_sounds(file_paths, offsets):

i-e

sounds = []

sample_rates = []

for path in tgdm(file_paths):
y, sr = librosa.load(path, offset=offsets[i], duration=5.8)
sounds.append(y)
sample_rates.append(sr)
i+=1

return sounds, sample_rates

The samples are then loaded and we get the processed 'data’ and sample rates

In [8]: data, sr = load_sounds(fpaths, offsets)
100% | [ININNIINI | 15¢/15¢ [e0:42<e0:00, 3.56it/s]

Figure 4.1 A screenshot of the tutorial Jupyter notebook.

instead of three and zero-crossing rates as an extra feature beside the MFCCs. [15]
Obviously, the classification problem is more difficult when there are more possible
classes, and therefore the prediction accuracies are also expected to be lower. The
accuracies for the three classifiers trained with ESC-50 dataset containing 50 classes
were only 39.6 %, 44.3 % and 32.2 % [15].

Classifier accuracies for UrbanSound8K dataset consisting of 10 classes were ap-
proximately 65 % for SVM (with radial basis function kernel) and random forest
classifiers, and 55 % for k-NN classifier initialized with 5 neighbors. The features

used were MFCCs and the number of cross-validation folds was 10. [19]

Comparing the results of evaluation to the values of ESC and UrbanSound, it can
be concluded that the built dataset has potential in testing classifiers. In addition,
there was no parameter optimization involved in the evaluation, which might have
been the case with the other datasets. The method for building the dataset can
therefore be considered suitable for further expanding the number of classes in the
dataset. For a more detailed tutorial for using the evaluation code see the Jupyter
notebook provided with the dataset (Fig 4.1).

14

5. CONCLUSIONS

A dataset, named as DBR dataset, was created from samples collected from Free-
sound. A Python script was written for searching and retrieving samples from Free-
sound through Freesound API. The created dataset has three classes, 50 samples per
class, and the classes are 'dog’, 'bird’, and ’rain’. Metadata (id, name, description,
duration, samplerate, username and license) was saved in yaml format and annota-
tions for five-second segments (starting and ending times and class tags) in text files
for each sample. A machine learning application was written for Python, and SVM,
random forest and k-NN classifiers were evaluated using the dataset. A Jupyter no-
tebook of the evaluation script was made as a tutorial for using the dataset. The
dataset was published in Zenodo [6], and the scripts and the notebook are available

at GitHub !. The licenses of some of the samples however forbid commercial use.

Building an environmental audio dataset was quite straightforward using the avai-
lable tools, especially the Freesound client libraries. However, the building process
involved plenty of manual work consisting of trying different key words when choo-
sing classes and searching sounds, listening to samples and labeling them. Further-
more, collecting the required 50 samples per class was somewhat challenging mainly
due to misleading metadata of samples. Choosing common and consistent sounds,
like barking of dogs, was an effective way to relieve the process. Unfortunately this is
usually not the case, because solving a particular classification problem starts with
an existing set of classes needed to recognize. More attention needs to be given then

to the formation of the problem and the selection of search parameters.

Further development ideas for the dataset include publishing only the five-second
segments without the original wav files. The pre-extracted features could be distri-
buted, and multiple training and test set splits with corresponding id lists could be

prepared. A subset of samples suitable for commercial use could also be published.

With the Jupyter notebook tutorial, using the built dataset should be easy even for
people unfamiliar with audio processing. Moreover, the code written for searching

and retrieving samples from Freesound will assist in future dataset building.

lhttps://github.com/vvekl/dbr-dataset

15

BIBLIOGRAPHY

1]

2]

3]

4]

5]

6]

7]

8]

19]

[10]

[11]

[12]

AudioSet, webpage. Available (accessed November 3): https://research.
google.com/audioset/dataset/index.html.

N. S. Altman. An introduction to kernel and nearest-neighbor nonparametric
regression. The American Statistician, 46(3):175-185, 1992.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273-297, Sep 1995.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-
scale hierarchical image database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248-255. IEEE, 2009.

W. Dubitzky, M. Granzow, and D. P. Berrar. Fundamentals of data mining in

genomics and proteomics. Springer Science & Business Media, 2007.

V.-V. Eklund. DBR dataset. Available: https://doi.org/10.5281/zenodo.
1069747, Dec. 2017.

R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of human genetics, 7(2):179-188, 1936.

F. Font, G. Roma, and X. Serra. Freesound technical demo. In ACM Interna-
tional Conference on Multimedia (MM’13), pages 411-412, Barcelona, Spain,
21/10,/2013 2013. ACM, ACM.

J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C.
Moore, M. Plakal, and M. Ritter. Audio set: An ontology and human-labeled
dataset for audio events. In Proc. IEEE ICASSP 2017, New Orleans, LA, 2017.

T. K. Ho. Random decision forests. In Document Analysis and Recognition,
1995., Proceedings of the Third International Conference on, volume 1, pages
278-282. IEEE, 1995.

J. Janer, S. Kersten, M. Schirosa, and G. Roma. An online platform for inte-
ractive soundscapes with user-contributed content. In AES /1st International

Conference on Audio for Games, 2011.

B. Mechtley, A. Spanias, and P. Cook. Shortest path techniques for annotation
and retrieval of environmental sounds. In ISMIR, pages 541-546, 2012.

Bibliography 16

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

P. Mermelstein. Distance measures for speech recognition, psychological and
instrumental. Pattern recognition and artificial intelligence, 116:374-388, 1976.

A. Mesaros, T. Heittola, and T. Virtanen. TUT sound events 2017, development
dataset. Available: https://doi.org/10.5281/zenodo.814831, Mar. 2017.

K. J. Piczak. Esc: Dataset for environmental sound classification. In Proceedings
of the 23rd ACM International Conference on Multimedia, MM 15, pages 1015—
1018, New York, NY, USA, 2015. ACM.

F. Ringeval, A. Sonderegger, J. Sauer, and D. Lalanne. Introducing the reco-
la multimodal corpus of remote collaborative and affective interactions. In
Automatic Face and Gesture Recognition (FG), 2013 10th IEEE International
Conference and Workshops on, pages 1-8. IEEE, 2013.

G. Roma, P. Herrera, and X. Serra. Freesound radio: supporting music creation
by exploration of a sound database. In Workshop on Computational Creativity
Support (CHI2009)(accepted), 2009.

G. Roma, P. Herrera, M. Zanin, S. L. Toral, F. Font, and X. Serra. Small world
networks and creativity in audio clip sharing. International Journal of Social
Network Mining, 1(1):112-127, 2012.

J. Salamon, C. Jacoby, and J. P. Bello. A dataset and taxonomy for urban
sound research. In Proceedings of the 22nd ACM international conference on
Multimedia, pages 1041-1044. ACM, 2014.

S. S. Stevens, J. Volkmann, and E. B. Newman. A scale for the measurement
of the psychological magnitude pitch. The Journal of the Acoustical Society of
America, 8(3):185-190, 1937.

T. Virtanen, M. D. Plumbley, and D. Ellis. Computational Analysis of Sound
Scenes and Events. Springer International Publishing, 2018.

