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ABSTRACT 
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September 2017 
Master’s Degree Programme in Mechanical Engineering 
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Increasing regulation on emissions and a general trend towards more environmentally 

friendly solutions has motivated the researchers to look for ways to make mobile 

machinery more efficient. Excavators particularly are a remarkable source of pollution 

due to the vast amount and the low efficiency of these machines. 

Excavators are ordinarily equipped with conventional, centralized hydraulic system, 

where main pump supplies volumetric flow for the whole system. This flow is directed 

from the pump to actuators through control valves, and the returning flow is directed into 

the tank. Conventional hydraulic system has numerous disadvantages. Many supportive 

functions are required, including pressure control and load-sensing functions. Even on 

idle mode, there are flow losses due to continuous circulation of fluid through valves. In 

addition, the distance between pumps and actuators may be long, which causes pressure 

loss and an additional weight of long hoses filled with fluid. One proposed improvement 

is the use of displacement-controlled hydraulics, in which the actuator control is realized 

by sophisticated pump control, instead of metering the flow in directional valves. 

In this work, the efficiency of a modified JCB micro excavator is studied. Excavator is 

fitted with pressure and position sensors, and the simulation model is verified with 

laboratory measurements. The literature on the topic is reviewed to find the best practises 

concerning the studies on mobile machinery efficiency, including standardized duty 

cycles. The hydraulic system of the excavator is modelled in Matlab Simulink, and the 

simulation model is utilized to calculate the power consumption of the excavator during 

a digging and loading and a levelling cycle.  

Further simulation study is produced by replacing the conventional hydraulic system with 

displacement-controlled units, namely direct-driven hydraulics, or DDH’s. The same duty 

cycles are performed with both systems, and the results are presented. The study shows a 

power loss of as much as 60% in the directional valve group. A total power consumption 

of the DDH system is less than 10% of the consumption of conventional system, during 

two different free-space duty cycles. Subsequently, results of this study will motivate for 

further research and manufacturing a working prototype. 
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Päästömääräykset tiukentuvat ja teknisillä aloilla vallitsee yleinen suuntaus kohti yhä 

ympäristöystävällisempiä ratkaisuja. Tämä on ohjannut liikkuviin työkoneisiin liittyvää 

tutkimustyötä, sillä koneista halutaan nyt entistä energiatehokkaampia. Erityisesti 

kaivinkoneet aiheuttavat – koneiden suuren lukumäärän ja alhaisen hyötysuhteen takia – 

merkittävästi päästöjä.  

Tyypillinen kaivinkone on edelleen varustettu perinteisellä keskitetyllä 

hydraulijärjestelmällä, jossa pääpumppu jakaa tilavuusvirtaa muulle järjestelmälle. 

Tilavuusvirta ohjataan pumpulta suuntaventtiilien kautta toimilaitteille, joilta saapuva 

paluuvirtaus johdetaan takaisin öljysäiliöön. Tällainen järjestelmä on monella tapaa 

epäedullinen. Se vaatii toimiakseen lukuisia aputoimintoja, kuten paineensäätöä ja 

kuormantuntotoimintoja. Jatkuva öljyn kierto venttiilien läpi aiheuttaa virtaushäviöitä 

jopa tyhjäkäynnillä. Pumpun ja toimilaitteiden välinen etäisyys on usein pitkä, joten 

letkuissa syntyy lisää virtaushäviöitä. Letkujen ja niiden sisältämän öljyn paino on koneen 

toiminnan kannalta ylimääräistä kuormaa. Ratkaisuksi näihin ongelmiin on esitetty 

tilavuusvirta- eli pumppuohjattua hydraulijärjestelmää, jossa järjestelmää ohjataan 

venttiilien sijaan älykkäällä moottorinohjauksella.  

Tässä diplomityössä tutkitaan dieselistä sähkökäyttöiseksi muunnetun JCB Micro -

kaivinkoneen energiatehokkuutta. Koneen hydraulijärjestelmä on mallinnettu Matlab 

Simulink -ympäristössä. Kaivinkoneeseen on asennettu paine- ja asema-anturit, joiden 

tuottaman mittausdatan avulla simulointimalli on verifioitu. Lisäksi esitellään aiheeseen 

liittyvää tieteellistä kirjallisuutta, josta on myös poimittu parhaita käytäntöjä liikkuvien 

työkoneiden tehokkuustarkastelua varten. Simulointimallin avulla selvitetään 

kaivunkoneen tehonkulutus kahden standardinmukaisen työsyklin aikana.  

Vertailukohtana esitetään vastaavat tulokset vaihtoehtoiselle järjestelmälle, jossa 

perinteinen keskitetty hydraulijärjestelmä on korvattu pumppuohjatuilla, toimilaitteiden 

luo hajautetuilla yksiköillä. Samat työsyklit ajetaan molemmilla järjestelmillä. Tutkimus 

osoittaa, että venttiiliryhmässä syntyy jopa 60% koko järjestelmän tehohäviöistä. 

Pumppuohjatun järjestelmän energiankulutus on alle 10% perinteisen järjestelmän 

kulutuksesta, kun tarkastellaan kuormaamattomia työsyklejä. Työn tulokset ovat 

kiinnostavia ja ne kannustavat jatkotutkimukseen sekä prototyypin rakentamiseen.  
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1. INTRODUCTION 

Non-road mobile machinery, or NRMM, covers a wide range of applications, including 

agriculture, earth-moving, and mining machinery. These machines are often utilized in 

challenging conditions, and their duty cycles consist of quick and high power peaks, 

which makes them a demanding target for research and development. Their requirement 

for high maximum power, along with full mobility, is why NRMM’s are predominantly 

powered by a diesel engine. The rising fuel price, increasing regulation on emissions and 

a general trend towards more environmentally friendly solutions has motivated the 

researchers to look for ways to make the NRMM more efficient. Excavators particularly 

are a remarkable source of pollution. According to (Vukovic et al. 2017), the excavators 

would produce as much as 60% of all CO2 emissions produced in construction machinery, 

due to the vast amount and the low efficiency of these machines. 

Excavators are ordinarily equipped with conventional, centralized hydraulic system, 

which consists of one or two main pumps that supply volumetric flow for the whole 

system. This flow is directed from the pump to actuators through control valves, and the 

returning flow is directed into the tank. Conventional hydraulic system has numerous 

disadvantages. Many supportive functions are required, including pressure control and 

load-sensing functions. The power demand of the system changes, which prevents the 

engine from running at its optimal speed. Even on idle mode, there are flow losses due to 

continuous circulation of fluid through valves. In addition, the distance between pumps 

and actuators may be long, which causes pressure loss and an additional weight of long 

hoses filled with fluid.  

In a load-sensing (LS) system, a load-sensing circuit monitors the load pressures on all 

actuators, and adjusts the system pressure to match the highest load. If several actuators 

operate at the same time, which often is the case, the excess pressure is decreased by 

throttling. According to (Zimmerman et al. 2007), these throttle losses may be responsible 

for as much as 35% of total energy losses during a typical digging cycle. Knowing the 

energy distribution of the machine is vital in order to steer the research towards the most 

relevant targets.  

The first object of this study is to resolve the actual energy consumption and power 

distribution of the front hoe of the micro excavator (Figure 1), including boom, arm and 

bucket actuators. This is done by creating a simulation model in Matlab Simulink 

environment. Excavator is fitted with pressure and position sensors, and the simulation 

model is verified with laboratory measurements. The literature on the topic is reviewed 

to find the best practices concerning the studies on mobile machinery efficiency, 



2 

including standardized duty cycles. The simulation model is utilized to calculate the 

power consumption of the excavator during a digging and loading and a levelling cycle.  

 

Figure 1: JCB Micro excavator 

One solution for improving the efficiency of the excavator hydraulic system, is the use of 

displacement-controlled (DC) hydraulics, in which the actuators are controlled directly 

with the pump, instead of the directional valves. The direct-driven hydraulics (DDH) 

consists of two fixed displacement pump/motor units, which are connected to an electric 

motor via a common shaft. The ratio of pump displacements corresponds to the ratio of 

cylinder chamber displacements. However, since the pumps and cylinders are 

manufactured in standard sizes, there is usually some inequality between ratios, which is 

compensated with a hydraulic accumulator.  

One task of the EL-Zon project is to replace micro-excavator front hoe hydraulics with 

three standalone DDH actuators. Findings can be projected into larger excavators and 

other multi-joint structures of the mobile machinery. Previous studies suggest that typical 

cycle control and potential energy recovery of a micro-excavator by DDH are feasible. 

Moreover, the research indicated that the overall efficiency of such setup could be as high 

as 76.4%. Comparable research data, concerning the conventional model, has not been 

available until now. 

Further research on the simulation model is done by replacing the conventional hydraulic 

system with three DDH’s. The same duty cycles are performed with both systems, and 

the results are presented. Predicted finding is that the efficiency of micro-excavator could 

be improved by replacing original hydraulics with DDH actuators. The scale of the 
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improvement is to be found out. From the overall view, an authentic simulation model is 

a vital part of DDH development process. Subsequently, results of this study are expected 

to motivate manufacturing a working prototype. 

This structure of this thesis is as follows. In chapter 2, the previous research on efficiency 

of hydraulic mobile machinery is presented. Results of other studies offer valuable best 

practices and a basis to evaluate the results. The excavator and its modifications are 

described in chapter 3. In chapter 4, the simulation model is introduced in a detailed 

manner to ensure the reproducibility of all results. In chapter 5, the simulation model is 

utilized to study the power consumption of the excavator during two standardized 

working cycles. Both hydraulic systems, conventional and DDH, are investigated and the 

results are discussed. The final conclusions, together with suggestions concerning the 

upcoming research, are presented in chapter 6. Appendices include the description of the 

data acquisition and control system, measured dimensions of the front hoe, and the Matlab 

m-file including the model parameters.  

The results of this thesis are being evaluated for publication: Salomaa, V., Minav, T., 

Mattila, J., Pietola, M. Efficiency Study of an Electro-hydraulic Excavator. 11th 

International Fluid Power Conference (IFK), Aachen.  



4 

2. LITERATURE REVIEW 

Working machines in general and their efficiency in particular, form a widely researched 

field of science. Numerous studies have been published about improving the efficiency 

of mobile machinery. There are distinguishable research trends, such as hybridization of 

construction machinery, which was studied in detail in (Lin et al. 2010).   

In this thesis, the focus is on the improvement of excavator efficiency by reducing the 

losses of the hydraulic system. In the literature review, some of the most relevant studies 

are introduced, and the best practices are adopted. In addition, results of preceding 

research form a basis for this study. 

2.1 Efficiency of an excavator 

Hydraulics are widely used in mobile machinery due to the good power-to-weight-ratio, 

or power density. It is also relatively flexible way to transfer power, because power can 

be moved through flexible hoses. Furthermore, hydraulic systems are capable of 

producing very high actuator forces and torques with the basic components, and the 

hydraulic system is very tolerant against overloading. However, the efficiency of a 

hydraulic system is only moderate. (Kauranne et al. 2008).  

The excavator can be thought as an energy transformer. The input energy, whether it is 

stored in a battery or fuel, is first transformed into a mechanical energy. The mechanical 

power of a rotational system is determined as: 

 𝑷 = 𝑻 ∙ 𝝎 (1) 

 

Notation Explanation Unit 

P power W 

T torque Nm 

ω rotational speed rad/s 

 

This mechanical energy, namely rotation of the electric motor or a diesel engine, is 

utilized to rotate the hydraulic pump. The hydraulic power is distributed to the actuators, 

which eventually output the mechanical work. Hydraulic power P[W] is given by: 

 𝑷 = 𝒒 ∙ 𝒑  (2) 
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Notation Explanation Unit 

q volumetric flow m3/s 

p pressure Pa 

 

Yet another form of mechanical power, the power of one-dimensional movement, occurs 

in this study. It is calculated by:  

 𝑷 = 𝑭 ∙ 𝒗  (3) 

 

Notation Explanation Unit 

F force N 

v velocity m/s 

 

The efficiency η can be calculated as a ratio between the power output and power input: 

 𝜼 =
𝑷𝒐𝒖𝒕
𝑷𝒊𝒏

 (4) 

 

Another interesting value in efficiency study, is the power loss over a single component. 

For example, a flow entering a valve has a hydraulic power Pin. The pressure drops due 

to throttling, so the output power, Pout is less than Pin. Now the power loss, or power spent 

in heating of the oil and the valve body, is 

 𝑷𝒍𝒐𝒔𝒔 = 𝑷𝒊𝒏 − 𝑷𝒐𝒖𝒕 (5) 

 

Depending on the component and the study objects, the definition of output power may 

vary. For example, a directional valve clearly outputs a volumetric flow for the use of 

other components, whereas the flow through a pressure relief valve is normally directed 

into the tank, and considered losses. In the latter case, the Ploss = Pin. 

Since the power distribution and magnitude varies along the working cycle, it is expedient 

to calculate the total energy consumption during the cycle, and then compare the single 

values. Energy (E) is the integral of power over time, and its unit is Joule (J). For energy 

applies:  
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𝑬𝒊𝒏 = ∫𝑷𝒊𝒏  𝒅𝒕, 𝑬𝒐𝒖𝒕 = ∫𝑷𝒐𝒖𝒕  𝒅𝒕, 𝜼 =
𝑬𝒐𝒖𝒕
𝑬𝒊𝒏

,

𝑬𝒍𝒐𝒔𝒔 = ∫𝑷𝒍𝒐𝒔𝒔  𝒅𝒕 

(6) 

 

Energy studies on excavators in general are not straightforward, since the machines are 

fitted with a variety of auxiliary equipment, such as steering or cooling, which consume 

energy without contributing in productive work. Furthermore, the excavators are utilized 

in varying working cycles with different power consumption profiles. (Vukovic et al. 

2017). 

The excavator front hoe consists of multiple joints and actuators to provide freedom for 

different tasks. Besides different working positions and movements the excavator is 

facing, it also needs to work with different loads. Even the simplest digging cycle includes 

pressing (as the bucket penetrates into the soil) and pulling (as the bucketful of soil is 

being lifted up). In Figure 2, two possible directions of movement, extending and 

retraction, are combined with two different load directions, assistive and resistive load. 

Similar two-by-two matrix representation is presented in (Vukovic et al. 2017).  

 

Figure 2: Four load situations (Vukovic et al. 2017) 

As the figure illustrates, the loading conditions of the excavator actuators are variable and 

must be taken into account when determining the output work done by the actuator. This 

is further discussed in chapter 5: Efficiency analysis. 
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The term “individualization” was introduced in (Weber et al. 2016), to express the trend 

from centralized to decentralized (pump-controlled) hydraulic systems. In the least 

individualized systems, one pump-motor unit is commonly used by several actuators. 

This kind of system is usable in applications, where only one actuator works at a time, 

due to strict working sequence, for example. According to Weber et al., the next step in 

the individualization is to assign an own pump for each actuator, while still using a 

common motor. This kind of systems are found particularly in mobile machinery, as they 

commonly perform separate functions simultaneously. Even more individualized systems 

involve separate motor-pump units assigned to each actuator. Trend is towards structural 

integration of these individual cells, including motor, pump and the actuator. Compact 

electro-hydrostatic actuators (EHA), present a state of art technology in this field. EHA’s 

were originally taken into use in aircraft industry in the 1990’s and industrial applications 

in late 2000’s (Weber et al. 2016). 

2.2 Displacement control in NRMM  

At the same time, other researchers have focused on improving the efficiency of the 

hydraulic circuit. As mentioned, the directional valves cause a major part of all power 

losses in the system. A significant approach towards this problem is displacement 

controlled (DC) actuator, which is controlled directly by a variable displacement pump 

instead of directional valves. DC system is already a common solution in hydrostatic 

transmissions, but the unequal volumes of the differential cylinder have as of yet 

prevented it from spreading into other systems. However, variety of different approaches 

have been introduced to overcome this problem.  

Electro-hydrostatic actuator (EHA) can be perceived as a subtype of DC systems. It 

involves a fixed displacement pump, driven by a variable speed electric motor. EHA is 

not hydraulically connected to the central system, instead, only electric wiring is required 

to connect it. Thus, the EHA has enabled progress towards a decentralization of the 

hydraulic system.  

(Zimmerman et al. 2007) have studied the power consumption of a Bobcat 435 compact 

excavator, to identify the main causes of power loss, and discuss the benefits of a valve-

less control. They created a Simulink model to simulate the dynamic behavior of the 

machine, and a mathematic model to calculate power losses by combining the flow rates 

and pressure drops of each component. Using a typical digging cycle, they found that 

only 31.4% of the total input energy (energy delivered by the engine) was captured into 

actuator work. As much as 35.2% was lost in the valve block, and 29.0% was used in the 

pump. The study highlighted a problem characteristic for a LS system, namely that in 

case of multiple simultaneous actuator movements, the system pressure is set according 

to the highest load. The flow for functions with lower pressure demand is heavily 

throttled, which leads to high energy losses.  
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The project goal of Zimmerman et al. was to use displacement controlled actuators, in 

order to reduce the total fuel consumption of the excavator. The DC actuators would not 

only lower the throttle losses, but also allow energy recovery, whenever the assistive load 

is applied.  The authors estimated that 26.1% of the work and 8% of the total energy 

consumption is recoverable.  

(Williamson et al.) have continued the work to compare the energy consumption of a 

conventional excavator and a displacement controlled excavator. The same mini-sized 

excavator, Bobcat 435, was investigated also in the latter project. The energy 

consumption and distribution was studied by using a simulation model, in which both the 

LS and DC systems were modeled.  

Williamson’s DC system was based on a variable volume pump, which directly operates 

a single-rod cylinder. The flow differential over the pump is compensated with pilot-

operated check valves and an accumulator. Excess oil is directed to the tank, and returned 

with a supplementary pump. The application into the excavator incorporates on/off valves 

to connect multiple alternative actuators in a single circuit. For example, the same circuit 

may be used to control the boom cylinder and the right travel motor, since the functions 

are not used simultaneously.  

Another difference between the study of (Williamson et al.) and this thesis is the 

application of external load. Williamson et al. utilized the measured pressure and position 

data, with friction and acceleration values acquired from the simulation model, to 

calculate an estimated load force, which was applied to the actuators during the 

simulation.  

According to Williamson et al., a 39% reduction in power consumption is achievable with 

a DC system, compared to a conventional LS system. Valve metering losses, which are 

the greatest single source of power loss, were reduced by 99.3%. On the downside, the 

pump losses were more than doubled. One of the main arguments supporting the 

investigation for DC systems, energy recuperation, was found negligible.   

2.2.1 Direct-driven hydraulics 

A major design problem, related to pump-control of a single-rod cylinder, is how to 

balance the different volume flows of the two cylinder chambers. The direct-driven 

hydraulics (DDH) consists of two fixed displacement pump/motor units, which are 

connected to a common shaft with an electric motor. A simplified hydraulic schematic is 

presented in Figure 3. The ratio of pump displacements VrA and VrB corresponds to the 

ratio of cylinder chamber displacements, and, thus, piston areas ApA and BpB:  
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𝑽𝒓𝑨
𝑽𝒓𝑩

≈
𝑨𝒑𝑨

𝑨𝒑𝑩
  (7) 

 

However, since the pumps and cylinders are manufactured in standard sizes, there is 

usually some inequality between ratios. To prevent unwanted pressure difference, caused 

by this inequality, there is an additional hydraulic accumulator placed between the 

cylinder and pump. According to study (Järf et al. 2016), this accumulator may improve 

the efficiency of this type of system by 30%. Another accumulator acts as an oil reservoir, 

enabling a tank-less configuration. The DDH forms a standalone unit, which may be 

installed close to the hydraulic cylinder, requiring only electric cables to connect it with 

the power source. 

 

Figure 3: Schematics of a tank-less DDH unit 

One task of the EL-Zon project is to replace micro-excavator front hoe hydraulics with 

three DDH actuators. Findings can then be projected into larger excavators and other 

multi-joint structures of the NRMM. In this thesis, a simulation model is created, in which 

the front hoe is actuated with three standalone DDH units. This system will be compared 

against the conventional one to observe the characteristics, such as efficiency and 

performance. Simulation models utilized to study the systems are produced using Matlab 

Simulink. In order to accomplish sufficiently accurate simulation, the model will be 

verified with in-situ measurements.  

The DDH system of a micro-excavator has been modeled during previous studies in the 

EL-Zon project. The model consists of a multibody dynamic model, hydraulic model, and 

electric drive model. The simulation research suggested that typical cycle control and 

potential energy recovery of a micro-excavator by DDH are feasible. Moreover, the 

research indicated that the overall efficiency of such setup could be as high as 76.4%, 

which motivates further research.  
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2.3 Excavator duty cycles 

In order to evaluate the performance or efficiency of an excavator, it is necessary to 

determine the actual use of such a machine. Digging movement is common to all duty 

cycles found in the literature. However, as explained in section 2.1, the varying loading 

conditions make standardizing a difficult task, as the excavators are used in very different 

conditions. Possibly the most commonly utilized duty cycle, presented by the Japan 

construction machinization association (JCMAS), solves the problem by determining 

unloaded, or free-space, duty cycles (JCMAS 2007). 

2.3.1 JCMAS H 020 

JCMAS H 020:2007 is a standard for testing the fuel consumption of the hydraulic 

excavators. The standard provides test cycles for digging and loading, leveling, traveling, 

and idling. All movements, except idling, are operated on maximum speed, such that at 

least one of the actuators moves on full speed. The height and depth limits are determined 

by the excavator size, which depends on the bucket volume, and the duty cycles of the 

smallest excavator (bucket volume 0.28 m3) are described in this section. 

The digging and loading cycle is illustrated in Figure 4, and it is performed the following 

way. The digging depth is 1.0 m (the bottom line in the figure), and the loading height is 

2.0 m (the top line in the figure). In the starting position, the bucket is reached as far 

forward as possible, and the bucket is held 0.1 m above the ground (the middle line in the 

figure). Next, the arm is pulled towards the excavator body, until the arm is vertical to the 

ground. After that, a scooping movement is performed with the bucket, until the bucket 

face is horizontal. Both boom and swing are then operated to bring the bucket 90 degrees 

sideways and just above the loading height, where the bucket is unloaded by turning it 

until the bucket tooth are aligned with arm. Finally, the swing, boom and arm are returned 

back to their initial positions. For a complete test, this pattern is repeated five times. The 

shortest and longest cases are rejected, and remaining three cases are used to calculate the 

fuel consumption.  

 

 

Figure 4: Digging and loading cycle 
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Leveling motion is done by actuating only boom and arm, and the leveling length is 2.5 

m. This cycle is visualized in Figure 5. The movement is started from the same initial 

position as the digging cycle: bucket reached full forward and bucket tooth 0.1 m above 

the ground. Next, the boom is lifted while the arm is pulled towards the driver, until the 

desired leveling length is attained. After the movement, the boom and arm are returned 

back to the initial position. This pattern is repeated ten times for a complete test, and the 

test is done five times, longest and shortest of which are again discarded.  

 

Figure 5: Leveling cycle 

The traveling motion test is done by driving on full throttle on low speed (turtle) mode, 

for at least 25 m on concrete or other hard surface, without turning. For one test, the 

machine is driven forwards and backwards, one time each, and the time and fuel 

consumption is measured. The last test, idling, is done by simply letting the machine idle 

for 600 seconds, and measuring the fuel consumption. 

The standard has some considerable limitations. First, the duty cycles do not involve any 

contact between the bucket and the earth. Therefore, they are not optimal for evaluating 

the efficiencies in real work, but rather to comparing the results between different 

machines, tested with the similar duty cycles. Second, the standard is addressed for 

excavators with bucket size greater than 0.25 m3, but the bucket of the JCB micro 

excavator is only 0.022 m3 – less than one tenth of the smallest excavator in the standard. 

The size of the excavator affects the reach, which makes is impossible to perfectly meet 

the requirements of the Japanese standard. However, keeping these limitations in mind, 

the standard may still be applied to produce comparable results of the efficiency of the 

excavator under investigation.  

The standard is lately utilized in a simulation study (Ketonen & Linjama, 2017), in which 

the JCMAS truck loading and earth grading cycles were followed to avoid the modeling 

of contact with earth.  

2.3.2 Other duty cycles 

In (Zimmerman et al. 2007) a ‘typical digging cycle’ was used. This included digging a 

load of dirt, rotating, unloading the dirt, and returning back to starting position, quite 

similarly as in the JCMAS standard. The duty cycle involved multi-actuator movement, 
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aiming to reveal the phases of high inefficiency of the LS system. An improvement to the 

JCMAS standard was the use of artificial external load, consisting solely of a time-

dependent load mass, which was applied to the bucket during the time it would be filled 

with soil. The force required to break into the earth was still ignored.    

(Hippalgaonkar & Ivantysynova 2013) used two different truck loading cycles, to test the 

excavator with direct controlled actuators. The expert cycle starts by digging loose soil 

from the bottom of a pit, and unloading the soil into the bed of a truck at 6 ft (1.83 meters) 

after 90 degrees cabinet swing. After that, the machine returns to the digging position, 

and repeats the cycle, total time of which is 9.2 s. In the novice cycle, the soil is dumped 

on the ground level and the swing angle is only 40 degrees. As the cycle names suggest, 

the expert cycle includes multi-actuator movements, and it is considered to represent the 

maximal power demand from the hydraulics. Novice cycle, in turn, is mostly operated 

with one actuator at a time, which leads to longer cycle time and lower average power 

demand.  
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3. EL-ZON JCB MICRO EXCAVATOR 

The EL-Zon project researches the application of decentralized DDH units to create 

competitive advantages for the companies related to the project. The challenges include, 

among others, combination of electric and hydraulic technologies, sensor-less 

positioning, and evaluation of possibilities for energy regeneration.  

A mine loader and a mini excavator are chose as technology demonstrators of the project. 

The study cases of the EL-Zon project are not limited to mobile applications, but also a 

stationary application is developed. The DDH actuators of the mining loader are currently 

in use and being research, and the application into excavator is in preparation.  

3.1 Background 

In this project, a JCB 8008 CTS micro excavator is took as the test subject. The machine 

selection criteria are laid out in a thesis (Kiviranta 2009). The excavator size was limited 

by maneuverability, and limited storage and laboratory space. However, six degrees of 

freedom were desired in order to provide enough challenge for the automation 

development. Easy access to all components, fair price, and availability were also 

considered as JCB’s advantage. 

The excavator has been modified to serve research of software development by 

instrumenting it with orientation sensors and electrically controlled directional valves 

(Kiviranta, 2009). These orientation sensors are disassembled by today, but the 

directional valves, namely Danfoss PVG32, are currently in use. 

The original 14 kW diesel engine of the excavator was subsequently replaced with a 10 

kW electrical motor. The motor is driven by a Sevcon Gen4 motor controller, which is 

designed to control 3-phase-AC induction and permanent magnet motors (Sevcon). 

Besides the apparent reduction in the emissions, the electrification resulted in lower noise 

level, while maintaining approximately the original performance. However, the 

operational time of the excavator was reduced to two hours, even though the 60 Ah battery 

pack was considered high grade. Compared to the operation time of the diesel engine 

version, 8 hours with 15 l of fuel, the usability of the electrified version was considerably 

weaker. (Maharjan et al. 2014). 

To address this drawback, a start-stop system was developed (Hassi et al. 2016). The 

implementation features a microcontroller and a mechanical limit switch, which activates 

when a valve is actuated. The microcontroller then starts the electric motor, and stops it 

when the system is idle for a predetermined period of time. The energy saving applies 

only to the idling period, and thus depends on the working cycle. Hassi et al. estimated 
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that the excavator is on idle at least 50% of the time it is used, which results in 32% 

reduction in energy consumption.  

The excavator is currently powered by a battery pack of six 12 V batteries connected in a 

series, producing a 72 V voltage. 

3.2 Conventional hydraulic system 

For clarity, the conventional hydraulic system refers to the current setup, which is 

powered by the electric motor, and controlled with electrical valves. In contrast, the 

factory-made system, with diesel engine, and manually controlled directional valves, is 

referred to as original system.  

The current, modified hydraulic system of the excavator is illustrated in Figure 6. The 

battery pack (1) is used to power the motor controller (2) and the electric motor (3). Two 

parallel fixed volume gear pumps (4), Parker PGP511, are connected to the motor shaft 

via a coupling. In the original hydraulic circuit, the volume flows of the two pumps were 

directed separately for different directional valve groups to ensure the flow supply in case 

of simultaneous actuator movements. In the modified system, the volume flows of both 

pumps are directed into a junction block (5). The first and dominant pressure relief valve 

is also located in this block. 

 

Figure 6: Simplified hydraulic schematic of the conventional system of the excavator 

After the pressure relief valve block, the flow is directed to the inlet port of Danfoss PVG 

32 directional valve group. The pressure adjustment spool (6) is constantly operating to 

adjust the pressure level at the directional valves (7, 8, 9), based on the pressure signal 

acquired from the valve ports. The functionality of directional valves is described in detail 
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in section 4.1.4. The pressure relief valve (10), of the directional valve group, is normally 

closed. From the directional valves, the oil flows through hoses into the cylinder 

chambers, and returns into the tank. The tank port of the directional valve is connected to 

the tank with a hose, and the oil flow is led to the tank trough a filter (11). 

The inner diameter of the hoses between the directional valves and cylinders is ¼” (6 

mm) and the hose between pumps and the valves 3/8” (9.5 mm). The hose between the 

valve block and tank has an inner diameter of ½” (12.7 mm).  

3.2.1 Directional valves 

The control valve is Sauer Danfoss PVG 32. Detailed reasoning behind the valve selection 

is presented in (Kiviranta 2009). The valve has separate spools for each actuator, although 

only boom, arm and bucket spools, spool numbers 3, 4 and 5 in the valve block, are 

included in the study. The valve set is installed parallel to original set, and the manually 

operated valves are used to activate either one of the directional valve sets. 

A PVG 32 proportional valve group consists of three main modules: pump side module 

(PVP), basic modules (PVB), and actuation modules. The PVP connects to the pump and 

tank ports, and it has different functions depending on the application. In this valve group, 

the PVP is an open center version, which is to be used with fixed displacement pumps. 

The manufacturer part number is 157B5110, and the operation is explained in detail in 

(Danfoss, 2016). The system pressure is adjusted by a pressure adjustment spool (6), 

which, when the control spools (7, 8, 9) are in neutral, is fully open and lets the oil flow 

to the tank. When any of the control spools are actuated, the load-sensing channel is 

pressurized up to the highest load pressure, which causes the pressure adjustment spool 

to limit the flow to maintain a constant pressure difference between the load and system 

pressure. The hydraulic schematic of the PVP module, provided by the manufacturer, is 

shown in Figure 7.  

 

Figure 7: Pump side module 157B5110 (Danfoss, 2016) 
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The PVP module includes also the pressure relief valve (PRV). In actual system there are 

two PRV’s, one at the junction point where the volume flows of two pumps meet, and 

another one at the valve block. The nominal set point of the valve block PRV is 180 bars, 

but as the other PRV opens near 130 bars, the valve block PRV stays closed at all times. 

The basic modules, or PVB’s, each include control spool for one actuator. Manufacturer 

part number is 157B6100 for the PVB module and 7005 for the spool. The hydraulic 

schematic for a single PVB is shown in the Figure 8 on the left and for the spool in Figure 

8 on the right. The logic of the load-sensing circuit is that when the spool is actuated, the 

load-sensing channel connects to the respective port. A shuttle valve circuit selects the 

highest load of all actuated PVB’s, and passes it forward to the PVP module. The pressure 

channel of the PVB is also equipped with check valve to prevent return oil flow.  

 

Figure 8: left: Basic module 157B6100; right: spool 7005 (Danfoss, 2016) 

3.3  Instrumentation 

The measurement, control, and data acquisition system is described in detail in Appendix 

A. Only a short overall explanation is given in this section. Physical measurements on the 

excavator provide data for parameterization and verification of the simulation model. The 

excavator is fitted with pressure sensors in all cylinder ports and in the pump outlet port, 

and position sensors at the cylinder rods. The measurement signals are collected and 

recorded at a target-pc. A simple position feedback controller is established to move the 

front hoe in a safe and controlled manner. The topology of the measurement, control and 

data-acquisition system is illustrated in Figure 9. Communication channels are visualized 

as lines, with the text pointing out the communication protocol. Boxes with solid line 

represent hardware and boxes with dotted line are software.  
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Figure 9: Measurement, control, and data acquisition system of the excavator 

Simulink Real-Time -toolkit enables creating real-time applications from Simulink 

models. They run on a dedicated target computer, which is connected to the physical 

system via analog I/O ports. In this project, the real-time setup is used to collect the 

measurement data from pressure transducers and position sensors.  

The Danfoss PVG 32 valves are equipped with electro-hydraulic control modules PVED-

CC. Communication between valves and computer uses CAN J1939 protocol. Simulink 

provides blocks necessary to communicate with the bus, and, together with the real-time 

kernel, enables driving the model in real-time, without having to use an additional target 

pc. Thus, the user interface is divided in two separate systems: the target-pc system and 

the desktop real-time system.  
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4. SIMULATION MODEL 

A simulation model is created in Matlab Simulink environment to study the dynamic 

behavior of the excavator. The rationale and equations used in the model are presented in 

the following sections, to ensure the repeatability of the study results, and also to serve as 

documentation for other users of the model. As in all simulation, it is necessary to 

recognize the limitations of the model, as it takes into account only the phenomena that 

are built into it.  

The emphasis of this work is in modeling the conventional system, meaning the system 

with centralized pump and a valve control, presented in Figure 6. It is noteworthy, that 

the term ‘LS system’ is commonly used to describe a system with a variable-displacement 

pump. The conventional system of the excavator, however, has a fixed-displacement 

pump with constant rotational speed. It senses the load pressure, and adjusts the system 

pressure accordingly, by directing the excess volume into the tank, via the pressure 

adjustment valve.  

The DDH actuator is modelled earlier by (Järf 2016), and as the model is verified and 

well documented, it is used as is, without detailed explanation. First, all the submodels, 

or components, of the model are explained in detail. After that, the verification results are 

presented. Then, a brief explanation is given, concerning the combination of DDH 

actuators with the rest of the excavator model. 

4.1 Conventional model 

This work is focused in the hydro-mechanical system of the excavator front hoe. The 

simulation model includes the hydraulic pump, directional valve group, auxiliary valves, 

hydraulic cylinders, the mechanical model of the front hoe, and the connecting hoses. The 

electric motor and the motor controller are assumed ideal, with 100% efficiency and 

constant rotational speed. Following sub-sections will introduce utilized equations and 

Simulink realizations for the modelled components. 

4.1.1 Volume model 

The volume model is one of the basic components in modelling dynamics of the hydraulic 

systems. Compressibility derives from transformation of components and fluid under 

pressure. As the pressure increases, the volume of the fluid decreases. At the same time 

the hoses, pipes and different chambers expand and their volume is increased. This causes 

inaccuracy and vibration to the actuator movement, which is harmful, especially in 

applications, in which the exact positioning is relevant. The compressibility of a hydraulic 

system can be expressed as a volume differential: 
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 ∆𝑽 =  
𝟏

𝑩𝒆𝒇𝒇
∙ 𝑽𝒕 ∙ ∆𝒑 (8) 
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𝟏

𝑩𝒂

𝒏

𝒊=𝟏

 (9) 

 

Notation Explanation Unit 

∆𝑉 volume differential m3 

Beff effective bulk modulus Pa 

Vt total volume of the system m3 

∆p pressure differential Pa 

Bf bulk modulus of the fluid Pa 

n number of components - 

Vc volume of a component m3 

Bc bulk modulus of a component Pa 

Va volume of insoluble air m3 

Ba bulk modulus of insoluble air Pa 

 

The change in fluid volume may be due to change in component volume, which is the 

case in, for example, a hydraulic cylinder. Nevertheless, the same effect is observed, when 

a fluid volume is introduced to (or taken away from) a fixed-size container. A typical case 

is a volumetric flow entering a hydraulic hose, which is already filled with oil. As the 

volume increases, according to the equation 8, also the pressure increases. This causes a 

transformation (volume increase) in the hose. 

If entering and leaving volumetric flows are marked as a net volume flow ∑Q, and 

combined into equation 8, a state equation of the volume may be formed: 

 
𝒅𝒑

𝒅𝒕
=  
𝑩𝒆𝒇𝒇

𝑽𝒕
∙ (∑𝑸 −

𝒅𝑽

𝒅𝒕
) (10) 

 

In the Simulink model, the fluid volumes are modeled separately, instead of lumping them 

together. Now the effective bulk modulus only consists of bulk moduli within particular 

component: fluid and the component itself. The pressure is assumed equal across the 

whole volume. Thus the length of the volume is assumed to be short compared to the 
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speed of sound in oil (approximately 1400 m/s), and there must not be any significant 

pressure losses within the volume.  

The volume of insoluble air, typically 0.1-5% of the fluid volume, may have a dramatic 

effect on the system compressibility. The effective bulk modulus of the system drops 

rapidly in near-zero pressure. (Kauranne et al 2008). This causes the pressure remain close 

to atmospheric pressure even when the oil flow into the volume is positive. The bulk 

modulus of insoluble air is solved from equation: 

 𝑩𝒂 = 𝟏. 𝟒 ∙ 𝒑 , (11) 

   

where p is the variable system pressure. The effective bulk modulus is then calculated 

with equation 9. The effect of free air is observable in A-chambers of boom and arm 

cylinders, and the free air model is implemented in order to make the simulation results 

match the measurement data. The estimated amount of free air in the boom cylinder is 

0.8% and in the arm cylinder 0.11%. 

4.1.2 Orifice model 

Another frequently used submodel is the orifice model, which is used to calculate a 

volumetric flow, caused by a pressure difference over a flow path. Fluid flow can be 

laminar, turbulent, or a combination of these. The nature of the flow depends on the flow 

speed, kinematic viscosity and a hydraulic diameter of the flow path. These parameters 

form a so-called Reynolds number in the following way (Kauranne et al. 2008): 

 𝑹𝒆 = 
𝒗 ∙ 𝑫𝑯
𝝂

 (12) 

 

Notation Explanation Unit 

𝑅𝑒 Reynolds number - 

v flow speed m/s 

DH hydraulic diameter of the flow path m 

𝜈 kinematic viscosity m2/s 

 

For different flow paths, there are experimentally found critical Reynolds numbers, at 

which the flow is expected to change from laminar into turbulent. For example, in round, 

smooth piping, the critical Reynolds number is around 2000-2300 (Kauranne et al. 2008).  

In hydraulic system modeling, the flow under greatest concern is typically turbulent. In 

(Bak & Hansen) the flow is assumbed turbulent. However, as pointed out by (Ellman & 
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Piche 1996), the transition over zero pressure has caused problems with ODE solvers, 

when using conventional turbulent flow equation. They have proposed an equation, in 

which a polynomial laminar flow formula is used, when the pressure difference is below 

the transition pressure. This replaces an infinite derivative in zero-pressure with a finite 

physically realistic value. The formula proposed is: 

 𝒒(𝒑) =

{
 
 

 
 

𝑪 ∙ 𝑨 ∙ √
𝟐𝒑

𝝆
                                   (𝒑 > 𝒑𝒕𝒓)

𝟑 𝑨 𝝂 𝑹𝒆𝒕𝒓
𝟒 𝑫

(
𝒑

𝑷𝒕𝒓
) (𝟑 −

𝒑

𝒑𝒕𝒓
)                (𝟎 ≤ 𝒑 ≤ 𝒑𝒕𝒓)

 (13) 

 

Notation Explanation Unit 

𝑅𝑒tr transition Reynolds number - 

C flow coefficient - 

A orifice area m2 

p pressure (difference over orifice) Pa 

ptr transition pressure Pa 

D orifice diameter m 

ρ fluid density kg/m3 

 

Flow coefficient C, orifice diameter D and fluid density ρ are assumed constant and 

included to a new parameter KV, which is defined as: 

 𝑲𝑽 = 𝑪𝑨√
𝟐

𝝆
     𝒘𝒉𝒆𝒓𝒆     𝑪 =  

𝒒

𝑨
√
𝝆

𝟐𝒑
       →      𝑲𝑽 =

𝒒

√𝒑
 (14) 

 

The constant part of the equation for laminar flow can be expressed with a single constant 

Clam: 

 𝑪𝒍𝒂𝒎 =
𝟑 𝑨 𝝂 𝑹𝒆𝒕𝒓√𝒑𝒕𝒓

𝟐 𝑫
 , 𝒒 =

𝑪𝒍𝒂𝒎  𝒑

𝟐√𝒑𝒕𝒓
(𝟑 −

𝒑

𝒑𝒕𝒓
) (15) 

 

At the transition pressure p = ptr it is discovered that 
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𝒒𝒍𝒂𝒎(𝒑𝒕𝒓) = 𝒒𝒕𝒖𝒓𝒃(𝒑𝒕𝒓)        →         

𝑪𝒍𝒂𝒎 𝒑

𝟐√𝒑𝒕𝒓
(𝟑 −

𝒑

𝒑𝒕𝒓
) = 𝑲𝑽 ∙ 𝒑        

→         𝑪𝒍𝒂𝒎 = 𝑲𝑽 

(16) 

 

Possible change in the flow direction is taken into account by changing the pressure 

difference p into absolute value, marking pressure difference as subtraction of pressure 

before and after the orifice, and adding a sign-function. The original piecewise equation 

can now be written as: 

 𝒒(𝑷) = {

𝑲𝑽 𝒔𝒈𝒏(𝒑𝟏 − 𝒑𝟐)√|𝒑𝟏 − 𝒑𝟐|                     (|𝒑𝟏 − 𝒑𝟐| > 𝒑𝒕𝒓)

𝑲𝑽(𝒑𝟏 − 𝒑𝟐)

𝟐√𝒑𝒕𝒓
(𝟑 −

|𝒑𝟏 − 𝒑𝟐|

𝒑𝒕𝒓
)                   (|𝒑𝟏 − 𝒑𝟐| ≤ 𝒑𝒕𝒓)

 (17) 

 

Figure 10 illustrates the realization of equation 17 in Matlab Simulink environment. The 

orifice subsystem is later utilized in hose and valve models.  

 

Figure 10: Orifice model 

4.1.3 Hose model 

In the hydraulic system, hoses are utilized to transmit hydraulic power between virtually 

all components. The pressure drops of the hoses are expected to be significant, because 

the hoses are relatively narrow (6.0-12.7 mm) in diameter, and most of them are long and 

bent. However, determining the pressure drop experimentally, for every component in the 

system, is not possible within the scope of this work, so they must be estimated by 

mathematical formulas found in literature. The model used to estimate the flow losses is 

based on the paper (Avci & Karagoz 2009). For laminar flow, the pressure drop ∆p, 

caused by pipe friction, can be written as (Kauranne et al. 2008): 
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 ∆𝒑 = 𝝀 ∙
𝒍

𝒅
∙
𝝆

𝟐
∙ 𝒗𝟐 (18) 

 

Notation Explanation Unit 

∆𝑝 pressure drop Pa 

𝜆 friction factor - 

l pipe length m 

d pipe inner diameter m 

 

The friction factor 𝜆 is relative to Reynolds number Re. For laminar flow it is 

 𝝀𝒍𝒂𝒎𝒊𝒏𝒂𝒓 =
𝟔𝟒

𝑹𝒆
 (19) 

 

Friction factor can also be determined for non-laminar flow. This lets us use the laminar 

flow equation for all flow types. The friction factor for turbulent flow is (Avci & Karagoz 

2009): 

 𝝀𝒕𝒖𝒓𝒃𝒖𝒍𝒆𝒏𝒕 =
𝟔.𝟒

(𝒍𝒏(𝑹𝒆) − 𝒍𝒏 (𝟏 + 𝟎. 𝟎𝟏 𝑹𝒆 𝜺(𝟏 + 𝟏𝟎√𝜺)))
𝟐.𝟒 , (20) 

 

where 𝜀 is the relative roughness of the pipe, 0 ≤ ε ≤ 0.05. 

In the transition phase between laminar and turbulent flow, the friction factor is modeled 

with a simple continuous function, which is also continuously differentiable. The 

accordant friction factor is selected based on the Reynolds number: the laminar flow 

factor is used for Reynolds numbers below 2300, transition flow factor for 

2300≤Re≤4000, and for the Reynolds number greater than 4000, the flow is assumed to 

be fully turbulent, and the turbulent flow friction factor is used.  

In addition to pipe friction, there are flow losses in the system, which are related to change 

of speed or direction of the flow. These losses are present in joints and bends, for example. 

(Kauranne et al. 2008). These losses can be calculated from equation 21: 

 ∆𝒑 = 𝜻 ∙
𝝆

𝟐
∙ 𝒗𝟐, (21) 
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where ζ is the unitless friction factor. Kauranne et al. have listed values for the factor ζ, 

and the ones used in this work are collected in Table 1.  

Table 1: Factor values for pipe friction 

Component Friction factor ( ζ ) 

Straight pipe joint 0.5 

Angle joint 1.0 

Bent pipe 0.4 

Pipeline branch 1.0 

Valves 3.0-6.0 

 

For example, the pipeline between the bucket cylinder and the valve block consists of a 

90-degree angle joint, two straight pipe joints, 3.8 meters of hydraulic hose, and one bent 

pipe, which results in friction factor ζ value 2.4. 

A complete hose model consists of the pipe friction, orifice, and volume models. The 

block diagram of the model is shown in Figure 11.  

 

Figure 11: Hose model 

The model is masked, and parameters, such as hose inner diameter and length, are given 

in the mask. Variable inputs for the hose model are incoming flow, and pressure after the 

hose. The model outputs are outgoing flow, and the pressure before the hose.  

4.1.4 Proportional valve model 

The functionality of the directional valve is presented in section 3.2.1. The main modules 

are the pump side module (PVP), which includes pressure adjustment spool and pressure 

relief valve, and the basic modules (PVB), which include directional spools. The pressure 
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adjustment spool is modeled with a lookup table, result of which corresponds the graph 

given by the manufacturer, although some adjustments are applied to make the simulation 

model match the measured data. A rate limit block is added to limit the transition speed 

of the spool, and the flow is saturated to minimum of 0 l/min, and maximum of 140 l/min.  

The PRV is modeled based on the manufacturer data. The Simulink model is virtually the 

same as of the pressure adjustment spool, only with different parameters. The specified 

set point for the valve block PRV is 180 bars. However, the system pressure is, based on 

the measurements, limited to 120-130 bar. Thus, the pressure limit of the valve block is 

never reached, and only the first PRV activates when the pressure rises up to the limit. 

The behavior of the PRV is visible in Figure 12, in which the measured and simulated 

system pressure are plotted together.  

 

Figure 12: Pressure relief valve opening 

The PVB, or directional spool, model is controlled with a spool position command u, and 

it outputs the flow for each valve port (P, A, B, T). It also compares the load pressure of 

the active port against the loads on other spools, and passes forward the highest pressure. 

The Simulink model of a PVB module is presented in Figure 13.  
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Figure 13: Simulink model of a PVB module 

The spools response to the command signal is determined by spool dynamics, which 

consists of a transfer function and a saturation block. The transfer function is from the 

work of (Bak & Hansen), who studied the dynamic behavior of a PVG 32 valve. It must 

be noted, that this valve has different spool size and different components, so the transfer 

function parameters serve only as an estimation of the actual spool dynamics. However, 

it is not possible or even desired to model our valve in such a detail, and the estimation is 

sufficient for this purpose. The second-order transfer function is written 

 
𝒖𝒔𝒑𝒐𝒐𝒍 =

𝟏

𝒔𝟐

𝝎𝒏
𝟐 + 𝟐 ∙ 𝜻𝒅 ∙

𝒔
𝝎𝒏

+ 𝟏
∙ 𝒖𝒓𝒆𝒇 

(22) 

  

Notation Explanation Unit 

𝑢𝑠𝑝𝑜𝑜𝑙  Spool position - 

𝑢𝑟𝑒𝑓 Reference signal - 

𝜔𝑛 Natural frequency Hz 

𝜁𝑑  Damping ratio - 

  

The spool position is then converted into the relative opening of each control edge of the 

spool. A linear opening would result in satisfactory estimation, but since measurement 



27 

data is available, the port opening is tuned for more realistic behavior in partially open 

valve states. The port openings, as a function of spool position, are shown in Figure 14, 

which also points out the symmetry of flow in both directions. 

 

Figure 14: Relative opening for each valve port 

The opening is modeled with four lookup tables, one for each control edge. The spool 

leakage is also modeled in this point, by leaving the tank edges partially (8e-4/1) open, 

when otherwise in closed position. This results in leakage flow (and actuator drift) 

matching the measured data.  

Oil flow through the ports is calculated with four separate orifice blocks, as described in 

section 4.1.2. These blocks utilize the opening value as an input, and calculate a 

volumetric flow based on the pressure difference over the spool. The flow coefficient Kv 

is calculated for each valve port from equation: 

 𝑲𝑽 =
𝒒𝒏𝒐𝒎

√𝒑𝒏𝒐𝒎
 , (23) 

 

where qnom is the nominal flow [m3/s], and pnom is the nominal pressure differential [Pa]. 

Based on the measurement data, the nominal flows of the spools are in the range of 5.3-

5.6 l/min at the pressure difference of 10 bar, which corresponds with the nominal spool 

size, 5 l, given by the manufacturer. All the parameters are presented also in Appendix C. 

4.1.5 Cylinder model 

The function of a cylinder model is to transform the introduced volumetric flow first into 

chamber pressures and then into output force. The cylinder model itself does not actually 
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produce any movement, and therefore it needs to be connected into a mechanical model, 

from which it may acquire the position and velocity inputs. The movement of the piston 

is limited by end cushion subsystem, which produces a force required to prevent the piston 

from extruding out of the cylinder ends. The output force of the cylinder is also affected 

by the friction, which is modeled with another subsystem, respectively. The subsystems 

of the cylinder model are presented in Figure 15. 

 

Figure 15: Subsystems of the cylinder model 

The chamber subsystem is based on the previously introduced volume model. The volume 

V and the volume differential dV/dt are calculated from the piston areas, and position and 

velocity, which are acquired from any mechanical model attached downstream of the 

cylinder model. The introduced flow Q_in is the output flow of respective valve port. The 

output force is then the product of chamber pressure and the piston area on that side.  

Cylinder end cushions are modeled as stiff springs, with such a spring constant, which 

prevents the piston from extruding out of the cylinder end. In the end position, the 

chamber volume is close to zero. Zero volume will cause the simulation to crash due to a 

division function in the volume model. To prevent this, also the dead volume, which is 

the amount of fluid that is left in the chamber in zero-position, must be included in the 

model. 
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Cylinder friction consists of forces between surfaces of the cylinder and the seals, which 

includes seals of piston and piston rod. Having an accurate friction model is vital for two 

reasons. First, it is needed to make a reliable simulation model. In a conventional, valve 

controlled system, the cylinder frictions were responsible for relatively little part of the 

total losses. In direct-driven hydraulics, this part is expected to be significantly more 

remarkable, and, thus, under greater interest. Secondly, as the EL-Zon project aims to 

sensorless control of the actuators, estimating the friction forces, and thus the output 

force, becomes necessary.  

Friction behavior is known to vary depending on multiple variables, such as properties of 

the contacting surfaces, their relative velocity, and amount and quality of lubrication. The 

static friction, appearing in near-zero velocities, is typically greater than the dynamic 

friction at low velocities. As the velocity increases, viscous friction of the lubricating film 

starts to increase, but the velocity dependency is usually non-linear. (Olsson et al. 1998). 

The fact that the friction is larger at rest that during movement, causes also the stick-slip 

motion, which can be observed as jerky movement of a cylinder at low speed and/or low 

pressure (Kauranne et al. 2008). Before the cylinder force exceeds the force required to 

win the static friction force, or break-away force, a minor displacement may be observed. 

This is called pre-sliding displacement, and during it the friction behaves like a spring. In 

addition, the break-away force varies depending on the rate of increase of the applied 

force. In varying velocity, there is a hysteresis in friction force. In other words, friction 

force for decreasing velocities is lower than for increasing velocities. The hysteresis 

increases as the rate of velocity changes increase. This behavior, also called frictional lag, 

is explained by just a time delay between velocity and friction force. (Canudas de Wit et 

al. 1995).   

These phenomena make creation of an accurate friction model a challenging task. At the 

most simplified stage, so-called Coulomb friction model, the friction is modeled with just 

a step function, outputting a force with sign opposite to the velocity. The magnitude of 

force is proportional to the normal load only. Thus, the Coulomb model cannot exhibit 

changes in friction force in relation to velocity, nor specify the friction around zero 

velocity. In order to take the velocity into account, the model can be upgraded with a 

viscous friction coefficient or suitable exponential function. (Olsson et al. 1998). 

In earlier work on EL-Zon project, (Järf 2016) exploited a dynamic friction model, 

proposed by (Canudas de Wit et al. 1995). The model takes into account most of the 

dynamic friction behavior, including Stribeck effect, hysteresis, sticktion, and varying 

break-away force. This model, also known as the LuGre model, is originally for modeling 

friction between two relationally sliding surfaces. In the model, the contact is thought as 

bristles, moving against each other. When applied to the cylinder friction, the bristles can 

easily be seen as representatives of the cylinder seals. The average deflection of the 

bristles is marked z, and its time derivative is modeled by: 
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𝒅𝒛

𝒅𝒕
= 𝒗 −

𝝈𝟎|𝒗|

𝒈(𝒗)
𝒛  , (24) 

 

where 

 𝒈(𝒗) = 𝑭𝒄 + (𝑭𝒔 − 𝑭𝒄)𝒆
−(

𝒗
𝒗𝒔
)
𝟐

 
(25) 

 

 𝑭𝝁 = 𝝈𝟎𝒛 + 𝝈𝟏𝒛̇ + 𝝈𝟐𝒗  . (26) 

 

 

Notation Explanation Unit 

z average deflection of bristles m 

v relative velocity m/s 

vs Stribeck velocity m/s 

Fc Coulomb friction N 

Fs static friction N 

Fµ friction force N 

σ0 stiffness of bristles N/m 

σ1 damping coefficient  Ns/m 

σ2 viscous friction coefficient Ns/m 

 

The initial values for friction coefficients are selected based on literature and previous 

studies, and improved according to the measurement data. Reference values for friction 

coefficients, found in the literature, are collected in Table 2. 

However, as the friction force is low compared to pressure forces, the change in friction 

parameters cause little or no effect on the cylinder velocity. Therefore, friction parameters 

utilized in this work should be considered approximations only. Any pressure dependency 

of the friction is left outside this work, since the measurements do not clearly indicate 

such a behavior.  
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Table 2: Reference values for friction coefficients 

Notation (De Wit et al. 1995) (Järf 2016) (Hyvönen 2015) Unit 

vs 0.001 0.0005 0.003-0.015 m/s 

Fc 1 87.61 1000-5300 N 

Fs 1.5 300 1700-5800 N 

σ0 10e5 3e5 1.6e6-5.8e7 N/m 

σ1 1000 547.72 5000 Ns/m 

σ2 0.4 41195 1700-5800 Ns/m 

 

4.1.6 Hydraulic pump model 

Two hydraulic pumps of the excavator are Parker PGP511 gear pumps, with a fixed 

volume of 6 ccm each. According to manufacturer data (Parker 2017), the PGP511 pump 

has a 12-tooth gear profile, and optimized flow metering to provide reduced pulsation and 

quiet operation. Therefore, the output flow is assumed “flat” and the possible fluctuation 

is not modeled. The theoretical flow is a product of volume and rotational speed: 

 𝒒𝒑𝒖𝒎𝒑_𝒕𝒉𝒆𝒐𝒓 = 𝒏𝒑𝒖𝒎𝒑 ∙ 𝑽𝒑𝒖𝒎𝒑 (27) 

 

Notation Explanation Unit 

qpump_theor Theoretical output flow of pump  m3/s 

npump Pump shaft rotational speed 1/s 

Vpump Pump volume m3 

 

However, real pumps are affected by leakage, caused by pressure difference between inlet 

and outlet ports. The initial model for volumetric efficiency of the pump is based on the 

flow/pressure curves provided by the manufacturer, and it is modeled with lookup tables, 

one table for each rotational speed. The performance data from the datasheet is visible in 

Figure 16. According to the curve, the leakage consists of a constant component and a 

pressure dependent component. The value of constant component is approximately 0.1 

l/min, and it is reduced from the theoretical flow value regardless of the rotation speed or 

pressure. The pressure dependent factor is approximately -3.1 ∙ 10-3 l/min/bar. This gives 

a linear correlation between volumetric losses and pressure difference over pump.  



32 

 

Figure 16: Performance data for Parker PGP 511 - 6.0 CC gear pump as provided by 

Parker Hannifin, 2017 

The flow function is implemented with a lookup table block. The Simulink model of the 

pump subsystem is shown in Figure 17.  The volumetric flows of the two pumps are 

connected shortly after the pump outlets, and, for simplicity, the hose after the pump is 

modeled as one volume. The pump output flow is summed with the (negative) flow 

consumed by the directional valves, pressure adjustment valve and pressure relief valve. 

Sum of all flows is utilized in a hose model to generate the supply pressure after the pump. 

The hose model is explained in more detail in section 4.1.3. 
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Figure 17: Hydraulic pump model 

Lookup table for volumetric flow is connected manually, according to wanted rotational 

speed. A pressure rise is calculated in the hose model, based on incoming and leaving 

volumetric flows, and the pump model outputs the supply pressure.  

4.1.7 Simscape Multibody model 

In order to simulate the physical response of the mechanical system, a multibody model 

is created. Simscape Multibody is a toolbox, which provides blocks, such as solids, 

different joints, sensors and so on, to formulate and solve equations of motion 

(Mathworks 2017). A portion, representing the revolute joint connection between the 

kingpost and the boom, and the boom cylinder, is shown in Figure 18. 

 

Figure 18: Connection between boom and kingpost 

Positions of related joints are defined in separate matlab m-file, using Cartesian (x, y, z) 

coordinates. In some cases, it is necessary to rotate the coordinates. For example, a 

prismatic joint, in the cylinder model, allows movement only into the direction of z-axis. 

Therefore, the coordinates must be rotated accordingly. To achieve the best possible 

correlation between the model and actual mechanism, the dimensions of the solids are 

based on physical measurements. Additionally, the components are weighed and the mass 

centers are located. The measurement-based dimensions are presented in Appendix B. 
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However, the weight of the hydraulics attached to the front hoe, including hoses and the 

variable fluid volume, is unknown and must be estimated. Figure 19 depicts the 3D 

visualization of the front hoe model. The parts of the excavator are modeled in PTC Creo 

and exported to STEP files, which are utilized as sources for shape in solid blocks. This 

way the mass distribution is as close to the real as possible. In addition, a realistic 

visualization helps determining the duty cycle limits later in the study.   

The interaction between hydraulics, which provides force as an output, takes place in the 

prismatic joints of each cylinder. The joint receives the force as an input, and computes 

the movement based on the mass properties of the multibody model. Position and velocity 

are acquired from the joint and can be used as such at the hydraulic model of the cylinder.  

 

 

Figure 19: Multibody model of the front hoe 

The mass distribution in the multibody model is finished by placing the connection pins 

in their actual locations and adding the weight of hydraulic hoses and fluid. The weight 

of the fluid inside a cylinder is assumed constant for simplicity, and it is calculated by 

multiplying the fluid volume of a mid-way extended cylinder by the density of the 

hydraulic fluid. As a result, the estimated oil weight for boom cylinder is 0.665 kg, arm 

cylinder 0.572 kg and bucket cylinder 0.406 kg, which are added to the cylinders. The 

weight of the hydraulic hoses is also assumed constant, and calculated by multiplying the 

length of the hoses with estimated weight per meter. The weight of the fluid is added to 

the value. The total estimated weight of the hoses filled with oil is 1.7 kg. Hoses are 

actually located close to the boom, and, therefore, this mass is lumped into the boom 

mass. 

Modeling the detailed dynamic behavior of the mechanism would be a topic for another 

research. Therefore, following assumptions and simplifications have been made. All 

joints are ideal, and provide only certain degree of freedom. No friction acts on the joints. 
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Instead, it is taken into account in hydraulic cylinder model. Bodies are indefinitely rigid, 

no deflections or vibrations apply. In addition, the attachment point of the front hoe, the 

kingpost, is modeled with rigid connection to the world frame, whereas the actual 

excavator provides some degree of movement.  

4.2 Model verification 

First step in the model verification process is to compare simulated cylinder pressures 

against the measured pressures. In order to acquire the necessary measurement data, the 

excavator is controlled to move the arm cylinder from fully retracted position to fully 

extracted position and back on full speed. The arm valve flow signal (AVEF) is recorded 

and forwarded as an input for the spool position in the simulation model. Measured 

cylinder position, pressures in chambers A and B, and the system pressure at pump outlet 

port are plotted together with simulated values, and are shown in Figure 20.  

Other actuators were driven in predetermined positions, to ensure corresponding inertial 

properties, but were not subject to control, to prevent any unwanted disturbance for the 

system pressure. Simulated pump and chamber pressures correspond fittingly with the 

measured values. This indicates the correct functionality of the pressure adjustment spool 

model and pressure relief valve model. Pressure drop between the pump and cylinder 

chambers is on correct level. Some fluctuation, visible in transition states, namely at 17.5 

s, is due to the properties of the electric motor and the controller. In the simulation model, 

the motor speed is assumed constant, which results in different pressure curves. However, 

after the transition phase, the pressures are settling on the correct level. The chamber 

pressures correlate with the cylinder movement appropriately. Despite a minor difference 

in the trajectories on the position curve, the simulated average speed of the actuator 

corresponds to the measured speed. The difference is likely a result of inferior errors in 

manual dimension and weight measurements done on the excavator. It is also 

understandable, that since the joint friction is lumped into the cylinder friction, the 

behavior of friction may not be completely modeled.  

The bucket and boom actuations are compared in a similar manner. The bucket cylinder 

was first fully retracted, then extended, and finally returned back to the fully retracted 

position. Respective cylinder positions and pressures are shown in Figure 21. The 

simulated system pressure matches the measured values, the chamber pressures are on 

adequate level, and the cylinder position curves are nearly identical. 
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Figure 20: top: Measured and simulated arm position; middle: Measured and 

simulated arm cylinder chamber pressures; bottom: Measured and simulated system 

pressures during arm movement 



37 

 

 

 

Figure 21: top: Measured and simulated bucket position; middle: Measured and 

simulated bucket cylinder chamber pressures; bottom: Measured and simulated 

system pressures during bucket movement 
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For the boom, it is not possible to use the full range of the cylinder length, since the bucket 

tooth would hit the laboratory floor in the lowest position, and the pressure transducers 

touch the excavator body in the highest position. Therefore, the boom is operated with 

the position feedback controller. The starting length of the cylinder is approximately 190 

mm. It is first retracted to 30 mm and then extended back to 190 mm. Figure 22 visualizes 

the simulated and measured cylinder positions and chamber pressures for the boom 

movement. The controller affects the movement when the actuator is approaching the 

target position, and also when it is holding its position against the gravity. Partially 

opened valves complicate the fitting of the simulated and measured curves, since the 

valve ports do not open linearly. The pressure ports also open differently from tank ports. 

These opening profiles are adjusted, which is explained in section 4.1.4.  

According to the verification tests, all three actuators exhibit a realistic behavior. The 

simulated system pressure, during the boom movement, fluctuates more than the 

measured pressure. This is due to minor difference between the dynamics of simulated 

and actual pressure adjustment valve. Most importantly, pressures settle in correct levels 

and the simulation converts the valve opening signals into precise actuator positions. 

The simulation model is now verified with simple single-actuator maneuvers. The 

verification process still leaves room for improvements, and the next step would be the 

comparison between the simulated and measured multi-actuator movements, and 

applying an external load on the mechanism.  
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Figure 22: top: Measured and simulated boom cylinder positions; middle: Measured 

and simulated pressures in cylinder chambers; bottom: Measured and simulated system 

pressures 
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4.3 DDH model 

The functionality of the DDH system is explained in section 2.2.1, and the simulation 

model is completely documented in (Järf 2016). Reader, interested in the simulation 

model or functionality of the DDH system, is advised to explore the Järfs thesis, since the 

model is not modified for this work. The hydraulic diagram of the modeled system with 

three DDH actuators is given in Figure 23. 

 

Figure 23: Simplified hydraulic schematic of the DDH system of the excavator 

Järfs DDH system is dimensioned to operate a 60/30 hydraulic cylinder, which is the 

same size as the boom cylinder of the target excavator. The setup is realized with two 

pumps, which are 14.4 and 22.8 ccm/rev in size. Thus, the cylinder ratio 1:1.33 is matched 

with a pump ratio 1:1.58. Next question is, if the pump sizes need to be adjusted in order 

to operate the other two cylinders, which have a different area ratio. Arm and bucket 

cylinders of the excavator are of size 50/30. This results in cylinder ratio 1:1.56, which is 

adequately close to the pump ratio. Therefore, three identical DDH units can operate all 

the cylinders of the machine. The accumulator in the boom DDH actuator is disabled, 

since it prevents the system from carrying the gravitational force. The mass of the DDH 

actuators is ignored in this study, since the weight of the components and their locations 

are yet to be evaluated. 

To model the excavator with DDH actuators, the verified conventional model is taken as 

the building platform, and utilized as much as possible. Thanks to the verification data, it 

can be assumed that the multibody model is representative for the actual machine. The 

cylinder models of the conventional system are utilized for the same reason. On the 

contrary, rest of the conventional hydraulic system is removed from the model, and 

replaced with three DDH models introduced in (Järf 2016). The realization of the 

Simulink model is shown in Figure 24. The parameters required by the model are included 

in Appendix C. 
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Figure 24: Simulation model with DDH actuators 
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5. EFFICIENCY ANALYSIS 

In this chapter, the verified simulation model is utilized to study the total energy 

consumption and power distribution of the micro excavator. In addition to the 

conventional, valve controlled system, a displacement-controlled decentralized system is 

studied, and the results are compared and discussed. The nomenclature of the power and 

energy studies is explained in section 2.1. In short, the power refers to hydraulic power, 

which is the product of pressure and volumetric flow. Exceptions are pump input power, 

and actuator output power, both of which are mechanical power. The power distribution 

along the duty cycle is illustrated in graphs, to exhibit the fluctuation of the power 

consumption. However, an unambiguous and single-valued presentation is desired for 

later discussion and comparison of results. Therefore, the total energy consumption is 

calculated and put into tables.  

Two different duty cycles, named digging and loading cycle and leveling cycle, are 

employed to analyze the power consumption of the excavator. The cycles are based on 

the standard (JCMAS 2007), and they are explained in more detail in section 2.3.1. Some 

limits are scaled down, due to the physical limitations of the micro excavator. In the 

standard, the excavators are classified based on the bucket volume. The bucket volume in 

the smallest class, 0.25 m3, is still more than ten times greater than the bucket volume of 

the micro excavator. This affects also the reachability, so the limits, such as digging depth 

and loading height, were adjusted to be more suitable. In this study, the loading height is 

1.2 m and digging depth 0.75 m. Since the swing motion is not included in the scope of 

this work, only boom, arm and bucket movements are performed. In the leveling cycle, 

the processing length is 1.7 m. The reference cylinder lengths for each actuator are 

illustrated in Figure 25. 
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Figure 25: Reference cylinder positions for digging and loading cycle (top) and 

leveling cycle (bottom) 

Keeping in mind the requirement for full speed, the reference position changes rapidly. 

This is to be sure that the actuators move as fast as possible, although intended 

deceleration happens near the target position, due to the nature of the controller. As the 

actuators in the conventional model share the constant volumetric flow, the movement 

speed during simultaneous movements is slower than in single-actuator movement.  

5.1 Conventional system 

First, the digging and loading cycle is performed. Figure 26 illustrates the power division 

in seven categories: pump input and output power, pressure adjustment valve (PAV), 

pressure relief valve (PRV), directional valve, cylinder input and power output. 
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Figure 26: Power distribution in conventional system during digging and loading 

cycle 

Pump input power, which is the same as the electric motor output, is the mechanical 

power employed to produce the pressure-dependent torque at the wanted rotational speed. 

The power model is acquired directly from a data sheet, provided by the manufacturer 

(Parker 2017). The pump output power is the hydraulic power leaving the pump, 

calculated according to equation 2. This output power is utilized in the directional valves, 

but a large share of it is lost, mostly in pressure adjustment valve, and throttling in 

directional valves. The power loss of the pump is the difference between input and output 

power. 

The input power of the pressure adjustment valve is the product of pressure at the valve 

and the flow through the valve. The entire flow returns to tank, so the input power of the 

PAV is also the power loss of the valve. The same applies also for the pressure relief 

valve, although it is not opened during the test cycles.   

Input power of the directional valve group is the product of flow entering the valve and 

the pressure at the pressure port (P) of the valve. Output power is a combination of outputs 

of A and B ports, and the power loss is the differential between input and output power.  

The hydraulic cylinders transform the hydraulic energy into the actuator work. Losses are 

caused mainly by the backpressure and mechanical friction. The input power is solely 

hydraulic power. Output power is a combination of mechanical output power and the 

hydraulic power leaving the cylinder. The volumetric flow out of the cylinder is 

somewhat problematic. In an ideal system, the leaving flow would jump into the tank in 

zero pressure. In realistic system, however, the return flow runs through the hoses and 

valves, which results in a significant pressure rise at the cylinder chamber, the 

backpressure. It causes a force opposite to working direction, and reduces the net force 
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derived from the actuator. Therefore, using plain net force to calculate the output power 

gives too disadvantageous picture of the cylinder efficiency. Instead, the leaving flow is 

count into the output power of the cylinder. The power loss is the differential between 

input and output power. Power losses are collected in the Table 3. 

Table 3: Energy losses in conventional system during digging and loading cycle 

  
Total 

input 

Pump 

losses 

Pressure 

adjustment 

valve 

Directional 

valves 
Hoses 

Actuator 

losses 

Actuator 

work 

Energy 

[J] 
28 936 9 320 5 852 10 943 2 599 691 10 

Share of 

total loss 

[%] 

100.00 32.21 20.22 37.82 8.98 2.39 0.03 

 

If count together, the sum of all losses matches the total input energy, which indicates a 

correct functionality of the simulation model. The actuator work is close to zero, because 

the machine returns to the starting posture in the end of the cycle, where the potential 

energy is also the same as in the beginning.  

As for the digging and loading cycle previously, Figure 27 shows the power distribution 

by components during leveling cycle.  

 

Figure 27: Power distribution in conventional system during leveling cycle 

A similar energy loss calculation is performed, results of which are collected in the Table 

4. 
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Table 4: Energy losses in conventional system during leveling cycle 

  
Total 

input 

Pump 

losses 

Pressure 

adjustment 

valve 

Directional 

valves 
Hoses 

Actuator 

losses 

Actuator 

work 

Energy 

[J] 
31 251 9 483 7 307 12 089 2 201 646 -7 

Share of 

total loss 

[%] 

100.00 30.34 23.38 38.68 7.04 2.07 -0.02 

 

In this cycle, the actuator work is on the negative side. Compared to the total input energy, 

the value is still negligible, denoting that the potential energy at the end position is the 

same as in the beginning of the cycle.  

The results for the conventional system are consistent between the two duty cycles. The 

directional valve is the main energy consumer with 38-39% of total energy. Together with 

the PAV losses, the total energy lost in the valve group is 58-62%. Pump losses, which 

include the mechanical and volumetric losses, account for 30-32%. The rest of the input 

energy is lost in frictions of hoses (7-9%) and cylinders (2%).  

5.2 DDH system 

For the conventional system, the actuator speed during simultaneous movements is 

slower than in single-actuator movement. To compensate this, the reference position 

profile for DDH system is modified to make the DDH system produce the exact same 

movement (and output work) as the conventional one. First, the digging and loading 

cycle is executed. The reference and simulated positions of both conventional and DDH 

system are plotted in Figure 28.  



47 

 

Figure 28: Reference cycle and simulated trajectories of conventional and DDH 

systems in digging and loading cycle. From top to bottom: bucket, arm, boom. 

The figure points out the practically identical trajectories of all three actuators for both 

conventional and DDH systems. As the same mechanical model is utilized, also the output 

actuator work is identical. The power distribution within the DDH system is shown in 

Figure 29 in the same manner as for the conventional system in previous section. The 

curve includes the total power of all three actuators (boom, arm and bucket). 

 

Figure 29: Power distribution in DDH system during digging and loading cycle 

The higher performance of the DDH system enables it to follow the reference signal 

closer. Therefore, it oscillates around the target position, which is visible also in the power 

consumption figure. The total energy consumption by components is collected in Table 5 
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Table 5: Energy losses in DDH system during digging and loading cycle 

 Total 

input 

Pump 

losses 
Accumulators Hoses 

Actuator 

losses 

Actuator 

work 

Energy [J] 2 717 844 593 125 885 17 

Share of total 

loss [%] 
100,00 31,06 21,83 4,60 32,57 0,63 

 

If count together, the sum of all losses is 91%. The possible factors behind the missing 

9% are discussed in the next section. After the digging and loading cycle, the leveling 

cycle is investigated with DDH system. The reference signal, and the simulated 

trajectories of conventional and DDH system are plotted in Figure 30 to point out the 

matching actuator movement.  

 

Figure 30: Reference cycle and simulated trajectories of conventional and DDH 

systems in leveling cycle. From top to bottom: bucket, arm, boom. 

The power distribution in the DDH system is shown in Figure 31. The figure includes the 

total power of all three actuators. 
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Figure 31: Power distribution in DDH system during leveling cycle 

The oscillation, resulting from proximity of the target position, is visible also in this 

figure, especially at 2-4 seconds. The total energy consumption by components is 

collected in Table 6. 

Table 6: Energy losses in DDH system during leveling cycle 

 Total 

input 

Pump 

losses 
Accumulator Hoses 

Actuator 

losses 

Actuator 

work 

Energy [J] 2 347 687 544 91 794 3 

Share of total 

loss [%] 
100,00 29,27 23,18 3,88 33,83 0,13 

 

5.3 System comparison 

Study results, the relative energy losses, are collected in Table 7. For simplicity, average 

values between two duty cycles are used. 
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Table 7: Relative energy distribution 

 Conventional DDH 

Pump  31.3% 30.2% 

Accumulator 0.0% 22.5% 

Directional valves 38.3% 0.0% 

PAV 21.8% 0.0% 

Hoses 8.0% 4.2% 

Actuator losses 2.2% 33.2% 

 

The pumps contribute for approximately 30% of the total energy loss in both systems. 

This is expected result for the conventional system, but since the DDH system consists of 

6 pumps in total, two pumps for each actuator, a larger share of total losses was expected 

in that system. The directional valve is undoubtedly the main cause of energy loss in the 

conventional system, even more so if also the pressure adjustment valve is count as a part 

of directional valve. In that case, the valve block is responsible for over 60% of the total 

energy loss. The accumulators of the DDH system consume 22.5% of the total energy. In 

the conventional system, 8% of the energy is lost in hoses and other flow paths. In the 

DDH system, the amount of hoses is significantly lower, which explains the smaller share 

of the hose losses. Actuators consume a larger proportion of the total energy in the DDH 

system, but the absolute energy is of the same order of magnitude. 

As surely seen in previous sections, the DDH system consumes only a fraction of the 

energy consumed by the conventional system. The average input energy was decreased 

by 91.6%, from 30 kJ to 2.5 kJ. Explaining the difference with the absence of the 

directional valves is tempting, but is does require some closer examination. The total input 

powers of the two systems are plotted together in Figure 32. 



51 

 

Figure 32: Power consumption of conventional and DDH model in digging and 

loading cycle (top) and leveling cycle (bottom) 

The dramatic difference between the power consumptions of the two systems raises a 

question for the reason behind the divergence. Next, the hydraulic input powers of the 

arm cylinders in both systems are plotted for comparison in Figure 33. Since the cylinder 

models are identical, and they perform virtually the same movement, their power 

consumption would be expected to be the same, but the power loss of the valve controlled 

system is visibly higher at 0-2.5 seconds and 5-8.5 seconds, which are the moments of 

actuator work.  
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Figure 33: Arm input power in DDH and valve controlled system 

The primary cause for the difference is the higher backpressure in the non-working 

chamber in the valve-controlled system. To demonstrate this, the arm chamber pressures 

for both systems are plotted in Figure 34. 

 

Figure 34: Simulated chamber pressures in arm cylinder 

The backpressure is the result of flow losses, in the hoses and valves, between the cylinder 

and the tank. In an ideal situation, the leaving oil volume would just jump into the tank 

in an atmospheric pressure. In the DDH system, the secondary pump is actually working 

to remove the excess oil from the cylinder, unless the oil pressure is high enough to make 

the work into the system, which is, in practice, energy recovering. In the conventional 
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system, the oil flow to the tank is lost energy, and the more it is throttled, the more energy 

is lost.  

5.4 Discussion 

The results strongly underline the outstanding efficiency of the DDH system, and, on the 

other hand, indicate a great room for improvement concerning the conventional system. 

The test case, however, is not completely fair. First, the poor efficiency of a LS system 

during multiple actuator movement is commonly known. The system pressure is adjusted 

according to the highest load, and the flow into the other actuators is throttled. In addition, 

the fixed-volume pump of the micro excavator does not adjust the output flow, as in LS 

systems, but produces a constant flow. A remarkable portion of the flow is wasted through 

the pressure adjustment valve, to keep the system pressure level low, according to the low 

loading condition. According to the simulation, more than 20% of the total power is lost 

in PAV only. This result calls for more research, and an experimental setup is being 

prepared to test the excavator in realistic contact with earth. The variable ground contact 

force will be recorded, and added in to the simulation model, as presented in (Williamson 

et al.).  

Movement speed of the excavator is dependent on the rotational speed of the electric 

motor. Increasing the speed would, in this test case, result in more volume lost in PAV. 

With a more realistic loading condition, in which the PAV would stay unopened most of 

the time, the additional volumetric flow could be utilized in increased movement speed. 

This would reduce the cycle time and possibly improve the overall efficiency. The electric 

motor speed is assumed constant in the simulation model. Additional speed and torque 

sensor will be fitted for more accurate information on the motor dynamics. A current 

sensor, which will produce data on the total input energy, will also be prepared for 

upcoming research. 

The accumulators of the DDH system consume 22.5% of the total energy, when the cycle 

was driven one time. If more cycles were to be driven, the effect of the accumulators 

could be diminished, if they are filled only during the first cycle. Therefore, the effect of 

the accumulators calls for more detailed investigation.   

The actuator losses, which are caused by the frictions in cylinders and the joints of the 

front hoe, account for only 2% of the total losses in the conventional system. This has, so 

far, given little or no incentive for further research. In the DDH system, on the contrary, 

the share of frictional losses is remarkably larger (33%). Although the study may give an 

overly positive picture of the efficiency of DDH units, it seems evident that there will be 

rising demand for low-friction mechanical solutions. The friction model could be 

improved by adding a pressure-dependent component and an angular speed-dependent 

component, since the current model does not take pressure in to account, and the friction 

is now a function of cylinder speed only.  
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The weight redistribution related to the application of DDH units is not took into 

consideration within this analysis. The weight of the central pumps and the electric motor 

would be removed, but the weight of all DDH units would be added. Unlike the 

centralized mass of the conventional power pack, which, in fact, stabilizes the machine, 

the additional weight of the DDH units is decentralized, and added into the moving load 

of the front hoe. The magnitude of this disadvantage depends on the DDH component 

selection, and can be minimized with optimal placement of the units, but needs anyway 

to be taken into account when comparing the real benefits of the DDH technology. 
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6. CONCLUSIONS 

A Simulation model of the electro-hydraulic excavator is produced. The model consists 

of the hydraulic and mechanical systems related to actuation of front hoe, i.e. boom, arm, 

and bucket. Model parameterization is based on measurement data, when available, and 

the information found in the literature.  

The excavator is fitted with pressure and position sensors, from which the information is 

collected with a data acquisition system. In addition, a CAN-interface is established, in 

order to communicate with aftermarket directional valves the excavator is fitted with. 

Comprehensive communication system enables the verification of the simulation model, 

which gives weight on the obtained results. 

The verified simulation model is utilized to study the total energy consumption and power 

distribution of the micro excavator. In addition to the conventional, valve controlled 

system, a decentralized, displacement-controlled system, realized with direct-driven 

hydraulic units, or DDHs, is studied, and the results are compared and discussed. Two 

different duty cycles, named digging and loading cycle and leveling cycle, based on the 

JCMAS standard, are used to analyze the power consumption of the excavator.  

The results indicate a formidable room for improvement concerning the conventional 

system, since a power loss of as much as 60% is generated in the directional valve group. 

The DDH system seems to be a promising solution to improve the efficiency of the 

excavator. A total power consumption of the DDH system is less than 10% of the 

consumption of the conventional system, during two different free-space duty cycles. 

Subsequently, results of this study will motivate for further research and for 

manufacturing a working prototype. 

Suggested next phase of the research would be the application of external load into the 

duty cycle. The poor efficiency of a LS-system during unloaded multi-actuator 

movements is a well-known fact, and operating in this area will give a too negative picture 

of the efficiency of the conventional system. A ‘sandbox’ test area for reproducing the 

ground contact is being planned, and the load sensors will be attached in all cylinder pins 

for accurate load measurement. 

The simulation model could be improved with a more accurate model of the electric 

motor. An additional speed-torque sensor will be installed to acquire information on the 

motor dynamics, and a current sensor, which will produce data on the total input energy, 

will be prepared for upcoming research. The actuator losses, which are caused by the 

frictions in cylinders and the joints of the front hoe, account for 33% of the total losses in 

the DDH system. This adds more focus towards the friction study, and the simulation 
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model could be improved, by adding pressure-dependent and angular speed-dependent 

variables. In the DDH system, also the effect of the accumulators need more investigation, 

as they consume 22.5% of the total energy, according to the simulation.  
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APPENDIX A: INSTRUMENTATION OF DATA ACQUISITION AND 

CONTROL SYSTEM 

This appendix describes the measurement, control, and data acquisition system. Physical 

measurements on the excavator provide data for parameterization and verification of the 

simulation model. The excavator is fitted with pressure sensors in all cylinder ports and 

in the pump outlet port, and position sensors at the cylinder rods. The measurement 

signals are collected and recorded at a target-pc. The physical structure of the system is 

shown in Figure 35. Communication channels are visualized as lines, with the text 

pointing out the communication protocol. Boxes with solid line represent hardware and 

boxes with dotted line are software. 

 

Figure 35: Measurement, control, and data acquisition system of the excavator 

Simulink Real-Time -toolkit enables creating real-time applications from Simulink 

models. They run on a dedicated target computer, which is connected to the physical 

system via analog I/O ports. In this project, the real-time application is used to collect the 
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time-synchronized measurement data from pressure transducers and position sensors, and 

to communicate with the directional valves. 

The Danfoss PVG 32 valves are equipped with electro-hydraulic control modules PVED-

CC. Communication between valves and computer uses CAN J1939 protocol. Simulink 

provides blocks necessary to communicate with the bus, and, together with the real-time 

kernel, enables driving the model in real-time, without having to use an additional target 

pc. The time synchronization toolkit is called Simulink Desktop Real-time, which is, for 

practical reasons, run on Matlab version 2016b.  

The target-pc is connected to a Windows-pc (also called development computer) via an 

Ethernet cable. The user creates the Simulink model, which includes the blocks required 

to collect the measurement data, builds the model, and starts the model on the target-pc 

via a Simulink Real-time application. This user interface is run on Matlab version 2016a.  

All the measurements are done in laboratory environment, so the conditions, such as 

humidity and temperature, are considered constant. The excavator is used for relatively 

short periods of time, and it is equipped with a water cooling system. Therefore, the effect 

of possible temperature rise during operation is assumed negligible. 

Control of CAN valves 

The Danfoss PVG 32 valves are equipped with electro-hydraulic control modules PVED-

CC. Communication between valves and computer happens over CAN J1939 protocol. 

The selected user interface is Matlab Simulink. It provides blocks necessary to 

communicate with the bus, and, together with the real-time kernel, makes it possible to 

drive the model in real-time, without having to use an additional target pc. The USB-

CAN interface is Vector VN1610.  

J1939 protocol in a nutshell 

A J1939 message can be divided in two parts: the identification (ID) and the message 

part. The ID is a 29-bit long string of bits. It includes information on the message priority, 

purpose, sender and intended receivers. As an example, a message used commonly in this 

project, Auxiliary Valve Command (AVC), is explained. The structure of the ID is 

depicted in Table 8. The messages are typically represented in hexadecimals, although 

the interpretation often requires transforming them first in binary numbers and later in 

decimals. 
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Table 8: The structure of the ID number in J1939 protocol 

hexadecimal 0CFE3006 

binary 0000 1100 1111 1110 0011 0000 0000 0110 

bin arranged 011 0 0 1111 1110 0011 0000 0000 0110 

decimal 3 0 0 254 48 6 

meaning Priority Reserved 
Data 

Page 
PDU Format PDU Specific 

Source 

Address 

length 3 bits 1 bit 1 bit 8 bits 8 bits 8 bits 

 

In the AVC message, the priority, data page, and PDU format are in their default values. 

Reserved bit is reserved for future use and is always zero. PDU specific determines which 

valve is controlled: 48-63 for valves 0-15, so number 48 stands for valve number 0. 

Source address is the identification number of the sending device. The actual message is 

constructed of the ID and 8 8-bit bytes. The whole AVC message is depicted in Table 9. 

Table 9: The structure of the AVC message 

hexadecimal 0CFE3006 7D 00 02 00 00 00 00 00 

decimal 
(see table 

above) 
125 00 2 0 0 0 0 0 

meaning ID PFC Res 
Valve 

state 
Res Res Res Res Res 

 

First byte after the ID, PFC, stands for Port Flow Command. It includes a wished flow as 

a percentage of maximum available flow. It has a value between 0 and 255, which leads 

to resolution of 0.4 %/bit. Thus, the value 125 refers to flow rate of 50%. Valve state tells 

the direction of the flow (if any). Values used, in practice, are 0 for blocked, 1 for extend 

and 2 for retract direction. Other bytes are reserved and set to zero.  

The communication with CAN valves starts by creating a J1939 database. The database 

is used to describe the properties of the network, components, messages and signals which 

are used on the bus. Vector CANdb++ editor is used to create and maintain the database. 

When messages are defined in the database file, they can be sent or received in the 

communication blocks of Simulink Vehicle Network toolbox. These signals can then be 

monitored, byte by byte, in the receive blocks at Simulink. Similarly, messages may be 

composed with send blocks. For example, the AVC communicates the wished flow rate 

in the first byte after identifier, and the wished flow direction in third byte. Normally rest 

of the message remains unchanged, and only these two bytes are changed during control. 

Individual AVC is sent to each valve in 10 ms intervals. (Kvaser) 
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Position feedback controller 

The position signal is utilized in a closed-loop feedback system, which controls the 

directional valves to reach the wanted actuator position. The controller simply calculates 

the difference between measured position and wanted position, and commands the valves 

accordingly. An additional gain coefficient is used to adjust the amplification within the 

controller. 

Data acquisition system 

Physical measurements on the excavator provide data for parameterization and 

verification of the simulation model. The excavator is fitted with pressure sensors in all 

cylinder ports and the pump outlet port. Position sensors are attached to the cylinders. In 

measurement terminology, sensor refers to sensing component, which normally requires 

an additional transducer to transfer the sensor signal into standard signal, for example a 

voltage signal 1-5 V or a current signal 4-20 mA. Both pressure sensors and position 

sensors, used in this study, output a standard signal. They are, therefore, called 

transmitters or transducers, but in this text, referred to as sensors.  

Pressure sensors 

Hydac HDA 7446 pressure transducers are used to measure chamber pressures of each 

cylinder, and to transform the signal into standard current message of 4-20 mA. The 

sensors are calibrated by the manufacturer, and are ready to use. They are capable to 

measure pressure up to 250 bar, and tolerate peak pressure up to 500 bar.  

The transducers are installed immediately after the cylinder ports with t-fittings and 

necessary adapters. They must be provided with supply voltage between 8 and 30 V and 

a load resistance, sized according to the supply voltage. An electrical connection 

presented in Figure 36 is utilized to connect the transducers with the measurement device. 

Current signal is transformed into voltage differential signal by directing it through a 

resistor and measuring the voltage over the resistor. According to Ohm’s law, a current 

of 4-20 mA, over a 500 Ω resistor, causes a voltage differential of 2-10 Volts. The resistor 

size sets the lower limit of the supply voltage to 18 V. This is exceeded with external 

voltage source, since the DAQ device is only capable of providing supply voltage up to 

5 V. 
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Figure 36: Electrical connection for transforming the current signal of a pressure 

sensor into a voltage signal 

Pressure signals are collected on the data-acquisition board (National Instruments PCI-

6259) of the target-pc. The device is supported hardware for Simulink Data Acquisition 

Toolkit, which provides easy connectability with Simulink, since the software finds and 

communicates with the device automatically. Sample time for pressure measurement is 1 

ms. Rather noisy pressure signal is filtered using Matlab’s FIR lowpass filter function to 

remove the rapid pressure peaks and the electrical interference of the environment 

(electric motor and controller, particularly).  

Position sensors 

The position sensors are Siko SGH10 magnetic wire sensors (Siko 2016). The sensors are 

intended for fitting inside a hydraulic cylinder, but since it was desired to use original 

cylinders without modifications, an external mounting structure was designed to fit the 

sensors outside of the cylinders. The SGH10 sensor measures cylinder position between 

0 and 500 mm with a resolution of 0.122 mm/bit. Sensors tolerate movement speed up to 

1 m/s, which is more than enough for the mini excavator measurements. The signal output 

is a current signal between 4 and 20 mA. Electrical connection for the position sensors, 

including the supply voltage and the load resistor, is identical to the connection for 

pressure sensors, depicted in Figure 36. 

Position signals are collected on data-acquisition board (NI PCI-6259) of the target-pc. 

The signals are further directed to NI 6218 USB data-acquisition (DAQ) device. The 

device is selected due to its availability and sufficient number of analog input ports. The 

device is supported hardware for Simulink Data Acquisition Toolkit, which provides easy 

connectability with Simulink, since the software finds and communicates with the device 

automatically.  

The physical connections of the data acquisition system are shown in Figure 37. 
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Figure 37: Measurement setup 

The green terminal block, in the left part of the setup, is connecting the signals to the PCI-

6259 card of the target-pc. The position sensor signals are also connected to the white 

USB DAQ. Brown soldering boards in the lower right part of the setup are used to connect 

the resistors needed to transform the current signals into voltage signals. The larger one 

is for the pressure sensors and the smaller one is for the position sensors. The white 

terminal block in the bottom center part of the setup is used to connect the 20 V operating 

voltage and GND cables. ‘Can on/off’ switch connects the operating voltage to the CAN-

bus. Shutting the bus down before stopping the control software prevents the can from 

getting in error mode. All cables leave the board through strain reliefs to prevent the 

accidental disconnections.  
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APPENDIX B: THE MEASUREMENT-BASED DIMENSIONS AND 

WEIGHTS OF THE EXCAVATOR PARTS 

The 3D-model of the excavator is built on PTC Creo modeling software. The dimensions 

of the model are based on physical measurements. This appendix includes the joint 

locations and weights of all solid parts of the front hoe, and the cylinder dimensions. 

Locations are presented in relation to the origin, which is the first joint of the part, and 

these values can easily be used to reproduce the front hoe geometry in SimMechanics.  

 

Figure 38: Joint locations of the kingpost and the boom 

 

Figure 39: Joint locations of the arm and the first linkage rod 
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Figure 40: Joint locations of the bucket and the second linkage rod 

The dimensions are measured using a caliper for shorter and a measuring tape for longer 

dimensions, so an error of approximately ± 1 mm is conceivable. The cylinder lengths 

and dry weights (without oil) are presented in Table 10. 

Table 10: Cylinder lengths and weights 

Cylinder 

Piston 

diameter 

[mm]  

Rod 

diameter 

[mm] 

Min length 

[mm] 

Stroke 

[mm] 

Max 

length 

[mm] 

Dry 

weight 

[kg]  

Boom 60 30 695.0 324.6 1019.6 16.0 

Arm 50 30 667.0 408.0 1075.0 11.0 

Bucket 50 30 525.0 288.0 813.0 9.0 

 

The masses of the solid parts are collected in Table 11. 

Table 11: Structure masses 

Part Mass [kg] 

Boom 59.5 

Arm 28.0 

Bucket 30.0 

Linkages 10.0 

Boom accessories 4.5 

 

Boom accessories refer to working light and piping for auxiliary functions (bucket tilt). 

These are currently disconnected from the excavator. 
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APPENDIX C: MODEL PARAMETERS 

Hydraulic parameters 

pS = 180e5;                   % Nominal supply pressure [Pa] 
pT = 0;                       % Tank pressure [Pa] 
Free_air = 0                % Amount of free air in the system 
 
%% Volume parameters 
 
Volume.rho = 870;             % Density of the fluid [kg/m^3] 
Volume.B = 1500e6;            % Oil bulk modulus [Pa] 
 
%% Hose parameters 
 
Hose.B_eff = 400e6;           % Hose bulk modulus [Pa] 
 
Hose.Arm_A.xi = 2.4;          % Hose single friction factor [-] 
Hose.Arm_A.l = 3.0;           % Hose length [m] 
Hose.Arm_A.d = 0.006;         % Hose inner diameter [m] 
Hose.Arm_B.xi = 2.4;          % Hose single friction factor [-] 
Hose.Arm_B.l = 3.0;           % Hose length [m] 
Hose.Arm_B.d = 0.006;         % Hose inner diameter [m] 
 
Hose.Boom_A.xi = 2.4;         % Hose single friction factor [-] 
Hose.Boom_A.l = 2.8;          % Hose length [m] 
Hose.Boom_A.d = 0.006;        % Hose inner diameter [m] 
Hose.Boom_B.xi = 2.4;         % Hose single friction factor [-] 
Hose.Boom_B.l = 2.8;          % Hose length [m] 
Hose.Boom_B.d = 0.006;        % Hose inner diameter [m] 
 
Hose.Bucket_A.xi = 2.4;       % Hose single friction factor [-] 
Hose.Bucket_A.l = 3.8;        % Hose length [m] 
Hose.Bucket_A.d = 0.006;      % Hose inner diameter [m] 
Hose.Bucket_B.xi = 2.4;       % Hose single friction factor [-] 
Hose.Bucket_B.l = 3.8;        % Hose length [m] 
Hose.Bucket_B.d = 0.006;      % Hose inner diameter [m] 
 
Hose.Pump.xi = 10;            % Hose single friction factor [-] 
Hose.Pump.l = 2.8;            % Hose length [m] 
Hose.Pump.d = 0.0095;         % Hose inner diameter [m] 
 
%% Valve parameters 
 
Valve.omega_n = 30;                 % Spool natural frequency [rad/s] 
Valve.xi = 0.8;                     % Spool damping ratio [-] 
Valve.pN = 10e5;                    % Nominal pressure difference [Pa] 
Valve.ptr = 1e5;                    % Transition pressure 
 
Valve.pN_PRV = 125e5;               % Nominal pressure difference [Pa] 
Valve.QN_PRV = 80/60000;            % Nominal flow [m^3/s] 
 
Valve.pN_PAS = 20e5;                % Nominal pressure difference [Pa] 
Valve.QN_PAS = 20/60000;            % Nominal flow [m^3/s] 
 
Valve.QN_bucket = 5.4/60000;        % Nominal flow [m^3/s] 
Valve.QN_T_bucket = 6.1/60000;      % Nominal flow to tank [m^3/s] 
Valve.QN_arm = 5.3/60000;           % Nominal flow [m^3/s] 
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Valve.QN_T_arm = 6.2/60000;         % Nominal flow to tank [m^3/s] 
Valve.QN_boom = 5.6/60000;          % Nominal flow [m^3/s] 
Valve.QN_T_boom = 6.1/60000;        % Nominal flow to tank [m^3/s] 
     
%% Cylinder parameters 
 
%% Boom cylinder 60/30-300 
 
Boom_cyl.D = 0.060;                % Cylinder piston diameter [m] 
Boom_cyl.d = 0.030;                 % Cylinder rod diameter [m] 
Boom_cyl.x_max = 0.3246;            % Cylinder stroke [m] 
Boom_cyl.A_A = pi*Boom_cyl.D^2/4;   % Cylinder area (A-side) [m^2] 
Boom_cyl.A_B = Boom_cyl.A_A - pi*Boom_cyl.d^2/4;  

% Cylinder area (B-side) [m^2] 
Boom_cyl.V_0A = 0.1e-3;            % Dead volume (A-side) [m^3] 
Boom_cyl.V_0B = 0.1e-3;             % Dead volume (B-side) [m^3] 
Boom_cyl.B_eff = 1200e6;            % Cylinder effective bulk modulus [N/m^2] 
Boom_cyl.p_init.A = pT;            % Initial pressure in chamber A [Pa]; 
Boom_cyl.p_init.B = 6.2e6;         % Initial pressure in chamber A [Pa]; 
 
Boom_cyl.v_s = 0.001;            % Stribeck velocity [m/s] 
Boom_cyl.F_c = 200;             % Coulomb friction [N] 
Boom_cyl.F_s = 800;              % Static friction [N] 
Boom_cyl.sigma_0 = 1.6e6;        % Stiffness of bristles [N/m] 
Boom_cyl.sigma_1 = 5e3;       % Damping coefficient [Ns/m] 
Boom_cyl.sigma_2 = 5e3;       % Viscous friction coefficient [Ns/m]                       
 
Boom_cyl.x_max_collision = 0.001;  % Maximum displacement the plunger is 

allowed to go over natural movement [m] 
Boom_cyl.m_eff = 100;            % Effective inertial load of the cylinder [kg] 
Boom_cyl.K_end = pS*Boom_cyl.A_A/Boom_cyl.x_max_collision;  

% Spring constant of a cylinder end [-] 
Boom_cyl.b_end = 0.7*(Boom_cyl.K_end*Boom_cyl.m_eff)^(1/2);      

% Damping term of a cylinder end [-] 
 
%% Arm cylinder 50/30-430 
 
Arm_cyl.D = 0.050;                 % Cylinder piston diameter [m] 
Arm_cyl.d = 0.030;               % Cylinder rod diameter [m] 
Arm_cyl.x_max = 0.408;            % Cylinder stroke [m] 
Arm_cyl.A_A = pi*Arm_cyl.D^2/4;   % Cylinder piston area (A-side) [m^2] 
Arm_cyl.A_B = Arm_cyl.A_A - pi*Arm_cyl.d^2/4;    

% Cylinder piston area (B-side) [m^2] 
Arm_cyl.V_0A = 0.1e-3;              % Dead volume (A-side) [m^3] 
Arm_cyl.V_0B = 0.1e-3;              % Dead volume (B-side) [m^3] 
Arm_cyl.B_eff = 1000e6;             % Cylinder effective bulk modulus [N/m^2] 
Arm_cyl.p_init.A = pT;             % Initial pressure in chamber A [Pa]; 
Arm_cyl.p_init.B = 1.2e6;           % Initial pressure in chamber A [Pa]; 
 
Arm_cyl.v_s = 0.001;             % Stribeck velocity [m/s] 
Arm_cyl.F_c = 200;               % Coulomb friction [N] 
Arm_cyl.F_s = 400;               % Static friction [N] 
Arm_cyl.sigma_0 = 1.6e6;         % Stiffness of bristles [N/m] 
Arm_cyl.sigma_1 = 5e3;        % Damping coefficient [Ns/m] 
Arm_cyl.sigma_2 = 5e3;        % Viscous friction coefficient [Ns/m]                            
 
Arm_cyl.x_max_collision = 0.002;   % Maximum displacement the plunger is 

allowed to go over natural movement [m] 
Arm_cyl.m_eff = 100;            % Effective inertial load of the cylinder [kg] 
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Arm_cyl.K_end = pS*Arm_cyl.A_A/Arm_cyl.x_max_collision;   
% Spring constant of a cylinder end [-] 

Arm_cyl.b_end = 0.7*(Arm_cyl.K_end*Arm_cyl.m_eff)^(1/2);  
% Damping term of a cylinder end [-] 

 
%% Bucket cylinder 50/30-300  
 
Bucket_cyl.D = 0.050;         % Cylinder piston diameter [m] 
Bucket_cyl.d = 0.030;               % Cylinder rod diameter [m] 
Bucket_cyl.x_max = 0.288;          % Cylinder stroke [m] 
Bucket_cyl.A_A = pi*Bucket_cyl.D^2/4;    

% Cylinder piston area (A-side) [m^2] 
Bucket_cyl.A_B = Bucket_cyl.A_A - pi*Bucket_cyl.d^2/4; 

% Cylinder piston area (B-side) [m^2] 
Bucket_cyl.V_0A = 0.1e-3;          % Dead volume (A-side) [m^3] 
Bucket_cyl.V_0B = 0.1e-3;          % Dead volume (B-side) [m^3] 
Bucket_cyl.B_eff = 1000e6;  % Cylinder effective bulk modulus [N/m^2] 
Bucket_cyl.p_init.A = 3.5e5;      % Initial pressure in chamber A [Pa]; 
Bucket_cyl.p_init.B = pT;          % Initial pressure in chamber A [Pa]; 
 
Bucket_cyl.v_s = 0.001;          % Stribeck velocity [m/s] 
Bucket_cyl.F_c = 200;            % Coulomb friction [N] 
Bucket_cyl.F_s = 400;            % Static friction [N] 
Bucket_cyl.sigma_0 = 1.6e6;      % Stiffness of bristles [N/m] 
Bucket_cyl.sigma_1 = 5e3;       % Damping coefficient [Ns/m] 
Bucket_cyl.sigma_2 = 2e3;       % Viscous friction coefficient [Ns/m] 
                             
Bucket_cyl.x_max_collision = 0.002;   

% Maximum displacement the plunger is 
allowed to go over natural movement [m] 

Bucket_cyl.m_eff = 100;  % Effective inertial load of the cylinder [kg] 
Bucket_cyl.K_end = pS*Bucket_cyl.A_A/Bucket_cyl.x_max_collision;   

% Spring constant of a cylinder end [-] 
Bucket_cyl.b_end = 0.7*(Bucket_cyl.K_end*Bucket_cyl.m_eff)^(1/2);  

% Damping term of a cylinder end [-] 
 
%% Pump parameters 
 
Pump.V = 6e-6;                   % Pump volume [m^3] 
Pump.B_eff = 500e6;              % Pump effective bulk modulus [N/m^2] 
 
%% Controller 
 
Controller.K_p_boom = 100;       % Controller gain 
Controller.K_p_arm = 100;        % Controller gain 
Controller.K_p_bucket = 100;     % Controller gain 
 

Multibody model parameters 

%% Initial positions 
 
Cyl1.x_init = 0.155;      % Boom initial position [0..324.6] 
Cyl2.x_init = 0.001;      % Arm initial position [0..408] 
Cyl3.x_init = 0.07;       % Bucket initial position [0..288] 
 
%% Kingpost solid 
 
Kingpost.step = 'kingpost.stp';     % Name of STEP-file 
Kingpost.m = 15;    % Mass [kg] 
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%% Rigid transform from kingpost solid to Boom solid 
 
Boom.j = [0.085 0 0]; 
 
%% Rigid transform from kingpost to Boom cylinder 
 
Boom_rod.j = [0 0.165 0]; 
 
%% Boom solid 
 
Boom.step = 'boom.stp';   % Name of STEP-file 
Boom.m = 59.5 + 1.7;     % Measured mass + weight of hoses [kg] 
 
%% Rigid transform from Boom solid to Boom cylinder 
 
Boom_cyl.j = [0.79857 0.26625 0]; 
 
%% Boom cylinder 
 
Cyl1.l = 0.5098;     % Cylinder length [m] 
Cyl1.r = 0.030;    % Piston radius [m] 
Cyl1.m = 16.0/2 + 0.665;   % Measured mass + weight of oil [kg] 
Pist1.r = 0.015; % Rod radius [m] 
Pist1.l = 0.5098;   % Rod length [m] 
Pist1.m = 16.0/2;   % Measured mass [kg] 
 
%% Rigid transform from Boom solid to Arm solid 
 
Arm.j = [1.33886 0.05534 0]; 
 
%% Arm solid 
 
Arm.step = 'arm.stp';     % Name of STEP-file 
Arm.m = 28;     % Measured value [kg] 
 
%% Rigid transform from Boom solid to Arm cylinder 
 
Arm_cyl.j = [0.57987 0.45973 0]; 
 
%% Arm cylinder 
 
Cyl2.l = 0.5375;    % Cylinder length [m] 
Cyl2.r = 0.025;    % Piston radius [m] 
Cyl2.m = 11.0/2 + 0.572;   % Measured mass + weight of oil [kg] 
 
Pist2.r = 0.015;     % Rod radius [m] 
Pist2.l = Cyl2.l;      % Rod length [m] 
Pist2.m = 11.0/2;      % Measured mass [kg] 
 
%% Rigid transform from Arm solid to Arm cylinder 
 
Arm_rod.j = [-0.21260 0.13153 0]; 
 
%% Rigid transform from Arm solid to Bucket cylinder 
 
Bucket_cyl.j = [0.20591 0.16681 0]; 
 
%% Bucket cylinder 
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Cyl3.l = 0.4065;       % Cylinder length [m] 
Cyl3.r = 0.025;        % Piston radius [m] 
Cyl3.m = 9.0/2 + 0.406;   % Measured mass + weight of oil [kg] 
 
Pist3.r = 0.015;     % Rod radius [m] 
Pist3.l = 0.4065;      % Rod length [m] 
Pist3.m = 9.0/2;       % Measured mass [kg] 
 
%% Link 1 solid 
Link1.step = 'link1.stp';     % Name of STEP-file  
Link1.m = 5;     % Measured value [kg] 
 
%% Rigid transform from Arm solid to Link1 
 
Link1.j = [0.86666 0.00617 0]; 
 
%% Bucket solid 
 
Bucket.step = 'bucket.stp';      % Name of STEP-file 
Bucket.m = 30;     % Measured value [kg] 
 
%% Rigid transform from Arm solid to Bucket 
 
Bucket.j = [0.94516 0.00617 0]; 
 
%% Link 2 solid 
 
Link2.step = 'link2.stp';       % Name of STEP-file  
Link2.m = 5;     % Measured value [kg] 
 
%% Rigid transform from Bucket solid to Link2 joint 
 
Link2.j = [0.090 0 0]; 
 
%% Pin 1 
 
Pin_1.l = 0.200;     % Pin length [m] 
Pin_1.r = 0.015;    % Pin radius [m] 
Pin_1.m = 1.076;     % Pin mass [kg] 
 
%% Pin 2 
 
Pin_2.l = 0.120;     % Pin length [m] 
Pin_2.r = 0.015;    % Pin radius [m] 
Pin_2.m = 0.628;     % Pin mass [kg] 
 
%% Pin 3 
 
Pin_3.l = 0.200;     % Pin length [m] 
Pin_3.r = 0.015;    % Pin radius [m] 
Pin_3.m = 1.076;     % Pin mass [kg] 
 
%% Pin 4 
 
Pin_4.l = 0.200;     % Pin length [m] 
Pin_4.r = 0.015;    % Pin radius [m] 
Pin_4.m = 1.076;     % Pin mass [kg] 
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%% Pin 5 
 
Pin_5.l = 0.120;     % Pin length [m] 
Pin_5.r = 0.015;    % Pin radius [m] 
Pin_5.m = 0.657;     % Pin mass [kg] 
 
%% Pin 6 
 
Pin_6.l = 0.200;     % Pin length [m] 
Pin_6.r = 0.015;    % Pin radius [m] 
Pin_6.m = 1.076;     % Pin mass [kg] 
 
%% Pin 7 
 
Pin_7.l = 0.120;     % Pin length [m] 
Pin_7.r = 0.015;    % Pin radius [m] 
Pin_7.m = 0.657;     % Pin mass [kg] 
 
%% Pin 8 
 
Pin_8.l = 0.150;     % Pin length [m] 
Pin_8.r = 0.015;    % Pin radius [m] 
Pin_8.m = 0.827;     % Pin mass [kg] 
 
%% Pin 9 
 
Pin_9.l = 0.180;       % Pin length [m] 
Pin_9.r = 0.015;    % Pin radius [m] 
Pin_9.m = 0.741;     % Pin mass [kg] 
 
%% Pin 10 
 
Pin_10.l = 0.150;      % Pin length [m] 
Pin_10.r = 0.015;    % Pin radius [m] 
Pin_10.m = 0.827;    % Pin mass [kg] 
 
%% Pin 11 
 
Pin_11.l = 0.180;      % Pin length [m] 
Pin_11.r = 0.015;      % Pin radius [m] 
Pin_11.m = 0.741;      % Pin mass [kg] 
 
%% Colours 
 
Color.JCB = [1.0 0.8 0.0];       % JCB Yellow 
Color.steel = [0.7 0.7 0.7]; 
Color.black = [0.2 0.2 0.2]; 
 

DDH model parameters 

DDH parameters by Järf, 2009. 
 
gain = 1; 
mass = 0;      % Modified by VS 6.7.2107 
 
%% General parameters 
m_chain = 2.88;                  % Mass of chain [kg] 
m_holder = 5.44;                 % Mass of holder [kg] 
m = mass+m_chain+m_holder;     % Mass of plates + weight of holder 
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g = 9.81;                        % Gravitational acceleration [m/s] 
B_eff = 0.09e9;                  % Effective bulk modulus [n/m^2 ~ Pa) - 

Only used in constant bulk modulus model 
temperature = 273.15+20.5;       % Ambient temperature in Kelvin 
 
%% Fluid parameters 
rho = 860;                       % Density of fluid [kg/m^3] 
 
% Bulk modulus model 
 
n = 1.4;                         % Polytropic constant 
p_0 = 1e5;                       % Inital pressure (athmoshperic pressure) 
X_0 = 4.5/100;                   % Gas content of oil (free air) 
B_liq = 1.4e9;                   % Bulk modulus of liquid [litterature] 
B_min = 0.1*1.4e7;               % Fix the bulk modulus to minimum value 
B_0 = B_liq;                     % Used only in extended Wylie-Yu  

[Litterature] 
B_1 = 11.4;                      % Used only in extended Wylie-Yu 

[Litterature] 
 
%% Pump parameters 
 
% A-side pump 
 
D_pA = 22.8*1e-6;                % Displacement of A-side pump [m^3/rev] 
K_lamA = -2.65548e-013;          % Laminar leak parameter 

[m^3/s*bar][measured] 
K_turbA = 4.43707e-009;     %Turbulent leak parameter 

[m^3/s*sqrt(bar)][measured] 
K_tempA =  6.30177e-005;         % Temperature leak parameter [measured] 
alpha_A = -0.000361545;          % Intecept from regression 
eta_hmA =  0.85;                 % Hydro-mechanical efficiency 

[%][estimated from datasheet] 
eta_vA = 1;                      % Volumetric efficiency (leave as 1 is the 

leak model is used) 
 
% B-side pump 
 
D_pB = 14.4*1e-6;                % Displacement of B-side pump [m^3/rev]  
K_lamB =  6.09061e-013;          % Laminar leak parameter  

[m^3/s*bar][measured] 
K_turbB =  1.95831e-009;   % Turbulent leak parameter  

[m^3/s*sqrt(bar)][measured] 
K_tempB =  4.11706e-005;         % Temperature leak parameter [measured] 
alpha_B =   -0.000235770;       % Intecept from regression 
eta_hmB = 0.85;                  % Hydro-mechanical efficiency  

[%][estimated] 
eta_vB = 1;                      % Volumetric efficiency (leave as 1 is the 

leak model is used) 
 
%% Hose parameters 
 
% Hose between A-pump and A-chamber 
 
d_hoseA = 10/1000;               % Diameter of hose [measured] 
l_hoseA = 2;                     % Length of hose [measured] 
V_hoseA = (pi/4)*d_hoseA^2*l_hoseA; %Volume of hose 
 
% Hose between B-pump and B-chamber 
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d_hoseB = 10/1000;               % Diameter of hose [measured] 
l_hoseB = 2;                     % Length of hose [measured] 
V_hoseB = (pi/4)*d_hoseB^2*l_hoseB; %Volume of hose 
 
%% Accumulator parameters 
 
p_pre = 10e5;                    % Precharge pressure [bar -> Pa] 
V_Acc = 0.7/1000;                % Total accumulator volume [l -> m^3] 
V_fluid0 = 0;                    % Initial accumulator volume 
K_s = 5e10 ;                     % Hard-stop stiffness coeff. 

[Pa/m^3](litterature) 
K_d = 0e9;                       % Hard-stop damping coeff. [Pa*s/m^6] 

(litterature) 
V_dead_Acc = 0.1*V_Acc;          % Accumulator dead volume (estimated) 
p_atm = 1e5;                     % Atmospheric pressure [bar] 
 
d_oAcc = 3/1000;                 % Accumulator inlet diameter [measured] 
A_oAcc = (pi/4)*d_oAcc^2;        % Accumulator inlet area [calculated] 
 
%% Controller    % Added by VS 6.7.2107 
 
Controller.K_p_DDH_Bucket = 5e4; 
Controller.K_p_DDH_Arm = 5e4; 
Controller.K_p_DDH_Boom = 5e4; 
 
Controller.max_speed = 1500; 
Controller.min_speed = -1500; 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 


