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ABSTRACT 

ANTON KONTUNEN: A System for Intraoperative Cancer Margin Detection by 
Diathermy Smoke Analysis 
Master of Science Thesis, 69 pages 
August 2017 
Master’s Degree Programme in Biomedical Engineering 
Major: Biomeasurements and Bioimaging 
Examiner: Professor Jukka Lekkala and Associate Professor (tenure track) Niku 
Oksala 
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Cancer recurrence after surgical operation is a common phenomenon resulting in 

compromised quality of life, impaired survival and excess costs. Often, the recurrence of 

cancer is caused by incomplete cancer removal surgery and residual tumor in surgical 

resection margin due to failure in the cancer margin detection. Currently, the gold 

standard for the detection is time consuming and expensive analysis of intraoperative 

tissue specimen by subjective analysis by a pathologist.  

In this thesis, a method and system capable of intraoperative cancer margin detection, 

with potential to improve the current methodology, is introduced, tested and preliminarily 

validated. The system is based on diathermy smoke analysis by differential ion mobility 

spectrometry (DMS). Three large measurement sets with different objectives were 

executed. The first measurement set concentrated on validating the function of a novel 

filtration device, which is an essential part of the full system proposed in this thesis, and 

was patented during the thesis work. A study of the composition of different tissue plumes 

was also done after the filter validation for additional scientific value. In the second 

measurement set, a proof-of-concept study with porcine tissues was conducted to 

elucidate, whether healthy tissue identification with the system is possible. The third 

measurement set was a pilot test with two types of clinical human brain tumor samples, 

with the aim to achieve actual reliable cancer identification with the proposed system.  

Regarding the objectives, all the three measurement sets were successful. Based on the 

results, we state that the patented filtration solution works with a high efficiency without 

compromising tissue identification, and that cancer detection based on the ion mobility 

spectrometer analysis of tissue smoke can be achieved with our system. Although the 

latencies between possible consecutive measurements do not yet capacitate effective 

intraoperative identification of cancer tissue, the system can be used to accurately 

distinguish various healthy tissues and even ultimately differentiate clinical cancer 

samples.   
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TIIVISTELMÄ 

ANTON KONTUNEN: Diatermiasavun analysointiin perustuva 
leikkauksenaikainen tervekudosmarginaalin tunnistava mittausjärjestelmä 
Diplomityö, 69 sivua 
Elokuu 2017 
Biotekniikan diplomi-insinöörin tutkinto-ohjelma 
Pääaine: Biomittaukset ja -kuvantaminen 
Tarkastaja: professori Jukka Lekkala ja apulaisprofessori (tenure track) Niku 
Oksala 
 
Avainsanat: tervekudosmarginaali, diatermia, DMS, FAIMS 

Syövän uusiutuminen kirurgisen hoidon jälkeen on yleinen ja haitallinen potilaan 

elämänlaatuun ja ennusteeseen vaikuttava ongelma. Se aiheuttaa myös merkittäviä 

lisäkustannuksia yhteiskunnalle. Usein syövän uusiutuminen aiheutuu syöpäleikkauksen 

virheellisestä tervekudosmarginaalin arvioinnista, mistä johtuen syöpäkudosta ei saada 

poistettua kokonaisuudessaan. Nykyinen patologin suorittama toimenpiteen aikana 

otettuihin kudosnäytteisiin perustuva standardimenetelmä tervekudosmarginaalin 

tunnistamiseen on hidas, kallis ja subjektiivinen. 

Tässä työssä kehitettiin, testattiin ja osittain validoitiin mittausjärjestelmä, jolla 

tervekudosmarginaalin leikkauksenaikainen tunnistaminen voi olla lähitulevaisuudessa 

mahdollista jopa leikkaussaliolosuhteissa. Järjestelmä pohjautuu diatermiasavun 

analysointiin differentiaali-ionimobiliteettispektrometrilla (DMS). Työssä toteutettiin 

kolme tavoitteiltaan erillistä mittauskokonaisuutta. Ensimmäisessä kokonaisuudessa 

pyrittiin osoittamaan rakentamamme uudenlaisen suodatinratkaisun toiminta. Työn 

kanssa samaan aikaan patentoitu suodatinratkaisu on koko järjestelmän toiminnan 

kannalta välttämätön. Tutkimus eri kudosten savukaasujen koostumuksesta toteutettiin 

myös ensimmäisessä mittauskokonaisuudessa suodatinmittausten jälkeen. Toisessa 

mittauskokonaisuudessa tavoitteena oli tutkia, pystytäänkö mittausjärjestelmällä 

tunnistamaan ja luokittelemaan sian kudoksia. Kolmas mittauskokonaisuus oli 

pilottimittaussarja, jossa käytettiin ihmisen aivokasvaimia. Tämän sarjan tavoitteena oli 

nähdä, pystytäänkö järjestelmän avulla luotettavaan kasvaintunnistukseen ja erotteluun. 

Tavoitteet saavutettiin kaikissa kolmessa mittauskokonaisuudessa. Tulosten nojalla 

voimme todeta, että suodatinjärjestelmä toimii tehokkaasti, kudostunnistus on 

mahdollista ja että diatermiasavun DMS-analyysiin perustuva syöväntunnistus on 

toteutettavissa mittausjärjestelmällä. Peräkkäisten mittausten väliset viiveet eivät vielä 

mahdollista tehokasta reaaliaikaista syöväntunnistusta nykyisellä mittausjärjestelmällä, 

mutta järjestelmällä voidaan kuitenkin jo tunnistaa luotettavasti kudoksia ja jopa erottaa 

syöpätyyppejä toisistaan. 
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1. INTRODUCTION 

Cancer is among the leading causes of death in the world, especially in developed 

countries. According to the most recent global study, every seventh death worldwide in 

2012 was caused by cancer, resulting in a total death toll of over 8 million [1]. The annual 

global incidence of cancer was even higher (over 14 million), but modern cancer 

treatment has evolved to a point where most cancers can be radiated or surgically 

operated, which improves the prognosis. Still, in some cases, the treatment or surgery 

does not prevent the cancer from recurring. 

The distance between healthy tissue and excised cancer tissue, also called surgical 

margin, is critical in terms of the cancer recurrence rate [2,3]. If the margin is too small 

and all of the cancerous tissue is not removed, it has a negative effect on the prognosis 

[4]. This is due to increased probability of small clusters of cancerous cells within the 

margin giving rise to residual cancer tumor and possibly metastasis of the tumor to distant 

tissues and organs after the operation. On the other hand, if the cancer margin is evaluated 

deep in to non-cancerous tissue, it results in excessive removal of healthy tissue, which 

might be harmful for the patient both in terms of physical health (i.e. increased probability 

of operative complications, physical disability), and mental well-being, and due to 

needless suffering and changes in physical appearance. In addition, excessive removal of 

the tissue results in increased duration of the procedure and therefore increased direct 

costs. The current gold standard for intraoperative cancer margin detection in unclear 

cases is histological examination of a frozen section obtained during the operation 

resulting in increased duration of the surgery due to mandatory delay (20–30 min) while 

waiting for the results [5]. It requires a highly trained professional pathologist, and causes 

a halt to the already expensive surgical operation, and in the end, the detection is always 

based on the subjective decision of the pathologist with respect to a point sample from a 

selected area instead of the whole surgical margin.  

Cancer surgery is often performed by utilizing energy-based surgical methods alongside 

the standard metallic scalpels. One of these methods is diathermy in which the tissue is 

cut by conducting high-frequency electrical current to the tissue [6]. Depending on the 

frequency and voltage, the electrosurgical cut may burn the tissue through rapid thermal 

spreading, effectively creating surgical smoke in the process. The surgical smoke contains 

95 % water and 5 % evaporated organic matter from the tissue cells [7]. The gaseous 

organic matter is composed of blood, organic and inorganic compounds,  and micro-

organisms [8]. Therefore, it also contains potential biomarkers for cancers, such as 

various glycerophospholipids [9]. 
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The diagnosis of cancer based on its smell has been done successfully with trained canines 

[10], but their use in the surgical setting is impossible due to practical reasons. For clinical 

use, so-called electronic nose (eNose) technology can be considered as a viable 

alternative. If not using the strictest definition of the term, one example of an eNose can 

be considered to be a device called a differential ion mobility spectrometer (DMS), which 

has been successfully used in medical diagnostics to detect gas-phase biomarkers from 

breath and bodily fluids [11]. Compared to gas chromatography-mass spectrometry (GC-

MS), which is widely considered as the gold standard for chemical identification of semi-

volatile and volatile organic compounds (VOCs), the benefit of DMS is its simplicity and 

lower costs. In previous literature, the intraoperative detection of cancer from diathermy 

smoke has been successfully studied by using mass spectrometry (MS) [9], but similar 

research with the cheaper, simpler, and more robust DMS technology has not been 

published. 

In this thesis project, the aim was to build, test, improve, and partly validate a system that 

could potentially be used in intraoperative cancer margin detection by DMS analysis of 

diathermy smoke. If successful, the creation of such a device could be very significant. It 

would be an improvement to the relatively slow current standard of pathological 

examination, and due to its moderate costs ($10 000–$50 000 depending on the 

manufacturer [12]), it could also be implemented in operating theatres of hospitals in 

economically developing countries. 

The work related to building the system and the measurement sets in this thesis project 

were done in Tampere University of Technology (TUT), at the department of Automation 

Science and Engineering (after 1.1.2017, BioMediTech Institute and Faculty of 

Biomedical Sciences and Engineering). The work also involved co-operation with 

researchers and medical professionals from University of Tampere. The tumor samples 

were gathered by the staff at Fimlab laboratories (Tampere, Finland). Parts of the 

measurement system are commercially available. The main technical novelty of this 

thesis research is the combination of the newly developed filtration solution (patent 

pending) together with the rest of the system. All measurements presented in this thesis 

were done under the guidance of the thesis supervisors, Master of Science (M.Sc.) Markus 

Karjalainen and Doctor of Medicine (M.D.) Antti Roine. 

The thesis consists of six chapters, from which the introduction is the first. The second 

chapter focuses on the relevant theoretical background. In the third chapter, the 

measurement system used in the research is thoroughly introduced. The most important 

measurements done in the thesis project are explained in the fourth chapter. The fifth 

chapter is dedicated to the results and analysis of the pivotal measurements, and finally, 

in the sixth chapter, conclusions from all that was done are presented alongside future 

prospects.  



3 

 

2. THEORETICAL BACKGROUND 

The measurement system proposed in this thesis is a prime example of interdisciplinarity. 

The understanding of the underlying motivation and mechanics behind the system 

requires knowledge of the medical field, statistical classification, and engineering. This 

chapter introduces the most important aspects of the relevant theory from each field, with 

the main focus on engineering. First, a thorough review of the medical background is 

presented, after which the following four subchapters concentrate on the technical aspects 

of the theoretical background. 

2.1 Medical background 

Cancer is the common term for malignant neoplasms (also called malignant tumors), 

which describe diseases, where proliferation and division of cells is not under control and 

the cells spread to neighboring tissues via the blood circulation and the lymphatic system, 

eventually leading to death. Cancers can be classified based on their origin. Brain and 

spinal cord neoplasms are categorized as central nervous system cancers, leukemia 

describes cancers that originate from blood-forming tissue, sarcomas start from 

connective or supportive tissue, lymphomas and myelomas begin growing in the immune 

system, and carcinomas originate from skin or tissues covering the internal organs. The 

most common types of cancer are carcinomas in the lung region, breasts (in females), 

prostate (in males), and liver. [1,13] 

Worldwide, over 14 million new cases of cancer are diagnosed annually, accounting for 

more than 8 million deaths according to the most recently published global study [1]. 

According to the International Agency for Research on Cancer, the estimated total 

economic cost of the disease was around 1.16 trillion dollars in 2010 and it is increasing 

every year [14, p. 576]. Considering these significant global effects of the disease, the 

motivation for developing new methods to treat, prevent, and diagnose cancer, becomes 

evident. 

Today, cancer can be treated effectively by for example radiation therapy, stem cell 

transplants, or specialized medication [15]. The surgical excision, i.e. removal of the 

cancerous tissue is a commonly used treatment method and often used in combination 

with other approaches such as irradiation, and pharmacological treatment, but in some 

cases, it can be problematic. 

In cancer surgery, full removal of the cancerous tissue is of utmost importance to prevent 

tumor recurrence which causes additional stress, worsens the prognosis, and increases the 

costs in the form of follow-up operations [2,3]. To prevent residual cancer tissue 



4 

 

remaining in the patient after surgery, the operating surgeon removes the cancer with a 

certain appropriate surgical margin. This means that along with the malignant tumor, 

some healthy tissue is removed to ensure a margin free of cancer cells. In an optimal 

cancer surgery operation, the excision of healthy tissue is kept to a minimum, while still 

ensuring that all the cancer tissue is fully removed. However, there is not a universal 

standard or criteria for the values that would constitute a ‘’clear margin’’. Depending on 

medical center, and the location and type of the cancer, the expert opinions of the 

measurements vary slightly, but most sources in literature consider 2 mm of normal 

healthy tissue between the edge and the cancer as the lower limit of a negative margin 

[5,16]. A margin of less than 2 mm is referred to as close, and if the cancer is at the edge 

of the excised tissue piece, the margin is positive. If simplified, negative margin would 

mean that there is high confidence that residual cancer (of that particular cancer mass) is 

not present after the surgery, while the close and positive margins would indicate the 

contrary. Illustrations of a negative and a positive surgical margin can be seen in Figure 

1. 

 

Figure 1. Illustrations of surgically removed breast cancer samples with a negative 

and a positive surgical cancer margin. [17] 

The evaluation of the surgical margin is done by a pathologist after the surgery is over, 

or often in unclear cases also during the operation. The problem with the intraoperative 

consultation is that it will take 20–30 minutes to finish, when at the same time the patient 

is waiting anesthezised on operating table [9]. It is also important to note that the 

evaluation of the margin by tissue samples does not make it possible to analyze all the 

margin, but it has to be done from selected points of interest. This makes it possible that 

the margin is not evaluated comprehensively. Neither does it enable to alter the cut line 

dynamically during the operation. In addition, the use of a qualified pathologist and the 

prolonged duration of the surgery also increase the total costs of the procedure. 
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Furthermore, the subjective evaluation of the pathologists is prone to errors. In a 

retrospective study regarding intraoperative breast cancer margin evaluation, the research 

showed that almost 20 % of the patients in that study needed additional surgery as a result 

of false negative margins [18]. The reason why cancers recur due to insufficient surgical 

margin evaluation and why the resection margin is so difficult to estimate properly is the 

irregular nature of cancer mass and its tendency to spread in a seemingly random manner. 

Also, the intraoperative margin assessment is done with a section that has been frozen. 

This affects the appearance of some tumors, which in turn can lead to erroneous diagnoses 

[5]. The samples illustrated in Figure 1 can be considered the best-case scenario for the 

pathologist, since the edges between the tissues are clear and the tumor itself is a uniform 

entity. In reality, the sections sent to pathological evaluation are often much more difficult 

to interpret. An example image of a real positive and a close margin can be seen in Figure 

2. 

 

Figure 2. Photomicrographs of breast cancer sections with positive (left) and close 

(right) surgical margins. The sections have been stained with hematoxylin and eosin to 

enable the visual differentiation of the tissue types. Adapted from [19].  

Surgical margin evaluation is especially relevant in the case of breast cancer, since it is 

the most common cancer type in women, and the recurrence due to false negative margins 

can be as high as 23 % in some regions [1,20]. To minimize the possibility of errors in 

cancer margin detection, in some countries operations are often performed by removing 

the whole cancerous breast (mastectomy). For example, in Finland, mastectomies are 

performed in 40 % of breast cancer cases [21]. While this lowers the rate of the cancer 

recurring, the effects of full mastectomy can be harmful for the patient due to 
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psychological and socioeconomic reasons [22]. Also, breast-conserving surgery can have 

the same long-term survival rate as a full mastectomy, if it is appropriately used for 

regional cancers and further treated with radiation [23]. Although every instance is 

somewhat case-specific, the current global consensus amongst surgeons is that 

lumpectomies (partial removal of breast) should be preferred over mastectomies [24]. 

The primary market and area of application for the system proposed in this thesis would 

be in breast cancer surgery and specifically in the surgical margin detection. However, 

the system could have use in other areas as well, if the detection accuracy is adequate. 

Histological examination is always time consuming and requires an expert to make the 

final diagnosis. A simpler method to find out the malignancy of a cancer sample could 

save resources, and in this respect the measurements done in this thesis involving the 

differentiation of two brain cancer types using the system bear real relevance. 

The two types of brain tumor samples used in this research were glioblastoma and 

meningioma. Glioblastoma is the most malignant (grade IV) type of brain tumor that 

originates from the astrocytes, which are the cells that form the supportive tissue of the 

brain [25, 26, p. 1306]. The median survival time in glioblastoma cases is only 15 months 

from diagnosis, and it is also the most common malignant central nervous system 

neoplasm with an incidence rate of 3.19 cases per 100 000 people in the U.S.A. [27]. 

When considering all brain tumors, meningioma is the most common type with an 

incidence rate of approximately 97.5 cases per 100 000 people in the U.S.A., according 

to a study published in 2010 [28]. Unlike glioblastomas, most cases (95 %) of 

meningioma are benign [28]. Both cancer types are usually treated surgically, but in the 

case of glioblastoma a full excision is often impossible due to the cancer being widely 

spread to the supportive tissue of the brain [29]. With current methodology, the precise 

information of the cancer type is usually only available after the post-operative 

histological examination, which means that a reliable intraoperative detection method 

would be helpful in terms of saving diagnostic resources. 

Regardless of the operated tissue type, there is a real need for a system that would improve 

the accuracy, streamlining or at least complementing the margin evaluation. While there 

have been efforts to create methods to replace or support the standard of pathological 

evaluation, none of them have been established as a standard practice. In 2009, a research 

group introduced a system based on optical coherence tomography (OCT), which 

reportedly reached 100 % sensitivity and 82 % specificity in intraoperative surgical 

margin evaluation for breast cancer resections [30]. In OCT, the margin evaluation does 

not happen in vivo, but instead, the surgically removed tumor sample is imaged on a 

separate platform before the standard pathological evaluation. The OCT scan can provide 

a high-resolution microscopic image of the tissue piece in real-time, with the maximum 

imaging depth being approximately 2 mm. The imaging method is based on guiding near-
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infrared light to the tissue and measuring the reflected light with a spectrometer. The 

downsides of OCT are its relatively high unit cost (~$30 000–$50 000 [31]), limited 

imaging depth, need for subjective analysis by qualified personnel, and sensitivity to 

surgical artifacts (blood and cauterized tissue) [30,32]. 

Systems based on intraoperative ultrasound have also been successfully used to evaluate 

the margins of, for example brain, breast, and renal tumors [33–35]. The method is similar 

to OCT, but the image is created with high-energy sound waves instead of light. The 

image is acquired in vivo by inserting a special ultrasound probe inside the patient [36]. 

Like OCT, intraoperative ultrasound needs visual analysis of the image, and thus it is 

ultimately a subjective method for the margin evaluation. Also, the unit cost for the more 

advanced devices can be over $50 000, even when bought used [37]. 

Regarding the research done in this thesis, perhaps the most interesting and relevant 

currently existing method that could break through in the field of intraoperative surgical 

margin detection is rapid evaporative ionization mass spectrometry (REIMS). REIMS is 

a term first introduced by Schäfer et al. in their publication in 2009 [38]. Since then, the 

method has been successfully used in identification of different biological tissues and in 

intraoperative cancer differentiation from healthy tissue, achieving detection accuracies 

of as high as over 95 % for certain cancer types [9,39]. The operation principle of REIMS 

relies on thermal evaporation of tissue matter and mass spectrometry (MS) analysis of the 

resulting gaseous molecules and ions. The distinction between cancerous and healthy 

tissue is possible by determining the structural differences of evaporated cell contents 

between healthy and cancerous cells. One major difference between the different cell 

types is in their phospholipid distributions, which are visible in the MS spectral images 

[9].  

REIMS has already been incorporated into a commercialized device by Waters 

Corporation (U.S.A.). The "intelligent knife" or iKnife, is a system, where the thermal 

evaporation of the tissue is done by a standard electrosurgical instrument, after which the 

tissue plume is guided to a mass spectrometer by using a vacuum pumping system with 

nitrogen as the carrier gas. The device is capable of analyzing the measured spectrum 

through multivariate analysis, reaching a diagnosis in approximately 1–3 seconds [9]. 

Although the device can already be bought by research groups at a price of approximately 

$700 000 [40], it has not yet (at the time of writing this thesis, August 2017) been made 

available for clinical use. The high initial cost, and additional costs due to the device being 

high-maintenance, are factors preventing the system from spreading to wider use. The 

complexity of the device also means that its operation requires professional training, 

which hinders the system’s adaptability for surgical staff. In its current form, the iKnife 

is also too large to fit in an operating theater, without occupying an unreasonable amount 

of space reserved for vital surgical instrumentation. The more cost-effective, simpler, and 
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smaller system introduced in this thesis has parallels to the commercialized iKnife, 

perhaps the most noticeable of which being that both systems rely on the principle of 

analyzing the chemical composition of the smoke that is created in electrosurgery. 

2.2 Diathermy 

Electrosurgery, also called diathermy, is one the most common energy-based surgical 

method used in over 18 million surgeries every year according to some estimates [41, p. 

125]. The idea of using electric current in surgical treatment has been around for quite 

long. For cautering blood vessels, electricity has been used from as early as the 1800s, 

but the first modern instrument for specifically surgical use, was introduced by William 

T. Bovie in the 1920s [6].  

Diathermy utilizes high-frequency alternating current (AC), which is conducted to the 

operated tissue to achieve the desired cutting effect [42, p. 15]. When cutting the tissue, 

a direct contact between the tissue and the surgical electrode is not required, since the 

current can be conducted via a tissue evaporating electrical arc. The frequency spectrum 

used in electrosurgery starts at around 200 kHz and extends up to 3.3 MHz [6]. In this 

frequency range, potentially harmful muscle activations during surgery due to the 

electrical stimuli do not occur [42, p. 41]. To understand the working principle of 

electrosurgery, some basic knowledge of electrical engineering is needed. The combined 

system of the diathermy electrodes and the patient can be considered as a simple closed 

electrical circuit, where the body of the patient works as a passive component with a 

certain electrical impedance. In such a circuit, the well-known Ohm’s law states that the 

relation of electrical current and voltage is: 

𝐼 =
𝑉

𝑍
, (1) 

where 𝐼 is the electrical current, 𝑉 is the potential difference between the diathermy 

electrodes (voltage), and 𝑍 is the frequency-dependent impedance of the tissue matter 

between the electrodes. The circuit formed in electrosurgery can be either ground-

referenced or isolated. Current will always travel through the path with the least 

resistance, and in ground-referenced circuits, it can cause problems. If the current density 

is high upon impact, and the skin contact to the ground potential (usually a grounded plate 

against the back of the patient) has a small area, there is a risk of inducing an off-site burn 

on the part of the skin, where the current exits the body. This is the reason, why modern 

electrosurgical units use isolated generator circuits, where the current always travels 

through a predetermined route from one electrode to another [6]. 

From the Ohm’s law (1), one can see that the current is inversely proportional to the tissue 

impedance. This means that the cutting current and the consequential cutting effect are 
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dependent on the operated tissue and its electrical properties. This is the reason why some 

modern electrosurgical units can detect the change in tissue impedance and compensate 

the voltage accordingly to keep the cutting power constant regardless of the tissue [42, p. 

27]. 

The cutting effect of electrosurgical instruments relies on the conversion of electrical 

energy to heat. The physical phenomenon can be explained with Joule’s law of 

thermodynamics, which can be further formulated to estimate the converted heat energy 

in a surgical operation as such: 

𝑄 = 𝐼2𝑍𝑡𝑐, (2) 

where 𝑄 is the heat energy, 𝐼 is the current, 𝑍 is the tissue impedance, and 𝑡𝑐 is the 

duration of the cut. While the thermal energy is an important parameter in diathermy, in 

itself it does not provide all the information about the characteristics and effects of the 

surgical cut. 

By changing the duty cycle of the current output waveform and the cutting voltage, the 

thermal spread to the tissue can be controlled, effectively changing the final cutting effect. 

There are two distinct cutting modes, which have been termed as pure cut and coagulation 

(in electrosurgical units often shortened to cut and coag, respectively). In cut mode, the 

voltage is low (around 1000 V peak-to-peak) and the current is delivered in a continuous 

sinusoidal waveform, which has a frequency of around 500 kHz [43, p. 30]. In coagulation 

mode, the voltage is higher (3000–5000 V peak-to-peak), but the duty cycle of the 500 

kHz waveform is low (6 %), which means that the current is not conducted to tissue 

constantly, but rather as short periodical bursts [43, p. 30]. By choosing the parameters 

of the current waveform from between the typical cut or coagulation settings, an 

intermediate cutting mode, called blend, can also be used. 

In addition to the current waveform, the final effect of the electrosurgical cut is also highly 

dependent on the density of the current-to-power ratio of the signal conducted to the 

tissue. This means that the shape and size of the diathermy electrode is an important 

factor, since the area of the conducting electrode affects how the energy is focused [42, 

p. 50]. For example, a blade electrode can conduct a much higher current/power density 

to the tissue if the cut is done by using the edge of the blade instead of the blunt side. In 

some cases, the phenomenon can be useful, since it would mean that a surgeon could 

potentially cut and coagulate the tissue just by changing the orientation of the diathermy 

blade, without changing the diathermy settings.  

As the names of the cutting modes suggest, they are used to modify or excise the tissue 

in different ways. In cut mode, the low-voltage current is conducted to the tissue with 

high power density, which rapidly increases the temperature of the nearby cells to over 
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100 °C. The rise of the intracellular temperature causes cellular vaporization, which leads 

to the release of gaseous organic matter and steam [42, p. 39]. In coagulation mode, the 

intracellular temperature is meant to rise to over 60 °C, but never above 100 °C, which 

means that the contents of the cells do not vaporize, but their structure is altered. Instead 

of instant cell death and cell content vaporization, the effect of coagulation mode 

electrosurgery is simultaneous cell desiccation (volumetric shrinkage due to cellular 

dehydration) and protein denaturation, which, when combined, result in a strong tissue 

seal in the incision area. Due to this phenomenon, coagulation mode is often used to seal 

blood vessels and other lumen-containing structures [42, p. 46]. The theoretical cutting 

effect of the blend mode has more variety, since it is dependent on the current waveform 

properties and how they affect the cell temperatures in the incision area. This means that 

a more cut-like waveform (high duty cycle, low voltage) is more likely to vaporize the 

cells and create a surgical incision, whereas a low duty cycle, high-voltage blend will 

most likely coagulate the tissue. Blend is often used by surgeons to achieve hemostasis 

while simultaneously cutting the tissue [6, 42 p. 52]. An example of incision patterns 

created with cut, blend, and coagulation and their associated current waveforms are 

presented in Figure 3. 
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Figure 3. The current waveforms of different electrosurgical cutting modes (top) 

and their effect on the produced cutting pattern (bottom). Adapted from [6]. 

In addition to cell vaporization and desiccation, a phenomenon called fulguration or black 

coagulation, can also happen in electrosurgery. Fulguration is a term used to describe the 

process, where the intracellular temperature rises above 200 °C, which leads to the 

organic molecules of the vaporized cells breaking down to their atomic components. 

When this happens, the resulting carbon atoms create a superficial (approximately 0.5 

mm deep) black charred layer in the incision area [42, p. 49]. This so-called carbonization 

is slightly visible in the incision created with the cut mode in Figure 3. 

Like the different cutting modes, electrode shapes and configurations are also used in 

diathermy to affect the outcome of the surgical incision. The main electrode types are 

monopolar, bipolar and dispersive. In principle, diathermy is always bipolar, since the 

current is conducted to the tissue by one electrode, after which it makes its way to the 
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second receiving electrode. However, in monopolar diathermy, the second electrode is a 

separate larger dispersive electrode in continuous contact with the patient’s skin, whereas 

in bipolar diathermy, the surgical instrument itself has two active electrodes [42, p. 22]. 

When using monopolar diathermy, the dispersive electrode should be firmly in place to 

allow the current to exit the body with low current density, and thus to prevent the off-

site burns. An illustration of monopolar and bipolar diathermy configurations can be seen 

in Figure 4. Both configurations can be used for coagulation and cutting [42, p. 22]. 

 

Figure 4. An illustration depicting monopolar and bipolar diathermy instruments 

and configurations. [42, p. 22] 

 

Regardless of the cutting modes or configurations, when diathermy is used in surgical 

treatment of cancer, some amount of tissue smoke will always be produced as a product 

of cell vaporization. According to published research, approximately 5 % of the surgical 

smoke is composed of evaporated organic matter from the tissue cells and the remaining 

95 % is water [7]. In addition to the potential biomarkers for cancers, such as 

phospholipids, the gaseous organic matter in the smoke can contain blood, chemicals, and 

micro-organisms, including bacteria and viruses [8,44,45]. These findings imply that 

diathermy smoke is highly hazardous to the operating staff, if the gaseous particles are 

allowed make their way into their respiratory system. To minimize the exposure to the 

diathermy smoke, modern surgical instruments have an attached exhaust tube, which can 

be connected to a surgical smoke evacuator. 
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2.3 Particle filtration 

Not only is the diathermy smoke hazardous to the operating staff through exposure to 

airborne microbes and particle lung deposition, it can also contaminate the tubes and 

measurement devices it comes into contact with. That is why, particle filtration is essential 

in creating a device that is capable of malfunction-free low-latency diathermy smoke 

analysis. 

When considering gas phase substances, particle is a vast term that can be used to refer 

to any small constituent of matter ranging from gas molecules to the possible macroscopic 

solid or liquid matter that is suspended in the gas [46]. The combined mixture of the 

gaseous medium and the liquid or solid particles in it, is called an aerosol, although the 

term is often misused as a synonym for just the particles in the gas [47, p. 1]. 

One of the most common methods for particle filtration is the use of fibrous media to 

separate the continuous phase (gas) from the dispersed phase (solid or liquid) [47, p. 31]. 

The fibrous filters can be made out of polypropylene, fiberglass, cotton or polyester 

among other possible materials [48]. The filtration effect of the fibrous filters is based on 

collecting particulate matter by four individual mechanisms with its substantial number 

of intertwining fibers [48]. The first method for the filter to collect particles is through 

diffusion in which the particle collides with one of the fibers due to Brownian motion. 

The second filtration mechanism is called interception, which occurs, when the particle 

is too large to flow through the filter without contact to any of the fibers. Inertial 

impaction is the third mechanism, and it happens, when a particle in a carrier gas flow 

has too much inertia to bend around the fiber without contact. The particles adhere to the 

fibers upon impact due to intermolecular forces. The final method for filtration in fibrous 

filters is electrostatic attraction, which is a result of the fiber and the particle having an 

opposite electrical charge. Electrostatic attraction is dependent on the charge-to-mass 

ratio, which means that the mechanism becomes more dominant as the particle size 

decreases. All four mechanisms are illustrated in Figure 5. 
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Figure 5. The four primary filtration mechanisms of fibrous filters. [48] 

Even though the four filtration mechanisms enable the filtration of particles in a wide size 

range, fibrous filters are not always the optimal method for particle filtration in a low-

latency pneumatic system. When considering the measurement dynamics, fibrous filters 

can be problematic, since they create a pressure difference within the system due to their 

mesh-like structure [47, p. 49]. In other words, the fiber filters will restrict the natural 

flow of the carrier gas. To prevent this from happening, a fibrous filter can be replaced 

with for example, an electric filter, which can remove particulate matter without affecting 

the sample flow. One possible method for electric particle filtration is particle ionization 

by a corona discharge, which could be effective in separating the continuous and 

dispersed phase, if the structure and parameter selection of the filtration device are 

executed properly. An example of a corona-discharge-based electric filter is presented in 

chapter 3. 

The system proposed in this thesis will be subjected to contaminating aerosols on a daily 

basis, if it can be successfully developed and implemented in clinical practice. The proper 

function of the device requires removal of the particulate contaminants, while keeping 

the gaseous sample intact, and thus providing enough biological information, i.e. gas 

molecules for the sample to be classified accurately. Therefore, the filtration should be 

designed with a certain particle size cut-off in mind. When considering electrosurgery, 

the most probable contaminates to originate from the diathermy smoke are soot particles 

from unintentional fulguration of tissue, viruses, bacteria, and possible airborne 

contaminants in the ambient air [8,42,44,45]. These substances are in the size region 

between 1 nm and 10 µm as can be seen in Figure 6. 
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Figure 6. Particle size range of some substances that are relevant to this research. 

Adapted from [47, p. 2]. 

When considering the system proposed in this thesis, the properties of an electric filter 

would be favorable. The intraoperative cancer identification requires a system capable of 

almost instantaneous diagnosis, which means that any large pressure differences, that 

have a negative effect on the measurement dynamics, should not exist. After filtration, 

the sample must also retain the distinctive gaseous molecules, which are derived from the 

cell contents of healthy and cancerous cells. The maximum amount of electric charge of 

particles is highly dependent on their size [49, p. 301]. Large particles can acquire more 

electric charge than smaller particles, which means that even with the added inertia of 

large particles, they can be controlled with an electric field if they are ionized. Based on 

this, we can assume that filtration in the particle size region of 1 nm to 10 µm is possible 

to achieve effectively by using a particle-ionizing corona discharge. With a proper design, 

electric filters can allow the vaporized gaseous molecules and biomarkers from the tissues 

to pass through, while also keeping the contaminating, larger particulate matter from 

reaching further. 

2.4 Differential ion mobility spectrometry 

The fact that the smoke created in electrosurgery contains organic particulate matter and 

possible biomarkers for cancer would not be helpful without a way to analyze and draw 

conclusions of its contents. For this purpose, the system introduced in this thesis uses a 

device called a differential ion mobility spectrometer (DMS), also known as a high-field 

asymmetric waveform ion mobility spectrometer (FAIMS). 
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A DMS can be loosely described as a type of an electronic nose (eNose), since it mimics 

the function of its organic counterpart. Typically however, ion mobility spectrometers are 

not considered as eNoses in the strictest sense [50], but have been described as such in 

previous scientific literature [51]. The similarities in the electronic and organic olfaction 

are important, since the sense of smell has already been utilized in cancer detection by 

using trained dogs, which has resulted in over 90 % diagnostic sensitivity and specificity 

in prostate cancer detection from urine samples [10]. Although not yet as successfully as 

in the case of canine olfaction, the applicability of ion mobility technology in cancer 

diagnosis has also been tested. In 2014, Roine et al. were able to achieve 78 % sensitivity 

and 67 % specificity in detecting the malignancy of prostate cancer from urine samples 

by using a ChemPro® 100i ion mobility spectrometer [52]. The sensor used in the study, 

much like the most common eNoses, is generally able to detect gas-phase substances in 

the concentration region of parts-per-million [50, 53, p. 176]. DMS can be considered as 

a further-developed method of ion mobility spectrometry (IMS), due to its increased 

detection limit (even parts-per-trillion) and enhanced ion selectivity [54, 53, p. 8]. 

To understand the DMS technology, a basic understanding of IMS is needed. IMS is a 

term used to refer to principles, methods, and devices, which characterize substances 

based on the speed of its gaseous ion swarms within a carrier gas in an electric field [53, 

p. 1]. In a traditional IMS sensor, an ion swarm from the measured sample is injected into 

an electric field, where due to its electrical charge, the swarm moves with a certain drift 

velocity 𝑣𝑑 towards a detector. The ionization of the sample can be done by 

photoionization, corona discharge, or by ionizing radiation by utilizing a radioactive 

source, among other methods [53, p. 37]. The detector can be for example, a Faraday 

plate, which generates an electric current signal proportional to the charge released by the 

ion swarm upon impact. In some DMS devices, there are two detector plates, one for 

positive ions and one for negative ions [54]. From the drift velocity and the strength of 

the electric field (𝐸), a mobility coefficient 𝐾 can be expressed as: 

𝐾 =
𝑣𝑑

𝐸
(3) 

The drift velocity of an ion swarm depends on the internal pressure (𝑃) and temperature 

(𝑇) of the drift tube, which is why in mobility formulas, 𝐾 is often normalized to a 

reduced mobility coefficient (𝐾0), by using standard conditions, 273 K for temperature 

and 760 torr for pressure: 

𝐾0 = 𝐾
273

𝑇

𝑃

760
(4) 

If the experimental parameters in a measurement are stable, the reduced mobility 

coefficient is a valid representation of the shape and mass of the ions [53, pp. 1–2]. 
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As its unabbreviated names suggest, the function of the DMS is based on measuring the 

differences of ion mobility in a high-field asymmetric waveform. In the first publication, 

where the DMS technology was introduced, the researchers discovered that the trajectory 

of an ion in a perpendicularly applied electric field changes non-linearly, in relation to 

the strength of the field [55]. Some ions that have similar trajectories in a low electric 

field (-1000 V/cm2) may have totally different trajectories in a high electric field (>20 000 

V/cm2), which enables the differentiation and filtering of the ions, when an asymmetric 

radiofrequency (>200 kHz) waveform is applied to control the electric field [56]. The 

electric-field-dependent mobility of the ions in a DMS can be expressed as: 

𝐾 (
𝐸

𝑁
) = 𝐾0 (1 + 𝛼 (

𝐸

𝑁
)) , (5) 

where 𝑁 is the number density of the gas molecules in the sample, and 𝛼 is a function 

describing the dependence of mobility on the ratio of electric field to neutral density [53, 

p. 8]. The physical nature of the ion-specific 𝛼 is somewhat complex and not yet fully 

understood. According to a published study, the most prominent hypothesis is that the 

field-dependence phenomenon can be explained by the sample ion clustering with the 

drift gas molecules and/or dopant (water or some other VOC) molecules [57]. Depending 

on 𝛼, some ions in the sample chamber will drift towards the electric-field-generating 

(top and bottom) electrodes due to a phenomenon called direct current (DC) bias shift 

[56]. This means that without an added DC compensation voltage to the asymmetric 

voltage waveform, only the ions or ion swarms that are not dependent on 𝐸 will reach the 

detector. Ions, which have 𝐾0 on 𝐸 dependence, will lose their charge before reaching the 

detector, due to the collision with the top or bottom electrode of the drift chamber. This 

behavior is illustrated in Figure 7, where a schematic representation of the drift chamber 

in a DMS device is presented. 
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Figure 7. A schematic representation of the drift chamber in a DMS device. The 

notations t1 and t2 signify the durations of the high-voltage and low-voltage periods of 

the asymmetrical radio frequency waveform, respectively. α is a function describing the 

dependence of mobility on the ratio of electric field to neutral density. [53, p. 9] 

The possibility to change the radio-frequency voltage waveform (𝑉𝑅𝐹), and the DC 

compensation voltage (𝑉𝐶), enables the high ion selectivity of the DMS. The final output 

of the device is a data matrix, where every cell (pixel) represents a measured detector 

response with a certain value of 𝑉𝑅𝐹 and 𝑉𝐶. The 3-dimensions of the measured data are 

commonly presented with a two-dimensional color plot, a so-called dispersion plot. The 

y-axis of the plot signifies the values of 𝑉𝑅𝐹, and the x-axis shows the values of 𝑉𝐶. The 

detector response is represented by a color, usually by using a heat map color-scheme, 

where (in the case of positive ions) the highest value is indicated with red, and the lowest 

with blue. If the dispersion plot is made for negative ions, the color scheme is reversed. 

An example of a dispersion plot for a positive ion spectrum measured from the tissue 

smoke of a porcine brain sample can be seen in Figure 8. 
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Figure 8. An example of a dispersion plot for a positive ion spectrum measured from 

the tissue smoke of a porcine brain sample.  

Perhaps the most important permanent feature in the dispersion plots is the reactant ion 

peak (RIP), which in Figure 8, can be seen as the rightmost ion ‘’finger’’ (starting from 

𝑉𝐶 ≈ 3 𝑉). The formation of ions from the sample happens mostly through chemical 

reactions between reactant ions and the sample molecules [53, p. 4]. One example of a 

reactant ion source is gaseous water molecules in the ambient air. If the RIP is not visible 

in the dispersion plot, it means that the sample molecules have no reactant ions to react 

with, to produce sample ions. This means that the measurement can be considered as 

saturated, which means that distinctive features of the sample might not be visible in the 

ion spectrum anymore. The saturation of the DMS response can be prevented by lowering 

the sample concentration. The RIP is a key feature in the dispersion plots, and thus it 

could be utilized for example in a dilution feed-back loop, which checks the presence or 

intensity of the RIP with a short (less than a second) sweep, and adjusts the dilution of 

the sample based on it for the actual measurement.  

Even though in some cases the sensitivity of the DMS is a favorable property, it can also 

become a problem if the concentration between successive measurements varies 

significantly (from high to low) and if the measurements are conducted in quick 

succession. When the measurement system does not have enough time to clean itself with 

purified air or other carrier gas after a measurement, the possible residual molecules 
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(especially in a high-concentration sample) can affect the dispersion plot of the following 

measurement due to the high sensitivity of the device. 

When considering analytical measurement methods for gas-phase substances, gas 

chromatography mass spectrometry (GC-MS) is considered as the gold standard, due to 

its capability for exact quantitative analysis. However, there are some problems in the 

applicability of GC-MS for certain applications. GC-MS devices measure the sample in 

a vacuum, whereas DMS works in atmospheric pressure [58]. Also, GC-MS 

instrumentation is not capable of consecutive low-latency dynamic measurements due to 

the substance-specific retention times of the gas chromatograph (GC) column, which is 

needed to separate the compounds before the MS analysis. In addition, the use of GC-MS 

requires skilled professionals, unlike DMS, which can be operated by anyone, if provided 

with brief instructions. DMS devices can also be miniaturized, which is an advantage 

compared to the heavy and space consuming GC-MS instrumentation [58, 53, p. 10]. The 

cost of the devices is another factor, where the DMS can be considered favorable. Most 

GC-MS devices are in the price range of $100 000–$500 000 [58,59], whereas DMS 

devices can be bought with $10 000–$50 000, with the prices depending on the 

manufacturer [12]. 

Still, while the GC-MS produces clear information of the components of the measured 

sample, the analysis of the DMS can be considered as more of a ‘’black box’’ method. 

This means that the output dispersion plot will not explicitly reveal what kind of 

molecules there were in the sample, and how many of them were detected. Instead, the 

output will be a ‘’smell fingerprint’’, which will differ depending on the cell contents of 

the vaporized sample. However, different molecules can also overlap in the dispersion 

plot if their mobility is similar enough (and especially if the measurement resolution is 

limited). When talking about MS, the ability to distinguish the overlapping ion peaks from 

each other is often described by the term resolving power (𝑅), which is dependent on the 

mass-to-charge ratio of the ions as such: 

𝑅 =
𝑀

∆𝑚
, (6) 

where 𝑀 is the mass-to-charge ratio of the ion, and ∆𝑚 is the resolution in that particular 

mass-to-charge value [60, p. 25]. This means that the resolving power does not remain 

constant in the measurement range of the system if the resolution is constant, and vice 

versa. To clarify with an example, a hypothetical device with a constant 𝑅 of 3000 will 

be able to separate an ion with 𝑀 of 3000 from an ion with 𝑀 of 3001 (so the resolution 

is 1). However, the same device could also separate ions with 𝑀 values of 300.0 and 

300.1 (so the resolution in that case would be 0.1). For DMS, the resolving power is 

defined a bit differently. It is expressed as the compensation voltage at the maximum 

height of the ion peak divided by the width of the peak at half of its maximum value [53, 
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p. 172]. When comparing the resolving power, MS is superior to DMS. According to a 

study, the highest resolving power achieved with DMS is in the region of 400–500, 

whereas the resolving power of basic MS devices are usually several thousands [61, 60, 

p. 25]. Despite its few disadvantages compared to (GC-)MS, the advantages of DMS, 

such as its simplicity, detection limit, price, and capability for fast analysis, makes it 

potentially more suitable for intraoperative cancer detection from diathermy smoke than 

other methods. 

2.5 Analysis and classification of differential ion mobility 

spectrometry data 

The DMS analysis of two significantly different samples, for example clean air and 

isopropanol, can produce dispersion plots, which are easy to differentiate even by visual 

inspection. However, in terms of diathermy smoke generated from various tissues, the 

differences in the dispersion plots might not be so clear. This is the reason why 

computational data analysis and machine-learning-based classification methods are 

needed to achieve a more reliable and effective diagnosis.  

In the case of the DMS used in this research, the data stored in a dispersion plot or ‘’smell 

fingerprint’’ are numerical values that represent the electrical current produced, when the 

ion (or ion cluster) collides with the detector plate. Each pixel in the dispersion plot is a 

single current value, which has been measured with a certain 𝑉𝑅𝐹 and 𝑉𝐶 voltage. When 

analyzing the type of 3-dimensional result matrix that the DMS produces, the amount of 

data, especially in high-resolution, or consecutive, dynamic, real-time measurements, will 

expand to a scale that is not feasible to analyze without computational methods.  

When the aim of the data analysis is to differentiate multidimensional and potentially 

dynamic numerical data, the most suitable method depends on the information available. 

To prevent any possible bias in the analysis of measurement data, scientist in all fields 

are encouraged to use methods that do not require any preexisting knowledge of the data 

set (e.g. tissue type) [62]. In the case of machine learning, these methods are referred to 

as unsupervised learning [63]. Unsupervised learning methods aim to find structures in 

data and learn the decision-making without any examples of what is considered 

‘’correct’’. One example of an unsupervised learning method is hierarchical clustering, 

in which an algorithm creates a hierarchical decomposition of the measured data [64]. An 

example of a machine learning method, which can utilize hierarchical pattern clustering 

is Self-Organizing Maps also known as Kohonen Maps [65]. In hierarchical clustering, 

the algorithm does the decomposition by considering each object as an individual cluster, 

and then begins to search and group similar objects with each other, based on a distance 

measure that is dependent on the structure of the data. The algorithm can also work the 

other way around, so that it starts with one combined cluster and then separates them 
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based on some data features [64]. The output of hierarchical clustering can be visually 

expressed by a so-called heatmap, which presents a data matrix with color-scaled 

rectangular cells in such a way that the color of each cell corresponds with the numerical 

value of that element [66]. An alternative presentation method is a dendrogram, in which 

the data are presented in a tree-like structure, where the similar samples are branched 

together. The clusters that the algorithm considers separate classes, are usually 

highlighted with distinct colors. An example of a dendrogram can be seen in Figure 9. 

 

Figure 9. An example dendrogram made from a measurement set with 14 tissue 

samples. In this case, the algorithm found four distinct clusters. The x-axis represents 

an arbitrary distance measure based on the structure of the data. 

If a priori information about the real classes of the data set is available, the data analysis 

and classification can also be done with supervised learning methods. The term can be 

used to describe any machine learning process, where the decision-making process of the 

algorithm is based on learning data features from a set of known objects (training set) 

[63]. In the case of classification, the function of the supervised method can then be 

evaluated with samples in a test set, for which the method has to assign the class. The two 

supervised learning methods used in this research to classify the tissue samples were 

linear discriminant analysis (LDA) and k-nearest neighbor (kNN) classifiers. 

LDA is based on Fischer’s discriminant, which works by trying to find a projection to a 

lower dimension for the input variables, while not losing the separability property of the 

classes [67]. If revised in machine-learning terms, LDA aims to achieve dimensionality 

reduction for the data by feature projection. The dimensionality reduction improves the 

classification accuracy by reducing the variance and noise of the original higher-
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dimensional data set [68]. LDA is a common supervised classification method, which has, 

for example, also been used to classify the results of the REIMS-studies [69]. 

As the name of the method partly implies, kNN makes the classification decision for a 

test sample based on what are the k-closest training samples to it in a two-dimensional 

(Euclidean) plane, with k being a non-zero positive integer [70]. If simplified to the 

application in this research, this means that the kNN classifier handles the full DMS data 

set of one measurement as a single point in a two-dimensional plane, and tries to find its 

closest neighbors in the same dimension-reduced plane. If the k-number of points closest 

to it are, for example, DMS measurements from liver tissue, the classifier assigns liver as 

the class of the unknown test sample. In a ‘’tie’’ situation, where e.g. the samples closest 

to the test sample for 2NN are of different class, the classification is commonly based on 

which of the training samples is the closest. In other words, ties in kNN classification can 

be settled with 1NN.  

Besides unsupervised or supervised, a machine learning method can also be semi-

supervised, which means that it combines features from both methods, so that it uses both 

unlabeled and labeled data [71]. Semi-supervised learning is faster, cheaper, and better 

than the alternatives in many real-life applications, since the availability of unlabeled data 

is often far greater than that of labeled data. However, semi-supervised methods can 

perform worse than supervised learning methods if, for example, the initial parameters or 

underlying distributions of training data sets have been modelled or assumed wrong [71]. 

In all machine learning methods, there is a risk of overfitting, which means that the 

training data teaches the algorithm to make its classification decision based on features 

or values that are not representative of the actual class, but instead are just variance or 

noise of that particular training set [72]. To increase the reliability of the classifier and to 

estimate how well the classifier performs with an independent set of data, a process called 

cross-validation is often used [73]. In cross-validation, a distribution of test set and 

training set pairs are created from a single data set, which makes it an internal validation 

method [74,75]. The alternative way to examine the degree of overfitting in the algorithm 

is to use external validation, in which a fully independent test set from a separate set of 

data is used. In this research, the classifiers were cross-validated with a method, where 

the data set is partitioned into as many subsets, as the data set has. The classifier is then 

tested by using each of the single-item subsets individually as a test set, while every other 

sample creates the training set [76]. The term used for this method is leave-one-out cross-

validation (LOOCV). 

After a machine learning algorithm has been programmed and validated, there is a 

possibility to make it adaptive, so that it teaches itself and modifies its decision-making 

process automatically through new data, without any manual labor by the programmer. 

In other words, the machine learning task can be implemented in an artificial neural 
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network (ANN), which imitates the biological neural network of the human brain, by 

basically dividing the task to several layers of neurons [77]. If the ANN has a large 

number of interconnected hidden layers of these artificial neurons, and a substantial 

amount of available training data, the process can be described as deep learning [78]. In 

the context of creating a method for intraoperative cancer margin detection, the concept 

of deep learning becomes relevant, when we reach a point, where the system is already 

implemented in multiple operating theaters worldwide. If that happens, the data from 

several thousands of surgeries could be collected in a cloud based data reserve, which 

would then work as a constantly growing learning basis for the classification algorithm 

of the system. 

Besides the differentiation and classification of multiple sample types, one of the goals 

of this project is to use the proposed system as an initial method to qualitatively diagnose, 

whether a certain electrosurgical cut was made to healthy tissue or cancerous tissue. In 

these kinds of diagnostic tests with a binary outcome, the performance of the method is 

usually measured with the diagnostic parameters, sensitivity, specificity, positive 

predictive value (PPV), and negative predictive value (NPV) [79]. Sensitivity is used to 

describe the probability of getting a positive test result, when the test subject has the 

disease. The value is calculated by dividing the number of true positives (TP) by the total 

number of the patients with the disease. The probability of not having the disease, when 

the test result is negative, is described with specificity. Specificity is calculated by 

dividing the number of true negatives (TN) by the total number of the patients without 

the disease. PPV is used to express the probability that the patient will have the disease if 

the test result is positive, and it is defined as the relation of TP to all positive test results. 

NPV, which is calculated by dividing TP by all negative test results, tells the probability 

that the patient is disease-free, when the test is negative. Usually the diagnostic 

parameters of a test are presented alongside a standard 2-by-2 table depicting the number 

of TP, false positives (FP), TN, and false negatives (FN). An example can be seen in 

Table 1. 

Table 1. Diagnostic table for a test depicting the values of the most important 

diagnostic parameters. 

 Disease present Disease absent  

Positive test result True positives (TP) False positives (FP) PPV = 
TP

TP+FP
 

Negative test result False negatives (FN) True negatives (TN) NPV = 
TN

TN+FN
 

 Sensitivity = 
TP

TP+FN
 Specificity = 

TN

TN+FP
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Besides the diagnostic parameters, a method or a test needs both high accuracy and high 

precision, to be reliable. Accuracy conveys the ability to produce output responses that 

are true to the expected or real response for the given input, while precision expresses the 

variability of the output signals (high precision means less variability) [80]. In a DMS for 

example, high precision and high accuracy would mean that the dispersion plot of a given 

tissue smoke would be consistently similar in all measurements, and that it would match 

the actual ion mobility spectrum (the expected ‘’smell fingerprint’’). 

Another relevant characteristic of a test, which aims to classify a sample as a certain type, 

is the overall correct classification rate (CCR). CCR is simply the number of the samples 

that have been classified as the true class, divided by the total number of samples in that 

class (in this thesis presented as percentage). The complementary term for CCR is 

misclassification rate, which describes the ratio of incorrectly classified samples. If the 

CCR of the system is high enough in terms of several types of cancers and healthy tissues, 

the system could be utilized in a more thorough analysis with multiple classes in addition 

to the simple qualitative ‘’cancer-or-healthy” test. In this kind of a more complex analysis, 

the classification results from supervised learning methods are often presented in a so-

called confusion matrix, which is a two-dimensional matrix, where the rows represent the 

true class of a test sample and the columns represent the class assigned by the classifier 

[81]. Without the additional statistical parameters calculated from the test results, the 

diagnostic table presented in Table 1 would also be a special case of a confusion matrix, 

with only two possible classes. Often, the cells in confusion matrices are colored, 

similarly as in a heatmap, to help the reader to interpret the results more easily. An 

example of a confusion matrix, presented in a similar format as the actual results in 

chapter 5, can be seen in Table 2. 

Table 2. An example of a confusion matrix. The columns represent the assigned 

class, and the rows represent the actual class for ten samples of A, B, C, and D. In this 

example, a classifier has misclassified one A sample to class C, and one C sample to 

class D, while the B and D samples have all been correctly classified. The overall CCR 

is 95.00 % 

 
 Assigned class 

  A B C D 

T
ru

e 
cl

a
ss

 

A 9 0 1 0 

B 0 10 0 0 

C 0 0 9 1 

D 0 0 0 10 
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3. METHODOLOGY AND MATERIALS 

The measurement system used in this research was built in co-operation with doctoral 

student Markus Karjalainen at TUT. The measurement system can be divided into four 

distinct parts: the electrosurgical sampling, the electric filter, the differential ion mobility 

spectrometer, and the computational data analysis. This chapter focuses on each part of 

the measurement system individually in the aforementioned order. The particle 

measurement unit used in the first measurement set is also introduced after the main parts 

of the system. 

3.1 Electrosurgical sampling 

The first part of the measurement system is the sampling unit, which is used to produce a 

controlled amount of diathermy smoke accurately and with some degree of automation. 

The sampling unit consists of a diathermy knife attached to a modified 3D printer, and a 

smoke evacuator. 

The diathermy device is a commercially available Itkacut 350MB (Innokas Medical Oy, 

Finland), which can be used for bipolar coagulation as well as monopolar coagulation, 

cutting, and blend [82]. There is no impedance compensation in the device, which means 

that the voltage remains the same regardless of the operated tissue, which in turn leads to 

variations in the cutting power between different tissues. Monopolar knife electrodes, 

which were used in all measurements, were 2.35 mm wide and 0.5 mm thick, and they 

were manufactured by the company HEBUmedical GmbH (Germany). The movements 

of the surgical knife electrode were controlled by computerized numerical control (CNC). 

The CNC device used in the system was built from a REPRAP Mendel Prusa i3 kit 

(KitPrinter3D, Spain) by Mikael Silenius and Teemu Laine as a part of their bachelor of 

science thesis research in 2015 [83]. The assembled CNC system is otherwise a normal 

3D printer, but the extruder is replaced with a diathermy knife and the heater of the printer 

bed is disabled, since it serves no purpose in this application. The printer bed is plated 

with a stainless-steel sheet, which functions as the ground electrode for the monopolar 

knife electrode. The plate also has an imprinted millimeter grid to help in the sampling 

process (focusing the knife in relation to the sample piece, and distance estimation). The 

knife is supported and kept in place at the control frame of the printer by a custom-made 

polylactic acid (PLA) holder. Next to the surgical knife in the sampling system is an inlet 

tube made of Tygon®, which is connected to the smoke evacuator. The medical grade 

smoke evacuator SURTRON® EVAC (LED SpA, Italy) is specifically designed for 

surgical procedures. The power of the smoke evacuation can be controlled from the front 

panel of the device, and it can be set to one of the evacuator’s predetermined levels 1–9. 
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When using the lower power levels, the smoke evacuation efficiency of the device during 

cutting is not always 100 %, so in order to prevent the surgical plume from contaminating 

the measurement laboratory, all parts of the sampling unit were placed inside a fume hood 

for the duration of this research. The electrosurgical sampling unit can be seen in Figure 

10.  

 

Figure 10. The electrosurgical sampling unit inside a fume hood. 

The computer control of the surgical instrument in three dimensions is achieved by 

sending G-code commands to the control circuit of the printer via a serial port connection. 

G-code, also known as the standard ISO 6983, is the commonly used name of the 

programming languages utilized in current numerical control systems [84]. The G-code 

commands were written in MATLAB (The MathWorks Inc., U.S.A) scripts. In addition 

to assembling the CNC-system itself, Silenius and Laine also created the initial 

MATLAB-based graphical user interface (GUI), which conveys the script commands to 

the printer control circuit and which can be used to create an automated measurement 

sequence with a desired number of electrosurgical cuts. By using the GUI, the user can 

also determine the cutting pattern, distances between the cuts and depth of the incision. 
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The possibility to accurately and freely modify the cutting parameters and sequences is 

essential in creating a standardized research and development model for the 

measurements, before eventually moving on to clinical practice, where the diathermy 

knife will be controlled by the operating surgeon. The GUI was created by using 

MATLAB’s GUIDE toolbox. During this thesis project, several changes to the code and 

structure of the GUI had to be done to accommodate the different measurement protocols 

and their respective challenges. The graphical user interface in its final form after the 

brain tumor measurements is presented in Figure 11. 

 

Figure 11. The graphical user interface of the CNC sampling unit. The 

communication port connection between a computer and the CNC device can be 

established and disabled by the push buttons on the upper left corner. The 

PARAMETERS/START-UP block can be used to create an automatic measurement 

sequence with the desired cutting parameters. The sequence can be executed, stopped, 

and tested (without activating the diathermy knife) by the push buttons on the bottom. 

The MANUAL CONTROL block can be used to manually alter the state of the 

diathermy knife and move it in three dimensions. The Home button moves the knife to 

the starting position (X = 0, Y = 0, and Z = 0). The STATUS WINDOW block shows the 

status (ON/OFF) of the CNC-computer connection and the diathermy knife. 
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3.2 The electric particle filter 

The plume created by the diathermy knife in electrosurgical operations is rich with 

different-sized particulate matter, which is not only dangerous to the operating staff, but 

which will contaminate the measurement system if left unaltered. That is why, directly 

after the electrosurgical sampling unit, the electric particle filter is the next active 

component in the measurement system. The inlet tube of the filter is connected to the 

smoke evacuator inlet by a brass T-connector. Part of the produced surgical plume will 

go through the electric particle filter instead of reaching the smoke evacuator, since there 

are M/58112/09 (Norgen Finland Oy, Finland) vacuum ejectors on the outlet ports of the 

electric filter, which create a negative pressure and thus guide part of the sample flow 

towards the filter inlet. The electric particle filter, its schematics, and the combination of 

the filtration solution with the rest of the proposed system are intellectual property owned 

by the Finnish company Olfactomics Ltd (Patent number: 20175319, patent pending) 

[85]. 

The structure of the filter is relatively simple. It consists of a 1 mm thick cylindrical 

copper casing with an inner diameter of 20 mm, PLA end pieces that hold the casing in 

place, and a corona needle made from stainless steel. The filter has one inlet and two 

outlet ports. The inlet and outlet connectors are made from stainless steel. The first outlet 

in the outer rim of the second PLA end piece is designed to work as a waste outlet for the 

filter by removing large particulate matter. The second outlet port is located at the stem 

of the corona needle. A 3D schematic representation of the electric filter with its key 

structural points highlighted can be seen in Figure 12. 
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Figure 12. A 3-dimensional schematic representation of the electric filter. The 

abbreviations refer to the structural key points of the filter: FG1 is the unaltered inlet 

flow, EF1 is the electric field created by the potential difference between the corona 

needle (ELEC1) and the cylindrical copper casing (ELEC2), P2 is a positively charged 

particle created by the corona discharge, MG1 is the sample flow with only the neutral 

gas phase molecules egressed by the sample outlet (112), and MG2 is the waste flow, 

which exits through the waste outlet (114). Adapted from [85]. 

The function of the filter relies on creating a corona discharge, which ionizes the incoming 

large smoke particles (µm-range and higher particle diameter), but leaves the small gas 

phase molecules (pm or nm-range particle diameter) neutral. In these measurements, we 

created a positive corona discharge by using a SL50P10 high voltage source (Spellman 

High Voltage Electronics Corporation, U.S.A.). The maximum value for the potential of 

the corona needle was designed to be 5 kV, due to the voltage limit of the safe high voltage 

connectors between the voltage source and the filter. When the larger particles are 

charged, they drift towards the copper casing of the filter due to the electric field created 

by the potential difference between the needle and the casing. Upon impact, the particles 

lose their electric charge, and adhere to the filter casing. Depending on the total airflow 

going through the filter, some of these particles might detach from the casing and return 
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to the airflow. These particles will not however contaminate the sample flow, since they 

will drift towards the waste outlet on the outer rim of the filter. By keeping the measured 

sample flow free of large contaminants, the electric particle filter enables multiple 

consecutive measurements and thus is essential in creating a functional device that could 

withstand hours of surgery without contamination-related malfunctions. In addition, the 

design of the filter is especially favorable in terms of measurement dynamics. Unlike, for 

example, glass fiber filters, the electric filter does not hinder the flow of air at any point, 

and thus does not significantly affect the kinetics of the measurement. This is an 

extremely crucial property when considering the ultimate real-time target application of 

this research. 

Another potentially favorable property of the electric filter is that it produces ozone as a 

result of ionizing the oxygen molecules in the carrier gas (if the carrier gas contains 

oxygen) [86]. Ozone is a powerful oxidant, which can eradicate viruses and bacteria by 

destroying the cell walls of the micro-organisms by an oxidative burst [87]. This means 

that the harmful micro-organic contaminants in the diathermy smoke will not only be 

filtered by the electric filter, but also potentially inactivated, preventing any bacterial 

growth within the exhaust tubes or the filter casing. In a brief separate measurement done 

after the thesis research, the ozone creation in the electric filter was studied by using 

Model 205 Dual Beam Ozone Monitor™ (2B Technologies Inc, U.S.A). The 

measurement revealed that with similar parameters as used in the thesis research, the filter 

is capable of producing an estimated 0.5–2.0 ppm concentrations of ozone, depending on 

the corona discharge current and total air flow through the filter. In water, these 

concentrations are enough to destroy over 99 % of common bacteria and viruses in 

seconds, but in air, the same percentages require a longer exposure time (minutes) or 

higher ozone concentrations (hundreds of ppm) [88]. The ozone production in the filter 

could be increased with some technical modifications, for example, by making the corona 

needle from a different metal, or by creating the corona discharge with negative voltage 

instead of positive [89]. 

3.3 ENVI-AMC® differential ion mobility spectrometer 

After the preliminary sample has been modified by the particle filter to remove the soot 

particles and other contaminants, the mobility of the remaining molecules can be 

measured. The measurement is conducted with an ENVI-AMC® differential ion mobility 

spectrometer. The DMS device was manufactured by the Finnish company Environics 

Oy and it was primarily designed for real-time ultra-low level detection of ammonia and 

acids in clean room facilities [90]. The device uses an americium-241 (241Am) radioactive 

isotope as its ionization method, and according to its technical datasheet it can detect 

substances in the concentration region of parts-per-trillion (ppt) in seconds [90]. The 

output quantity of the device is a pA-scale electric current, which is produced, when the 
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sample ions reach the detector plate and lose their electric charge. The favorable 

properties of the device, such as its sensitivity, price, and available technical support 

(courtesy of M.Sc. Osmo Anttalainen) were the reasons why the ENVI-AMC® was 

chosen as the primary measurement device. The possibility to freely modify the 

measurement scripts to match different purposes was also extremely suitable for this 

research and the development of the system, since it allowed iterative experimentation 

and determination of optimized analysis parameters. 

Even though the electric particle filter removes the large particles, the over-abundance of 

small gas-phase scent molecules in the sample flow is still too much for the sensitive ion 

mobility spectrometer to measure without becoming saturated. That is why, before the 

sensor, the sample flow was diluted in all measurements by a two-fold dilution system. 

The dilution was done by feeding the sample gas to M/58112/09 vacuum pump ejectors 

with dilution gas coming from TUT’s central pressurized air pipelines. Before the 

ejectors, the pressurized air passed through a cylindrical steel container filled with 0.5 nm 

molecular sieves, and a second container filled with active carbon, to make sure that the 

carrier gas was dry and free of contaminants. The dilution system was connected to the 

electric filter sample outlet and ENVI-AMC® by polytetrafluoroethylene (PTFE) tubing. 

Like every other commercially available DMS device, the function of the ENVI-AMC® 

is based on creating strong electric fields and differentiating the ion clusters by an 

asymmetric periodic electrical waveform. Almost all of the measurement parameters can 

be altered, and different measurement protocols with varying duration and resolution can 

be made by creating scripts in the device’s own GUI. The GUI can be accessed by 

connecting a monitor to the device or by using an internet browser in a shared wireless 

network. The scripts are written in the scripting language Lua, which is an embeddable, 

lightweight, and fast language commonly used in many industrial applications and video 

game programming [91, p. 2]. When using a basic script, where the compensation voltage 

(𝑉𝐶) and the voltage of the asymmetric waveform (𝑉𝑅𝐹) rise in regular increments, a 

dispersion plot of the ion mobility spectrum is shown on the main page of the GUI after 

a measurement. An example of this type of a typical dispersion plot created by the ENVI-

AMC®, when measuring purified pressurized air can be seen in Figure 13. In addition to 

the ion spectrum, the device also saves useful metadata, such as ambient temperature and 

humidity values of the measurements in its memory, from where they can be downloaded 

for further processing and analysis. 
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Figure 13. An example of a dispersion plot from dried and filtered air as seen in the 

ENVI-AMC® graphical user interface. Without an actual sample, the only distinctive 

feature in the dispersion plot is the RIP. 

3.4 Data analysis 

The ENVI-AMC® GUI can be used for simple qualitative visual inspection of the data 

to detect, for example, a notable change in the level of ammonia in a clean room, but in 

more complicated measurements, computational data analysis is needed. In this research, 

the chosen method for the analysis was MATLAB-based processing and classification 

algorithms. Due to the complex multidimensional nature of the DMS data and changes in 

the measurement protocols, multiple scripts had to be made. Even though the 

measurement data was not the same type in all the measurements, the analysis in almost 

all cases can be divided into four phases: initial download of the raw data from the 

measurement device to a computer, pre-processing and modification of the raw data, 

calculations or classification based on the modified data, and graphical or numerical 

representation of the analysis. 

The data from the first measurement set was largely different from the other two sets, 

since the measurements were not done with the ENVI-AMC®, but instead, only the 

filtration efficiency of the electric filter was studied by measuring mass changes, color 

intensities, and particle distributions. The analysis based on mass changes was done by 

simply comparing the measured mass values, which were acquired with an XR 205SM-

DR semi-micro balance (Precisa Gravimetrics AG, Switzerland, readability 0.01 mg). 

The processing of the particle distribution data was also straightforward, since the 

analysis only required modification of the raw data from the used electrical low-pressure 
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impactor with a pre-made MATLAB-script. The color analysis of the filtration efficiency 

was done by using the sum of the pixel color intensity values from a 16-bit color-coded 

planar scan of glass fiber filters as a metric for the contamination level in cases, where 

the electric filter was either active or inactive. In a 16-bit color-coded image, each pixel 

is represented by a vector with three elements. These elements represent the intensity of 

the colors red, green, and blue in the pixel and their numeric value is an integer between 

0 and 65535 (216-1). In order to simplify the contamination metric to just one numeric 

value, the individual scans of the filters were first transformed to grayscale images. This 

means that each pixel of the modified images had only one of the 65536 different shades 

of gray and thus, the color intensity of each pixel could be represented by only one value 

instead of three. The intensity range of the grayscale image pixel value was normalized 

and reversed, so that value 0 equaled the brightest shade (white) and 1 equaled the darkest 

(black). A metal casing in which the glass fiber filters were placed during the 

measurement, prevented the full contamination of the glass fiber filters, which meant that 

a large area of the filters was not affected by the smoke at all and consequently was not 

dyed by the surgical smoke. Therefore, the color analysis was done to an area of 200×200 

pixels from the middle of each filter, even though the resolution of the initial scans with 

the used Epson Perfection 4870 Photo scanner (Seiko Epson Corporation, Japan) was 

9600×9600. 

As for the measurements based on DMS responses, the steps in the data analysis were 

more similar in all measurement sets. First, the raw data of all measurements in the set 

were downloaded from the ENVI-AMC® to a computer. The raw data were then pre-

processed to remove possible unwanted measurements, to add descriptive data (tissue 

type), and to slightly modify the structure of the data. After the data were pre-processed, 

the actual classification was done. The supervised classification methods that were used, 

were LDA and kNN. Both classifiers were programmed by using the pre-existing 

MATLAB functions (fitcdiscr for LDA, and fitcknn for kNN). The classifiers were cross-

validated by using LOOCV. After the creation of the cross-validated classifier, the pre-

processed data matrix was analyzed and the classification results were presented in a 

confusion matrix. The initial pre-processing, and classification scripts were made by 

D.Sc. Pekka Kumpulainen and medical student, B.Sc. Lauri Hokkinen. During the thesis 

research, several changes to the initial scripts had to be made to accommodate the changes 

in measurement parameters. 

By combining the electrosurgical sampling, the electric particle filtration, ENVI-AMC®, 

and the data analysis, the framework for a system capable of diathermy smoke analysis is 

complete. Still, the modular nature of the system enables some experimentation and 

modification to the ensemble, without needing to fully disassemble the complete device. 
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3.5 Electrical low-pressure impactor 

In addition to the four main modules of the measurement system, an electrical low-

pressure impactor (ELPI®, Dekati Inc., Finland) was needed in this research to validate 

the function of the electric particle filter. The ELPI® system was also used for the 

additional particle mass, size, and number distribution measurements, from which the 

results are presented in a separate journal article, which was submitted for publication 

during the thesis work [92]. The ELPI® system used in the measurements was loaned 

from the department of aerosol physics at TUT. The ELPI® replaced the DMS as the 

primary measurement device for the diathermy smoke in the first measurement set. 

The ELPI® system is capable of real-time particle size, mass, and number distribution 

measurements for particles in the size range of 7 nm to 10 µm [93]. The function of the 

system can be divided into three parts. First the particles in the measured aerosol sample 

are charged with a unipolar corona charger. Then, the charged particles enter the impactor 

region, where a cascade low-pressure impactor collects the different-sized particles with 

insulated collection plates. Lastly, the charge of the incoming particles is measured in 

real-time by sensitive electrometers. The resulting current signal is directly proportional 

to the size, and number concentration of the particles, which means that from the real-

time current value, the particle concentration and size distributions can be derived [94]. 
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4. MEASUREMENTS 

The aim of this research was to test the capability and functionality of the proposed 

measurement system, first in tissue identification and finally in cancer detection. Before 

the actual tissue measurements, the functionality of the electric particle filter was verified 

by particle measurements. In this chapter, the goals, measurement protocols, and the used 

equipment for each measurement are specified. All the measurements in this research 

were conducted in TUT at the department of Automation Science and Engineering (after 

1.1.2017, BioMediTech Institute and Faculty of Biomedical Sciences and Engineering). 

The flow rates were measured and calibrated with Gilian Gilibrator-2 NIOSH Primary 

Standard Air Flow Calibrator (Sensidyne, Schauenburg International GmbH, Germany). 

All non-human tissue samples used in the measurements were acquired from a 

slaughterhouse (Paijan Tilateurastamo, Urjala, Finland) or from a normal grocery shop. 

The human samples were collected by Dr. Hannu Haapasalo and Dr. Joonas Haapasalo 

at Fimlab laboratories and measured with the approval of the Regional Ethics Committee 

of Tampere University Hospital. 

4.1 Particle measurements 

The electric particle filter is a crucial part of the measurement system and at the same 

time the only part that is not commercially available (at the time of writing this thesis, 

August 2017). This also means that it is the only part of the system that has not been 

subjected to extensive experimental research. Its novelty and importance in creating the 

ultimate target application for intraoperative cancer margin detection were the reasons 

why particle measurements with the electric filter were chosen as the first measurement 

set. 

In order to thoroughly investigate the efficiency of the electric filter, the particle 

comparison between the cases, where the filter was active (ON), and where it was inactive 

(OFF), were done in three different ways. First the filtration efficiency was evaluated 

visually by color intensity analysis of glass fiber high efficiency particulate air (HEPA) 

filters (grade 691, 9.0 cm diameter, VWR International, U.S.A.). HEPA is a term used 

for filters, which can filter at least 99.97 % of 0.3 µm particles [48]. The second evaluation 

method relied on the mass change of the HEPA filters, and finally the third method was 

a quantitative analysis of particle mass and number distributions by using the ELPI® 

system. 

The HEPA filter measurements were relatively simple, and the visual evaluation and mass 

based evaluation were executed concurrently with the same filters. First, a HEPA filter 
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was placed inside a steel casing which had an inlet and an outlet port. The casing was 

then connected to the sample outlet port of the electric filter, and no other alterations were 

done to the main measurement system. With the HEPA in place, a total of eight surgical 

cuts were made to a piece of kidney from a Finnish Landrace pig. The cuts were 5 mm 

long, 2.35 mm wide, and the power of the diathermy knife was set to 120 W (mode: 100 

% cut). The depth of the cuts varied slightly depending on the shape and height of the 

tissue piece. The cutting pattern and its effect on the tissue sample can be seen in Figure 

14. 

 

Figure 14. A piece of porcine kidney after the cutting sequence in the first particle 

measurement set. The cutting sequence started from the bottom of the tissue piece and 

ended after the topmost cut.  

After the eight cuts were made, the HEPA filter was removed from the metal casing and 

placed inside a petri dish. The process was then repeated with 9 additional HEPA filters. 

In the case of the first five HEPA filters, the electric particle filter was inactive, and it 

was turned on for the last five HEPA filters. All HEPA filters and tissue samples were 

weighed with the XR 205SM-DR semi-micro balance before and after the electrosurgical 

cutting. After the ten filters were subjected to the diathermy smoke, they were scanned, 

first all at once, and then individually with the Epson Perfection 4870 Photo scanner with 

identical settings for each filter. The scanning was made against a white paper 

background. The scan resolution for the individual scans was 9600×9600 pixels and the 

images were saved with 16-bit color-coding in Tagged Image File Format (TIFF) in order 

to get high quality files for the color intensity inspection. 
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The quantitative analysis of mass and number distributions with the ELPI® system were 

done after the HEPA measurements. The ELPI® system was borrowed from the 

Department of Physics at TUT and the measurements were done in co-operation with 

postdoctoral researcher Sampo Saari. The particle filtration efficiency of the electric filter 

was examined by a simple experiment, where the state of the electric filter was alternated 

between active and inactive between electrosurgical cuts to pig liver. The cuts were 

approximately 4 mm deep, 5 mm long, and 2.35 mm wide. Due to the high number of 

particulate matter in the raw sample gas, the ELPI® system saturated to its maximum 

current value, when there was no dilution and the electric filter was inactive. In order to 

increase the dynamic range of the measurement, the sample gas created by electrosurgical 

cutting was guided towards the ELPI® by using an ejector diluter (Dekati Diluter DI-

1000, Dekati Inc., Finland). The ejector diluted the sample gas at a ratio of approximately 

1:8.6, after which it was further diluted with a side flow to a total dilution ratio of 1:45. 

The dilution gas was pressurized air from TUT’s central pipelines. The ELPI® system 

was set to measure the particle distribution from the diluted sample flow at the end of the 

measurement setup. A schematic representation of the particle distribution measurement 

setup is visible in Figure 15. 

 

Figure 15. Schematic illustration of the measurement setup used in the particle 

distribution measurements. The electric filter was added before the ejector in the filter 

validation experiment. The flow direction of sample gas is depicted with arrows and the 

value of the flow rate can be seen beside them. The waste flow (0.5 l/min) was guided to 

a fume hood. [92] 
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The use of the ELPI® system in the filter experiment offered the possibility to add 

scientific value to the research by conducting another measurement set. The diathermy 

smoke is known to be hazardous to the operating staff, but the distinction between 

different tissue plumes has not been examined in many publications. The goal of the 

additional particle measurement set was to measure the particle mass and number 

distributions in the case, where ten different tissue types were subjected to identical 

pattern of electrosurgical cutting. The measurements were done after the electric filter 

validation test with the measurement setup seen in Figure 15. In addition to liver, the 

other tissues were skeletal muscle, fat, bronchus, renal pelvis, renal cortex, lung, gray 

matter, white matter, and skin. All tissues used in the measurement were from the same 

animal. The results of all particle measurements are presented in chapter 5. 

4.2 Tissue identification measurements 

After validating the function of the electric particle filter and having the preliminary 

experience in measuring various tissues in the particle measurements, the next major step 

in the research was to test the function of the full measurement system in tissue 

identification. However, before moving on to cancer detection, a proof-of-concept study 

with pig tissues had to be made to see, if the core principle of diagnosis through diathermy 

smoke ion mobility analysis, is even possible with our system. Since cancers are 

practically uncontrollable samples of the tissues they affect, the identification of the most 

common healthy tissues is relevant. If healthy tissues can be identified, it supports the 

hypothesis that cancer identification is also possible. In addition, the availability of 

porcine tissues is superior to human tissues due to obvious ethical constraints, and that is 

why they were far more suitable in the early phases of system development. The decision 

to use porcine tissues in favor of other animal tissues can be justified by its biological 

similarities with human tissues (size and genetics), and their usage in previous scientific 

publications as models for human physiology and anatomy [95–97]. The main 

measurement system with the electrosurgical sampling unit, the electric filter, and ENVI-

AMC® was used in all tissue identification measurements. 

At the beginning of the measurement set, the parameters of the system, such as dilution 

ratios, duration and resolution of DMS measurements, and cutting parameters were not 

optimized. That is why, during the thesis project, the tissue identification measurement 

protocol underwent many changes as a result of iterative experimentation. After the 

iteration process, parameters that were adequate in terms of measurement dynamics and 

resolution were found, with which three larger sets of tissue identification measurements 

were done. The power of the smoke evacuator was set to level 5, which equals 

approximately 12 l/min of raw sample flow. The combined dilution ratio of the two-stage 

ejector dilution system was 1:768. The voltage of the electric filter was set to 5.0 kV and 

the power of the diathermy knife to 120 W (mode: 100 % cut). The cuts were 4 mm deep, 
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5 mm long, and 0.5 mm wide. Some slight cutting depth variations due to the structural 

heterogeneity of certain tissue samples occurred during the measurement sets. The DMS 

measurement duration was approximately 12 seconds. 𝑉𝐶 in the DMS sweeps was set to 

rise from -0.8 V to 9 V in 40 increments, and 𝑉𝑅𝐹 from 440 V to 700 V in 4 increments. 

This means that the resolution of the DMS dispersion plots was 40×4 (160 pixels). A 

three-minute cleansing period after each DMS measurement was added to the cutting 

protocols to ensure that the ENVI-AMC® would not measure any residual ions from the 

previous sample. All tissues were photographed with a Samsung A3 mobile phone camera 

(Samsung, South-Korea) before and after the electrosurgical cutting for visual reference 

for the classification of the results. 

The first measurement set after the parameter iteration was a pilot test with five tissues: 

skeletal muscle, fat, lung, renal cortex, and liver. The tissues were measured shortly after 

acquiring them from the slaughterhouse, eliminating the need to freeze them in between. 

To prevent excess consecutive cutting of the same sample tissue, the tissue pieces were 

all placed on the CNC machine platform at the same time, and measured with one 

continuous tissue-alternating automated sequence. 2 cm wide tissue slices were placed as 

close to each other as possible, and 10 cuts were made to each slice. The automated cutting 

protocol was designed so that the number of consecutive cuts to each sample was only 

two, after which the next two cuts were made to another piece. In addition to the 50 tissue 

cuts, 10 measurements without tissue contact were made to get the baseline reference. An 

unscaled sketch of the cutting protocol is presented in Figure 16. 
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Figure 16. A sketch of the cutting protocol for the tissue identification pilot test. Ten 

empty cuts, where the surgical knife did not touch anything but air, were also done for 

reference. The dashed arrow lines show the order of the incisions.  

After the successful pilot test, the sample size was increased with additional 

measurements to increase the statistical validity of the results. The number of different 

tissues was also increased. The added tissues were cerebral gray matter and white matter, 

skin, tongue, and heart. The aim was to increase the sample size to 60 measurements per 

tissue, but in some cases, the size of the tissues was a restricting factor. The cuts to gray 

matter had to be done to brains from four separate animals, and white matter 

measurements needed the brains of ten swine. All other measurements were done by using 

tissues from a single animal. An example of a tissue piece after one full measurement 

sequence in the second phase of the tissue identification measurements can be seen in 

Figure 17. Unlike in the pilot tissue identification measurements, the tissues had to be 

frozen in between measuring different tissues to prevent them from rotting. During a 

measurement sequence, we tried to prevent the excessive drying of the tissue piece by 

moisturizing it with a spray bottle filled with deionized water. 
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Figure 17. A piece of pig skeletal muscle tissue after a full measurement sequence (60 

cuts) in the additional tissue identification measurements. The left bottom corner was 

cut first, which was followed with nine additional cuts in the Y-direction with 3 mm 

gaps between each cut. After the 10th cut was made, the knife returned to its starting 

position, moved 6 mm to the X-direction, and started another set of ten Y-directional 

cuts. 

The growing of the sample size was a lengthy process, which spanned over multiple 

weeks. Even though the most important parameters were monitored and kept the same 

over the whole measurement period, some variation between the measurement conditions 

might have occurred over time, which in turn could have jeopardized the comparability 

of the measurement results. To account for the possible inter-day variations, a small 

independent validation set with skeletal muscle, fat, renal cortex, and liver was done, after 

the sample size in all measured tissues was at least 60. The decision to include these 

specific tissues in the validation measurement stemmed from the over-abundance of the 

tissue matter after the previous measurements. The measurement parameters in the 

validation set were the same as in the previous tissue identification measurements, except 

for the cutting protocol, which was done without an automated sequence. Each cut was 

made manually in a randomized order with no consecutive cuts to the same tissue type. 

The number of cuts in the validation set was 10 per tissue, resulting in a total number of 

40 measurements. The results from the pilot, additional, and validation measurement sets 

are all presented in chapter 5. 
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4.3 Diathermy measurements with brain tumors 

After testing the measurement system in the tissue identification measurements with 

healthy porcine tissues, the system was deemed ready for tumor identification. For the 

thesis research, we were able to acquire a small set of brain tumor samples for a pilot test. 

The samples were gathered with the help of docent of neuropathology Hannu Haapasalo, 

M.D. Joonas Haapasalo, and medical student Ilkka Haapala. Haapala was also assisting 

in the actual measurements. A total of 14 brain tumor samples were collected. Half of the 

samples were meningiomas and the other half were glioblastomas. 

Considering the scarceness of available material and ethical aspects in using human 

tissue, the effective use of the samples was of paramount importance. To maximize the 

usage of sample tissue, a well plate for holding the sample pieces was designed with 

SOLIDWORKS® 3D computer-aided design software (SolidWorks Corporation, 

U.S.A.). The use of a well plate was also beneficial in controlling the depth of the 

incisions and keeping the colloidal brain matter from spreading and flattening on the 

platform. The wells were rectangular with rounded edges. The bottom of each well was 

also rounded. The exact dimensions of the well plate in millimeters can be seen in the 

SOLIDWORKS® drawing in the upper part of Figure 18. 
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Figure 18. A SOLIDWORKS® drawing of the well plate used in the brain tumor 

identification measurements (top), and the well plate after a test measurement sequence 

with porcine brain samples (bottom). The numbers in the drawing show the dimensions 

in millimeters. 
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The well plate and the cutting protocol were tested with pig brains before the tumor 

measurements. A picture of the well plate after the test measurement sequence can be 

seen in Figure 18 (bottom). The cuts were the same 5 mm long and 4 mm deep line cuts 

as in the previous measurements. The power of the smoke evacuator was also set to level 

5. The dilution ratio was changed to 1:472, since it seemed to work adequately well in the 

test measurements. The DMS measurement duration was shortened to approximately 10 

seconds, but the resolution of the positive and negative sweeps was kept the same as in 

the tissue identification measurements (160 pixels). 

The tumor samples varied in size. Some of the tumor samples were too small for even 

one 4 mm cut, while some were large enough to be split into two or three wells. To 

maximize the number of measurements, almost all sample pieces were burned from two 

sides. After the first cut was done to a set of samples, the pieces that were big enough 

were turned upside down and cut a second time. From the 14 sample pieces, a total of 43 

measurements were done. In addition, 4 empty cuts were made for reference. The results 

of the brain tumor measurements are presented in the next chapter. 
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5. RESULTS AND ANALYSIS 

The most important findings from the pivotal measurements are introduced in this 

chapter. Due to its novelty and overall importance to the proper function of the 

measurement system, the results from the particle measurements with the electric filter 

are presented thoroughly in three parts (mass change, color intensity and particle 

distributions from the ELPI® data). The main findings of the particle distribution 

measurements with different tissues are also briefly described; a more detailed analysis 

of the results is presented in a journal article, which was concurrently written with this 

thesis [92]. The electric filtration solution and the tissue identification measurements will 

also be subjects for a journal article, but their results are more relevant regarding the 

objectives of this thesis research, so they will be discussed in more detail. Lastly, the 

results of the brain tumor measurement pilot test are also introduced and analyzed. 

5.1 Filter validation and particle distributions 

In the particle measurements where the efficiency of the electric filter was studied, five 

glass fiber HEPA filters were first subjected to diathermy smoke, when the filter was 

inactive. After that, the electrosurgical cutting was done with the electric filter active. The 

group scan of the glass fiber HEPA filters used in the particle measurements is shown in 

Figure 19.  

 

Figure 19. A scanned image of the glass fiber filters used in the particle 

measurements. Filters 1−5 were in the measurement system, when the electric particle 

filter was inactive, and 6−10 were in the system, when the electric filter was active. The 

contamination is only partial due to the steel casing used in the measurements. 
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By looking at the scanned glass fiber filters in Figure 19, it is rather obvious just by visual 

inspection that using the electric filter greatly reduces the contamination. To support this 

claim, color intensity analysis from the individual scans was conducted by using the 

custom-made MATLAB-based image processing algorithm described in chapter 3. Color 

intensity histograms from the observed area for each filter are presented in Figure 20. 

 

Figure 20. Color intensity histograms of the glass fiber filters used in the electric 

filter validation particle measurements. The color intensity value is reversed as opposed 

to normal grayscale images, which means that a higher value equals a darker shade. 
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As can be seen in Figure 20, the first five filters have significantly darker pixel 

distribution than the last five filters. It also seems that filter number 3 is the most 

contaminated based on the histograms. All the filters that were in the system, when the 

electric particle filter was active, have a small number of dark pixels, which means that 

they have remained uncontaminated. However, the histograms reveal some 

contamination in filter number 6, even though the electric filter was active. The surgical 

cuts made in that particular measurement were exceptionally deep, which in turn created 

more smoke. These results indicate that there might be some loss of particle filtration 

efficiency in the electric filter, if the filter is subjected to extremely high smoke 

concentrations. 

To have more insight on the function of the electric filter, a quantitative analysis based 

on the contamination metric can be made. For this purpose, all of the glass fiber HEPA 

filters and tissue pieces were also weighed to see the relation of mass changes between 

them. The mass increase and the values of the contamination metric for each filter, in 

addition to mass decrease of each tissue piece as a result of the electrosurgical cut, can be 

seen in Table 3. 

Table 3. Values for the increase of filter mass, the decrease of tissue mass, and 

contamination metric for each glass fiber filter in the electric particle validation 

measurements. The mass of the first tissue piece is crossed over due to the value being 

unreliable, because of excessive drying.  

Filter/Tissue 
Mass increase of  

filter (mg) 

Mass decrease of  

tissue (g) 

Contamination metric 

(sum of pixel values) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.35 

0.47 

2.24 

1.77 

1.20 

0.05 

0.01 

0.00 

0.04 

0.01 

0.92 

0.74 

1.85 

1.38 

1.11 

1.71 

1.19 

1.38 

1.23 

1.06 

   3039.43 

   3704.24 

   12272.00 

   9168.63 

   7809.44 

   1871.69 

   374.75 

   367.47 

   654.66 

   467.72 

 

Based on the values in Table 3, a graph showing the contamination metric as a function 

of the mass decrease of tissue is presented in Figure 21. Similarly, a second graph showing 

the mass increase of the filter as a function of the mass decrease of the tissue is presented 

in Figure 22. The mass of the first tissue piece was measured with a significant 

approximately 30-minute long delay, during which the tissue had lost a noticeable amount 
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of weight through dehydration. Therefore, the first tissue-filter pair is neglected in the 

graphs. 

 

Figure 21. Filter contamination as a function of the electrosurgically removed tissue 

mass. The data points and their linear least square fit curves with equations are visible.  

 

Figure 22. Increase of filter mass as a function of the electrosurgically removed tissue 

mass. The data points and their linear least square fit curves with equations are visible. 
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Both Figure 21 and Figure 22 show clearly that the electric filter works well in preventing 

the contamination of the measurement system. The slope of the least squares linear fit of 

the data groups in both figures was significantly lower, when the electric filter was active. 

However, the most conclusive proof of its effectiveness can be seen in the ELPI® data. 

The signal response of the ELPI® dropped to its detection limit, when the electric filter 

was active and surgical smoke from liver tissue was guided into the system. This means 

that the signal from the measurement cannot be distinguished from noise. If the raw data 

from the measurement is presented alongside measurement data without the electric filter 

as particle number and mass distributions, the effectiveness of the filter becomes evident, 

as can be seen in Figure 23. 

 

Figure 23. Particle number and mass distributions for liver in relation to particle 

diameter, with and without the electric particle filter. 
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If the particle filtration efficiency is evaluated numerically from the ELPI® data by means 

of particle number density comparison, we can formulate: 

𝜂𝑓𝑖𝑙𝑡𝑒𝑟  = 1 −
𝑁𝑂𝑁

𝑁𝑂𝐹𝐹
= 1 −

2.3540 · 104𝑐𝑚−3

2.7583 · 108𝑐𝑚−3
= 0.99991 … ≈ 𝟗𝟗. 𝟗𝟗 %, (7) 

where 𝜂𝑓𝑖𝑙𝑡𝑒𝑟 is the particle filtration efficiency of the electric filter, 𝑁𝑂𝑁 is the median 

particle number density of liver tissue measurement when the electric filter is active, and 

𝑁𝑂𝐹𝐹 is the median particle number density of liver measurement when the electric filter 

is inactive. The value of the filtration efficiency is potentially even higher than the 

calculated result, since the restricting factor in the formula is the value of 𝑁𝑂𝑁, which is 

already at the detection limit of the ELPI® and thus cannot not be distinguished from 

noise. 

The ELPI® system was also utilized in a measurement set that does not directly coincide 

with the objectives of this thesis research. However, it did provide critical information 

about workplace safety for surgeons and useful information on the differences of the 

particle smokes from various tissues. The results revealed that the tissues could be divided 

into three distinct classes based on the amount of particulate matter (PM) created in 

electrosurgery, and by extension, hazardousness of their surgical smoke. The proposed 

classes are: low-PM tissues (fat, gray matter, white matter, skin, bronchus), medium-PM 

tissues (renal cortex, renal pelvis, skeletal muscle), and high-PM tissues (liver). In 

practice, these results could be useful for the surgeon and assisting personnel in the 

operating staff, when preparing for a surgical operation. The class of the operated tissues 

would help when considering for example what kind of surgical masks are needed in 

order to prevent lung deposition of particulate matter during the operation. A more 

thorough look at the particle distributions from different tissues and their implications to 

workplace safety for surgical staff can be found in the article that was submitted during 

the thesis work [92]. 

The visual inspection, color intensity analysis, mass comparisons, and particle 

measurements with ELPI® all show that the electric filter works exceptionally well in 

preventing the contamination of the measurement system. Based on the ELPI® 

measurements, we can say that the filtration efficiency of particles in the diameter range 

of 7 nm to 10 µm, is at least 99.99 %. When also considering that the most probable 

contaminates in tissue plume are in the size region of 1 nm to 10 µm [47, p. 2], we can 

conclude that the filter works especially well in this application. 
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5.2 Tissue identification 

In the tissue identification measurements, the aim was to measure and compare the 

molecular structure of the diathermy plume from different porcine tissues with the ENVI-

AMC®. Three separate measurement sets (initial pilot test, growing the sample size, and 

validation) were executed. The data from the ENVI-AMC® was classified in MATLAB 

by using LDA with LOOCV. 

The data fed to the LDA classifier from each measurement had 160 values, based on 

which the algorithm tried to classify the sample as one of the known tissue types. After 

each sample in the measurement set was classified, the algorithm created a confusion 

matrix, which shows the full set of the classification results.  

In the pilot tissue identification set, ten DMS measurements from the tissue smoke of 

skeletal muscle, fat, liver, renal cortex, and lung were done. Reference data with ten 

empty cuts were also gathered. The confusion matrix from the classification results is 

presented in Table 4. The classification was done by using both the negative and the 

positive DMS channel data. The percentage of correct classifications was 93.33 %. 

Table 4. The confusion matrix from the LDA + LOOCV classification results in the 

tissue identification pilot test. CCR: 93.33 %.  

Tissue Muscle Fat 
Renal 

cortex 
Liver Lung Empty 

Muscle 10 0 0 0 0 0 

Fat 0 10 0 0 0 0 

Renal cortex 0 0 9 1 0 0 

Liver 0 0 3 7 0 0 

Lung 0 0 0 0 10 0 

Empty 0 0 0 0 0 10 

 

In Table 4, we see that one renal cortex sample was classified as liver, and three liver 

samples were classified as renal cortex. The reason for the misclassifications might be 

that both tissue types produced a high concentration of smoke that partly saturated the 

DMS system. The saturation can be seen as the total disappearance of the reactant ion 

peak and the dominance of the heavy VOCs (𝑉𝐶 = 0) in the dispersion plots of both 
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tissues. The dispersion plots can be seen in Figure 24. For comparison, an unsaturated 

example of a dispersion plot from fat is also presented beneath the saturated responses. 

 

Figure 24. Example dispersion plots of liver and renal cortex displaying the 

saturation effect in the tissue identification pilot measurement set. The response for fat 

is not saturated, and thus the RIP is visible in the bottom plot. 

Despite the few misclassifications, the overall results from the pilot test were extremely 

promising, since they clearly indicated that reliable differentiation of diverse tissue types 

could be possible with the measurement system. To increase the statistical validity of the 

hypothesis, additional 60 measurements to each tissue type were made. The number of 

different tissues was also increased. In some measurements, the negative sweep was 

corrupted, which resulted in the overall decrease of the CCR.  That is why the 

classifications were done by only using the positive channel. The classification results in 

the form of LDA + LOOCV confusion matrix are presented in Table 5. The percentage 

of correct classifications was 95.33 %. 
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Table 5. The confusion matrix from the LDA + LOOCV classification results in the 

additional measurements in tissue identification. CCR: 95.33 % 

Tissue 
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Gray matter 60 0 0 0 0 0 0 0 0 0 

White matter 1 59 0 0 0 0 0 0 0 0 

Liver 1 0 59 0 0 0 0 0 0 0 

Muscle 0 0 0 55 2 2 1 0 0 0 

Fat 0 0 0 0 60 0 0 0 0 0 

Lung 0 0 0 0 0 56 2 0 2 0 

Renal cortex 0 0 0 1 0 4 53 0 2 0 

Skin 0 0 0 0 0 0 1 58 1 0 

Tongue 0 0 0 0 0 0 6 1 52 1 

Heart 0 0 0 0 0 0 0 0 0 60 

 

Considering the large number of different tissue types, the percentage of correct 

classifications is especially impressive. Still, some misclassifications can be seen in Table 

5. Renal cortex and tongue had the most misclassified samples (7 and 8, respectively). In 

the case of renal cortex, some of the cuts also hit renal pelvis by mistake, which might 

have led to different smoke composition, which could in turn account for the classification 

errors. The heterogeneity of the sample pieces is the most probable factor for the other 

misclassifications. For example, some lung tissue pieces had some hematomas that 

affected the DMS response. The heterogeneity is also somewhat visible in Figure 17, 

where some of the cuts have clearly been made to parts of the skeletal muscle tissue, 

where there is a lot of intramuscular fat. The low resolution of the DMS measurement 

could also explain some of the misclassifications. With 160 pixels, the amount of data is 

limited and thus, small differences in the composition of tissue smoke might not show up 

clearly in the dispersion plot. Also, due to being inside the fume hood for hours during a 

measurement sequence, some of the tissues dried up to some degree despite the spray 
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bottle watering. In earlier experiments, it seemed that dried tissue produced more smoke 

as opposed to fresh moist tissue, which could also partly explain the errors in 

classification. 

After the classification of the additional measurement set, it seemed clear that the system 

is capable of reliable tissue identification. However, some distortion of the results could 

have happened due to possible inter-day variability of measurement conditions, for 

example temperature, flow rates, or pressure values. That is why a validation set of ten 

measurements with four tissues (renal cortex, fat, muscle, and liver) was executed. The 

classification results are presented in Table 6. The CCR was consistent with the pilot test 

and additional measurement set, with a value of 95.00 %. 

Table 6. The confusion matrix from the LDA + LOOCV classification results in the 

validation set in tissue identification. CCR: 95.00 %. 

Tissue 
Renal 

cortex 
Fat Muscle Liver 

Renal cortex 9 0 1 0 

Fat 0 10 0 0 

Muscle 0 0 9 1 

Liver 0 0 0 10 

 

Again, the single misclassifications for muscle and renal cortex can potentially be 

explained by the low resolution of the DMS measurement or the heterogeneity of the 

electrosurgically cut sample piece. Despite that, the results of the validation set confirmed 

that the system works in tissue identification, and consequently opened the way for tumor 

identification. 

5.3 Tumor identification 

After the success of the tissue identification measurements, the decision to move on to 

testing the capability of the system in actual tumor identification could be done with 

relative confidence. The measurement principle was the same as in porcine tissue 

identification: measure and compare the molecular structure of the diathermy plume from 

the tissues with the ENVI-AMC®. Due to the slim availability of brain tumor samples in 

the Pirkanmaa region, only a pilot test with 14 (7 meningiomas and 7 glioblastomas) 

sample pieces could be done at the time. From the 14 pieces, 43 measurements were made 

(and four empty cuts for reference). 
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The first analysis of the tumor measurement data was done without pre-existing 

knowledge of the actual tissue types in each measurement (except for empty cuts). This 

means that the supervised LDA or the kNN methods would not work in the classification. 

However, hierarchical clustering to the measurement data can be done even without any 

knowledge of how many separate sample groups were present and what was the number 

of samples in each of them. A dendrogram from the measurement data can be seen in 

Figure 25. 

 

Figure 25. Dendrogram of the brain tumor measurements. 

As can be seen from the dendrogram in Figure 25, three separate data clusters are visible, 

which could indicate that the classification to meningiomas, glioblastomas, and empty 

cuts is at least partly successful even with blind analysis. 

The actual types of the samples were revealed after the blind analysis of the measurement 

data was done. The hierarchical clustering based classification to three groups from the 

dendrogram seemed to have worked quite poorly with only 49 % CCR. Still the 

percentage is better than the average CCR of 33 % in a situation where the three classes 

would be decided completely randomly. However, blind analysis without prior 

information is not the best way to process DMS data in this case due to the incision depth 

induced intensity changes in the signals. That is why the results from the more feature-

sensitive supervised classification methods (LDA and kNN) are more conclusive. In 

previous tissue identification measurements, the LDA classification produced slightly 

better results than the kNN, but in the tumor pilot, the roles were reversed. The 

classification with LDA resulted in CCR of 72.3 %. The classification with 2-nearest 

neighbors produced an even higher value of 85.11 %. The confusion matrix from the 

kNN classification is presented in Table 7. 
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Table 7. The confusion matrix from the kNN + LOOCV (k = 2) classification 

results in the brain tumor measurements. CCR: 85.11 %. 

Tissue Meningioma Empty Glioblastoma 

Meningioma 21 1 4 

Empty 0 4 0 

Glioblastoma 1 1 15 

 

The results in Table 7 are highly significant. The pilot test indicates that the differentiation 

of two types of brain tumors is possible with the measurement system. In these 

measurements, the size of the samples varied significantly, which resulted in different 

incision depths, and by extension, different amount of smoke. The maximization of used 

tissue by doing second cuts to the same pieces might have also distorted the results, since 

some cutting of already potentially charred tissue was inevitable. On the other hand, some 

of the samples were extremely small, which resulted in the surgical knife only grazing 

the surface. This is most probably the reason for one meningioma and one glioblastoma 

being classified as ‘’Empty”. Considering the suboptimal conditions of the measurement 

set, the results are surprisingly good. 

If we were to use the system for a test where the aim is to detect the malignancy of a brain 

tumor, the results from the pilot measurement could be used to calculate the sensitivity 

and specificity along with the positive and negative predictive values. In this case, 

positive test result would mean that the subject has glioblastoma and a negative test result 

would mean meningioma. For the calculation, the empty cuts are not relevant, therefore 

the evaluation is done with only the 43 measurements that actually were from the cuts to 

tissue pieces. The diagnostic parameters are presented in Table 8. 

Table 8. Diagnostic table for the differentiation of glioblastoma and meningioma 

based on the brain tumor pilot measurements. 

 Glioblastoma Meningioma  

Positive test result TP = 15 FP = 4 PPV ≈ 78.9 % 

Negative test result FN = 2 TN = 22 NPV ≈ 91.7 % 

 Sensitivity ≈ 88.2 % Specificity ≈ 84.6 %  
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As can be seen from Table 8, the diagnostic properties for the hypothetical malignancy 

test with the system are quite good, considering that it is based on the results of a pilot 

set. In a malignancy test like this, it can be argued that the number of false negatives is 

more important than the number of false positives. If the test is considered reliable and 

the result is positive, the physician-in-charge has the presumption that the patient has a 

malignant tumor. This leads to traditional tissue biopsy, where potential false positives 

will be screened out. The negative test result could however give the indication that 

treatment is not necessarily required, and if the diagnosis is false, the decision to discharge 

the patient or leave the tumor untreated, could be fatal. That is why especially the high 

values for NPV and sensitivity in Table 8 are important, and show promise that the system 

has potential to be used in diagnosing the malignancy of the operated tumor. 

When comparing these results to those achieved with REIMS, the need for improving the 

system in terms of sensitivity and specificity can be argued. Balog et al. achieved over 95 

% sensitivity and specificity for the cancer-or-healthy classification with all tested tissue 

types [9]. However, the small sample size of 14 tumors in our pilot study compared to the 

over 300 in the publication, precludes the possibility for statistically reliable conclusions 

of the performance differences of REIMS and our system. Furthermore, the sensitivity 

and specificity are not directly comparable, since the brain tumor measurements in this 

thesis were done without healthy control samples. Until further research and 

measurements are conducted, the performance comparison is groundless, but based on 

the results, the potential for creating a method that can compete with REIMS, is clear. 

The use of healthy human brain tissue is practically impossible in this type of scientific 

pilot research, since there are no easily available samples from living subjects for obvious 

reasons. Still, without healthy tissue samples, the measurement results do not directly 

prove the system’s capability to distinguish healthy brain tissue from cancerous tissue. 

However, based on all of the tissue measurement results, we can assume with relative 

confidence that it is possible. In the case of malignant brain tumors, the tumor can almost 

never be fully excised by using electrosurgery due to infiltration of the tumor to the 

supportive tissue [29]. Therefore, the cancer margin detection is not even as relevant as 

for example in the case of breast cancer. Intraoperative differentiation of malignant and 

benign brain tumor types is perhaps more relevant, and in that regard, the results are 

promising. As a whole, the results from all measurement sets were excellent, and they 

provided a good basis for further product development and significant scientific research. 
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6. CONCLUSIONS 

The objective of this thesis research was to introduce, test, and partly validate a device 

that could be used in intraoperative cancer margin detection in the near future. Even 

though the system is not yet capable for latencies that could accommodate the 

intraoperative detection, the proof-of-concept is verified. The objectives were met and 

the groundwork for future research and development was done. 

Based on the results of the particle measurements, it is clear that the electric particle filter 

works extremely well in filtering out the nanoscale and microscale particles, reaching a 

minimum filtration efficiency of 99.99 %. Since the particle size range of bacteria and 

viruses is in the upper nanoscale or microscale size region [47,98], it can be assumed that 

the filter will  effectively prevent bacterial and viral contamination of the subsequent parts 

of the measurement system. In terms of micro-organisms inactivation through ozone-

induced cell wall destruction, perhaps a more thorough test set with microbiological 

culturing from the filtered sample could be conducted to get conclusive results. With the 

parameters used in this research, the filter produces an estimated 0.5−2 ppm concentration 

of ozone, which is enough to destroy over 99 % of common bacteria and viruses in a 

water medium, but its effectiveness to inactivate airborne bacteria should be studied 

further [88]. The particle measurements also resulted in useful publishable information 

about the hazardousness of surgical plume from different tissues in electrosurgical 

operations [92]. 

The tissue identification measurements were successful in validating the concept of 

distinguishing different healthy tissues by DMS analysis from the diathermy smoke. 

Similar research has been done with MS before [39], but this is the first study with the 

more cost-effective and simpler DMS technology. The correct classification rate was 

consistently over 93 % in all measurement sets in porcine tissue identification. 

The results from the tumor identification measurements further demonstrated the 

system’s capability in differentiation of tissue types. Even though the measurement set 

was only a pilot test with suboptimal measurement conditions, two types of brain tumors, 

malignant glioblastoma multiforme and benign meningioma were distinguished with 

relative success (85.11 % CCR). However, the brain tumor measurement set also brought 

to attention some of the targets for future development. 

The system used in these measurements was wasteful in terms of sample consumption. 

The current five second cutting protocol evaporates a lot of tissue (approximately 0.5−2 

g depending on the incision depth) and creates a large amount of smoke, which 

contaminates the first parts of the measurement system rather quickly. Still, the sample is 
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consumed in less than twenty seconds, which means that the DMS measurement needs to 

be fast, which in turn leads to reduced scan resolution. In other words, the current system 

uses too much tissue too fast. Eventually, the system should be able to do qualitative 

analysis even from low-resolution data. However, at this point in development, we are 

still searching for the optimal parameters and distinctive features in the dispersion plots, 

which would be easier with higher resolution. To overcome this problem, the sampling 

efficiency needs to be improved. One way to achieve this is to have a sample chamber, 

which gathers the sample efficiently and fast, but which then empties more slowly, so 

that the DMS measurement can take longer. This type of solution is more complicated 

than the straightforward current method, but almost imperative, when considering future 

research and the target application. 

Even with a more efficient sampling method, the system would still be too sensitive to 

the intensity variations of the produced smoke. Intensity of the signal can be a parameter 

for classification when measuring different tissues, but the intensity changes due to the 

depth variations of the cuts are not favorable. This could be fixed with an automated 

dilution system that would, for example, make a rapid intensity check before the actual 

measurement, and then change the dilution coefficient (with an automated valve system) 

accordingly to maintain a constant sample intensity level. 

Another downside of the current system is its size. Even though most of the operating 

theaters are large enough to accommodate the system in its current state, for practical 

reasons, some miniaturization must be done before moving on to tests in authentic 

surgical environment. Also, currently the measurement dynamics of the system are not 

optimized due to lengthy tubing. More space-effective component placement could make 

the measurement time of the system significantly faster, and at the same time it would 

make the system more compact and aesthetically pleasing. The system could then also be 

encapsulated, which would enable the simultaneous and effective heating of the 

pneumatics. This, in turn, could help in reducing the decontamination time of the system, 

since heating would dislodge particulate matter that has adhered to the PTFE tubes more 

effectively.  

Despite its current shortcomings, the system proposed in this thesis is now at a phase in 

which its applicability in cancer detection is tentatively proven. When comparing this 

research to publications done by using REIMS, the results in cancer identification were 

slightly inferior, but the comparison of the performance is not relevant at this point, since 

the tumor measurements in this project were only a pilot test with a small sample size and 

no healthy control samples. The performance can be reliably estimated only after more 

studies with a larger sample size and varying protocols are conducted. However, when 

considering the differences in cost and complexity of the methods, the impact of the 

achieved results is significant, and show promise for the future of our system. The 
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introduced system is in a prototype phase, which means that it is in a constant state of 

evolution and progress. The next steps in development of the system offer the possibility 

for further scientifically significant research.  Measurements with different types of 

cancer (especially breast cancer), the optimization of the sampling system, and parallel 

measurement modalities, alongside software and data analysis improvements moving 

towards real-time cancer detection, are all considerable subjects for new publications.  

As a concluding statement, it is reasonable to say that the research was extremely 

successful and that its scientific impact was notable. The development of the 

measurement system will continue, and it will hopefully end in the creation of a 

commercial medical device that will revolutionize the field of intraoperative cancer 

margin detection. 
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