
ALEKSI TERVO

PROGRAMMABLE INTER-DEVICE BLOCK TRANSFER HARD-

WARE FOR CUSTOMIZED HETEROGENEOUS COMPUT-

ING PLATFORMS

Bachelor of Science thesis

Examiner: University teacher Erja Sipilä

I

ABSTRACT

ALEKSI TERVO: Programmable Inter-Device Block Transfer Hardware for Cus-
tomized Heterogeneous Computing Platforms
Tampere University of Technology
Bachelor of Science thesis, 18 pages, 4 Appendix pages
May 2017
Degree Programme in Electrical Engineering, BSc (Tech)
Major: Electronics
Examiner: University teacher Erja Sipilä
Keywords: AXI, DMA, heterogeneous computing, HSA, OpenCL, FPGA, Zynq, ASIP

As requirements for performance and power e�ciency grow more strict for high-

performance computing and mobile devices, solutions are sought in customized pro-

cessor architectures and heterogeneous computing platforms. However, these sys-

tems tend to be more complex than the homogeneous alternatives, and require more

engineering e�ort to realize. In particular, utilizing the memory bus between the

components in a heterogeneous system in a portable manner is not possible, as the

various bus direct memory access cores are not designed for intercompatibility.

In this thesis, a speci�cation for inter-device block transfer hardware interface is pro-

posed. The speci�cation is aimed for Heterogeneous Systems Architecture (HSA)

and OpenCL platforms, allowing easy integration to existing systems. An applica-

tion speci�c processor -based reference implementation is presented and evaluated on

an FPGA-based video processing platform. The reference implementation reached

a maximum bus utilization of 66 % on a Zynq- based SoC platform, and has been

designed to be customizable for other platforms.

II

PREFACE

I would like to thank the HSA Foundation and ARTEMIS JU under grant agreement

no 621439 (ALMARVI) for sponsoring this thesis project in addition to its writing

process. Additionally, I would like to thank all my coworkers in the Laboratory of

Pervasive Computing at Tampere University of Technology for a supportive work

environment. In particular, thanks to D.Sc. Pekka Jääskeläinen for guidance during

the writing process. I would also like to thank the examiner of this thesis, University

teacher Erja Sipilä, for additional insight on early drafts of the work.

Tampere, 5.5.2017

Aleksi Tervo

III

CONTENTS

1. Introduction . 1

2. Background . 3

2.1 Software framework . 3

2.2 Caching . 4

2.3 System-on-a-chip overview . 4

3. Speci�cation . 6

3.1 Requirements . 6

3.2 Agent interface . 7

4. Implementation . 9

4.1 Hardware . 9

4.2 Software . 11

5. Evaluation . 12

5.1 Results . 12

6. Conclusions . 15

Bibliography . 16

APPENDIX A. Firmware . 19

IV

LIST OF ABBREVIATIONS

ALU Arithmetic Logic Unit

API Application Programming Interface

ASIP Application Speci�c Instruction Set Processor

AXI Advanced eXtensible Interface

DMA Direct Memory Access

FPGA Field-Programmable Gate Array

FU Function Unit

HSA Heterogeneous Systems Architecture

IP Intellectual Property

LSU Load-Store Unit

OpenCL Open Computing Language

RAM Random Access Memory

RF Register File

SDRAM Synchronous Dynamic RAM

SoC System-on-a-Chip

TCE TTA-based Co-design Environment

TTA Transport Triggered Architecture

1

1. INTRODUCTION

Power e�ciency is an important design goal in both ends of the computation spec-

trum: mobile devices are limited by their size and thus battery capacity, and reduc-

ing power consumption results in better performance at a lower cost for warehouse-

scale computing. [1, p. 10, 47], [2, pp. 1-7]

Heterogeneous computing platforms, which are composed of multiple processors each

specialized for a di�erent task, are one way to address this, resulting in platforms

where execution of a task moves between the processors to use the most e�cient

hardware for each task. Despite the incresed engineering costs of designing and

programming for these systems � moving the task and the data associated with it

between processors is rarely automatic � heterogeneous systems are very popular,

especially on mobile devices. [2, pp. 1-7], [3]

Programming languages and application programming interfaces (APIs) o�ering an

abstraction layer between the programmer and the hardware mitigate the complexity

of software development for heterogeneous systems. Relatively low- level languages

and platforms such as Heterogeneous Systems Architecture (HSA) [4] and Open

Computing Language (OpenCL) [5], [6] can also be used as a target for higher level

languages [7], [8].

High performance data processing requires low memory latencies and high through-

put. Storing a portion of the data in a cache allows the use of smaller, faster

memories for that data [9, pp. 72-74]. Furthermore, as smaller memories consume

less power, caches can be a tool for lowering memory power consumption [10]. For

low-power devices, memory is a signi�cant factor in terms of power consumption,

as its power draw can exceed the processor's under memory-heavy workloads [11].

For customized processors with high power e�ciency, the e�ect of memory on total

system power is more pronounced.

This thesis will present a high-level speci�cation of a portable inter-device block

transfer interface with the aim to ease integration e�orts with other customized

computing units on HSA and OpenCL platforms. A reusable reference implemen-

1. Introduction 2

tation will be presented, along with evaluation on a �eld-programmable gate array

(FPGA) -based video processing platform.

3

2. BACKGROUND

The objective of this thesis is to provide an interface for a portable block transfer

unit. It should be compatible with existing tools and framework as well as ex-

tendable to new platforms. The end product is targeted for heterogeneous systems,

speci�cally to allow for asynchronous control of data transfers and execution con-

trol, and the basics of these topics are presented here. Since the interface itself is

platform-agnostic, an overview of system-on- chip architectures is presented instead

of an in-depth examination of a single platform.

2.1 Software framework

The OpenCL standard consists of an API for coordination of execution across a

heterogeneous platform [6], and a language for data and task parallel programs on

these devices [5]. An OpenCL platform has a single host processor managing one

or more devices. The memory model divides host and device memory as their own

sets of address spaces. [6, Section 3.3]

The HSA Foundation speci�es hardware and software interfaces for parallel execu-

tion in heterogeneous systems. An HSA-compliant system consists of

• one or more host agents, which execute the runtime,

• one or more kernel agents, which are able to execute kernels, and

• one or more other agents. [4, Section 1.5]

The HSA speci�cation is low-level compared to OpenCL. For example, queues and

related objects are abstract data types in OpenCL, and the runtime developer can

decide how to implement them. In contrast, HSA speci�es the organization of the

queue and its packets in memory unambiguously. The HSA platform has been de-

signed as an interface layer for higher-level languages including OpenCL [12, Section

1.1], and parts of the speci�cation are based on OpenCL [12, Chapter 7].

2.2. Caching 4

2.2 Caching

Modern computer systems have large memories, which are slower than the processor.

To provide fast memory accesses to the processor, some amount of the memory is

stored in a smaller and faster cache, so that accessing that data in particular is faster

than the main memory. [9, p. 72]

A dynamic cache, where the data is selected based on previous memory accesses

during runtime, is a simple approach from a software standpoint. In a modern

computer system, caches are organized in a hierarchy of incrementally larger and

slower memories, until the main memory is reached. [9, pp. 74-78] These caches can

support a large working dataset as they are automatically transferred to and from

the cache. In heterogeneous systems, ensuring cache coherency is more di�cult, as

the number of sources for reads and writes through the cache hierarchy is increased.

[9, pp. 352-362].

Static caches, where the data is selected beforehand and explicitly transferred to a

cache by the software, is more work for the programmer or their tools, but it ensures

that the cached data is always relevant to the task at hand. It also eliminates cache

misses, and thus decreases processing time variance, which may be important for

real-time applications [13].

2.3 System-on-a-chip overview

Space and power constraints as well as inter-device bandwidth requirements drive

modern mobile and embedded platforms to integrate multiple components of a tra-

ditional computer system on a single silicon die, to a system-on-a-chip (SoC) [2,

pp. 1-7]. Heterogeneous multi-processor SoCs can cater simultaneously to di�erent

applications with divergent computational requirements, while power management

features such as clock gating and frequency scaling are used to reduce the standby

power of unused components on the SoC [2, pp. 57-59].

Various bus architectures are used to connect SoC components � e.g. processors,

memory and peripherals � together [2, p.169], [14], [15], [16], [17], [18]. As a repre-

sentative example, the Advanced eXtensible Interface (AXI) bus is an interconnect

standard from ARM for SoCs based on their processors. It facilitates data transfers

over a full-duplex data bus, where read and write channels operate independent of

each other. Longer data transfers use bursts, where one address channel packet

sets the address and control information for multiple data channel packets with

incrementing addresses. [15]

2.3. System-on-a-chip overview 5

General-purpose instruction sets usually de�ne memory access instructions of widths

up to the widest vector [19], [20], and do not interface directly with block transfer

hardware. To manage memory transfers to and from the other cores in the system,

direct memory access (DMA) intellectual property (IP) are used to allow the pro-

cessor to use the bus architecture fully. Where such IP blocks exist, they are usually

locked down to vendor-speci�c technologies or do not have compatible interfaces [21,

Chapter 24], [22], [23].

Since the host processor is not actively participating in them, performance can

be improved by allowing the processor to handle its own tasks during the block

transfers. This is goal behind asynchronous transfers, where the processor doesn't

wait for the block transfer to �nish, and instead executes a workload which doesn't

depend on the transfer during it. Once �nished, the block transfer unit signals

completion with e.g. a write to a memory location. [24, p. 12]

6

3. SPECIFICATION

The proposed speci�cation aims for compatibility with existing standards to sup-

port a high-level programming �ow for customized heterogeneous hardware plat-

forms. Speci�cally, interoperability with HSA and OpenCL standards is sought,

and OpenCL functionality is primarily achieved through the HSA layer.

3.1 Requirements

As an HSA agent, the block copier is required to participate in the HSA memory

model, which speci�es �at addressing of shared virtual memory, enabling pointer

sharing among agents. Kernel executions and other commands are submitted to

agents through user mode queues, which are ring bu�ers containing �xed-size pack-

ets. The packets may be processed out of order, and ordering is managed by barriers,

which may be set either in packet headers or in separate packets. [4]

Execution �ow in OpenCL is managed through queues, where ordering is managed

through waitlists of events which must complete before the command is executed.

Unlike the HSA speci�cations, these command queues are a purely abstract entity

and no requirements on data structures or queue mechanics are set for the runtime

libraries. [6]

In addition to continuous one-dimensional bu�ers, both HSA and OpenCL de-

�ne two- and three-dimensional memory structures and methods to handle them.

OpenCL has methods for accessing two- or three-dimensional rectangular regions

of bu�ers, as well as dedicated image objects. These image objects have a de�ned

encoding and channel order. In addition, they may have samplers, which de�ne how

the image is accessed based on its coordinates, with well-de�ned behaviour e.g. on

out-of-bounds accesses. [6] Images and samplers in HSA are based on and largely

correspond to the OpenCL versions [12].

3.2. Agent interface 7

3.2 Agent interface

The block transfer unit is a memory-mapped peripheral with an externally accessible

memory segment for the block transfer commands. For HSA compatibility, the com-

mands will be submitted to an HSA user-mode queue. The exposed data structure,

queue mechanics and other aspects of the queue must adhere to the HSA speci�ca-

tions. Mechanisms to create and destroy queues must be provided, for example, as

part of an agent-speci�c library. All commands presented by this speci�cation will

be submitted as agent dispatch packets, as described in Table 3.1.

Table 3.1 HSA Agent dispatch packet structure [4].

Bits Field name Description

15:0 header Packet header
31:16 type Application-dependent function code
63:32 Reserved, must be 0
127:64 return_address Return address (unused)
191:128 arg0 64-bit arguments,
255:192 arg1 may be values or pointers.
319:256 arg2
383:320 arg3
447:384 Reserved, must be 0
511:448 completion_signal HSA signaling object handle used to

indicate completion of the job.

The simple block transfer has a function code of 0 and uses the �rst three function

arguments as source address, destination address, and length in bytes, respectively.

This will copy the contents of an array of the given length starting from the source

address to an equally long array starting from the destination address. The source

and destination arrays may not overlap.

To support partial copying of two- and three-dimensional memory structures, such as

arrays of images, strided memory transfers are provided. These have a function code

of 1 for two-dimensional and 2 for three-dimensional transfers and must pass transfer

dimensions by reference. The �rst argument points to an array with addresses for

the �rst element of the source and destination addresses. The second and third

arguments � source and destination, respectively � either contain the the row

pitch (for two-dimensional transfers) or point to an array containing row pitch and

slice pitch (for three- dimensional transfers), in bytes. The �nal argument points to

a two- or three- element array giving the range of the transfers.

The two-dimensional strided transfer will perform a number of simple block trans-

fers, o�set from one another by row pitch. The length of each transfer is set by

3.2. Agent interface 8

the �rst element of the range array, and the number of transfers is set by the sec-

ond element of the array. The three-dimensional block transfer extends this with

another iteration, i.e. it performs a number of two-dimensional block transfers set

by the third element of the range array, o�set from one another by slice pitch. The

arguments must be constrained such that no element is accessed by two di�erent

transfers.

9

4. IMPLEMENTATION

A reference implementation was designed for the FPGA platform. It consists of

an application speci�c instruction set processor (ASIP) with a custom AXI block

transfer function unit (FU), the software for the ASIP and a simple application for

the host system.

4.1 Hardware

The ASIP is a simple transport-triggered architecture (TTA) core designed using

the TTA Co-design Environment toolset (TCE toolset). It has a custom FU which

manages block transfers through a 32-bit wide AXI4 master interface, visible in

the block diagram in Figure 4.1. The architecture is otherwise minimal, with the

resources needed by the compiler to compile programs for it � including two register

�les (RFs) and an arithmetic-logic unit (ALU) � and an additional load-store unit

(LSU) and the block copier FU. The LSUs access separate memories, each 32 bits

wide and 1024 words deep. Instruction words are 64 bits wide and the instruction

memory is likewise 1024 words deep. These memory sizes map well to the 1024-word

deep random access memory (RAM) blocks available on the FPGA fabric [25]. It

also has a 32-bit wide AXI4 slave interface through which the host processor can

access the instruction and data memories.

Table 4.1 Block transfer function unit operations.

Operation Description Operands Result

BURST_BC Initiates a burst transfer Source and destination None
address, length

LD32 Loads a 32-bit value over AXI Address Value
ST32 Stores a 32-bit value over AXI Address, value None
STATUS_BC Queries FU status None 1 if busy,

0 otherwise

The block transfer FU has four operations, outlined in Table 4.1. If an operation is

initiated while the required channel is busy, the execution will be paused until the

contending operation �nishes.

4.1. Hardware 10

Figure 4.1 Block diagram of the block transfer ASIP.

The function unit is organized as two state machines, with one controlling the read

channel and the other controlling the write channel. Data is transferred between

channels through a �rst in, �rst out bu�er, allowing the channels to operate in-

dependent of each other. The function unit is limited to a single write and read

burst for each issued block transfer, thus only allowing transfers of up to 256 words.

Commands specifying larger memory regions require the software to issue multiple

block transfers.

Implementing the block transfer hardware as an ASIP allows for extensibility through

4.2. Software 11

software, and adapting the implementation for di�erent memory bus architectures

only requires redesigning the relatively simple function unit. As such, reuse of the

reference implementation across standards, platforms and feature sets is simple.

4.2 Software

The host software has a set of functions for controlling the block copier ASIP. The

initialization function handles resetting the ASIP and writing the �rmware to its

instruction memory. Functions are also provided for creating and initializing queues

for the ASIP.

The �rmware handles reading the command queue and dividing the block transfers

speci�ed by the commands to the block transfer FU. The source code for the C

program can be seen in Appendix A. In addition to dividing large transfers into 256-

word bursts, the �rmware also ensures no transfers cross a 4 kB address boundary.

While these checks add some computational overhead, this can be done in parallel

with block transfers, and for all except the shortest bursts there will be no additional

delay.

For simplicity, the signal value of a given signaling object handle is de�ned on this

platform as the 32-bit value of the memory address corresponding to the handle.

As such, checking signal status and signaling completion are a single memory access

each.

12

5. EVALUATION

The example implementation was evaluated on a Xilinx Zynq-based development

board. A block diagram of the evaluation platform can be seen in Figure 5.1.

It is built on a Zynq 7020 SoC, which has two ARM Cortex A9 hard processor

cores with synchronous dynamic random-access memory (SDRAM) connected to an

FPGA fabric through AXI3 ports [25].

The AXI3 port interfaces to the ARM cores are divided in three groups:

• AXI_GP, 32-bit wide general-purpose buses,

• AXI_HP, 64-bit wide high-performance buses, and

• AXI_ACP, 64-bit wide buses with cache coherency. [26, Chapter 5]

While the wider high-performance buses would o�er greater bandwidth, the block

copier AXI interface was connected to one AXI_GP slave interface through an AXI

interconnect block, which handles protocol conversion between the AXI3 and AXI4

buses. These are connected to the general-purpose AXI master interfaces, while the

AXI_HP interfaces are only connected to on-chip RAM and SDRAM. [26, Chapter

5]

In addition to the block copier ASIP, the FPGA fabric has an on-chip memory

controller with an AXI slave interface and 64 kiB of RAM. The ASIP and the

memory controller are connected to the general-purpose AXI master on the processor

system through an AXI interconnect.

5.1 Results

The design reaches a maximum frequency of 150 MHz with performance-focused

synthesis and implementation pro�les in Vivado 2015.4. The limiting factor is a

critical path in the Xilinx AXI Interconnect IP. The resource usage of the ASIP and

the usage relative to the total available resources can be seen in Table 5.1.

5.1. Results 13

Figure 5.1 Block diagram of the evaluation platform.

Table 5.1 Block copier ASIP resource utilization.

Resource Resource usage Percentage of total

Slice LUTs 3233 6.08 %
Slice Registers 2576 2.42 %
Block RAM tile 5 3.57 %

The maximum transfer bandwidth for the design was tested by queuing an AND

barrier packet followed by a number of transfers, the last of which signals completion.

128 MiB of SDRAM and a 64 kiB block of on-chip RAM on the FPGA were reserved

for the transfers.

For the intra-SDRAM case, a single transfer from one half of the reserved SDRAM to

the other was queued. For transfer to or from the on-chip memory, seven separate

transfers were queued to compensate for the relatively small amount of available

memory. For transfers between SDRAM and on-chip memory, a single transfer was

the length of the on-chip memory block, and transfers within the on-chip memory

were the length of one half of the total size.

The time between the host signalling the AND barrier signal and seeing the comple-

tion signal was measured, and bandwidth and utilization was calculated from this.

Full utilization is de�ned as a single data word both the read and write channels

on every clock cycle, i.e. a bandwidth of 600 MB/s for the 32-bit wide bus at a

frequency of 150 MHz. The results can be seen in Table 5.2.

In a signal trace of the transfers, the utilization by the block copier within a single

transfer is quite good, with usually only three stalls in a 255-word transfer caused

directly by it, i.e. by it pulling the WVALID or RREADY signal low. The rest

5.1. Results 14

Table 5.2 Block copier single transfer bandwidth.

Source Destination Total Time Bandwidth Utilization (%)
size elapsed (MB/s)

SDRAM SDRAM 67.1 MB 162 ms 413 69
SDRAM FPGA 459 kB 1.23 ms 373 62
FPGA SDRAM 459 kB 1.15 ms 398 66
FPGA FPGA 229 kB 641 µs 358 60

Table 5.3 Block copier strided transfer bandwidth.

Row width (B) Time elapsed (ms) Bandwidth Utilization

16 1823 37 MB/s 6 %
64 601 112 MB/s 19 %
256 250 269 MB/s 45 %
1024 162 413 MB/s 69 %
4096 162 413 MB/s 69 %
16384 162 413 MB/s 69 %

Table 5.4 Block copier command latency in FPGA clock cycles.

Command type Total cycles elapsed Single command latency

Simple transfer 50 7
Strided transfer, 2D 2930 420
Strided transfer, 3D 4220 600

of the time is spent either waiting for a response from the interconnect or reading

and/or writing data to the bus, due to the latency between the block copier and the

target memory.

The e�ciency of strided transfers was measured like the intra-SDRAM case above,

with one long transfer from one half of the SDRAM to the other. This was repeated

for di�erent row widths, while keeping the total transfer length the same. The

results, seen in Table 5.3, show that when row width is smaller than the maximum

burst width of 1024 bytes, the utilization goes down signi�cantly. This is expected

from the simple transfer results, as the latency introduces a constant overhead for

each transfer.

To characterize the minimum latency of the block copier, an AND barrier packet

followed by seven single-word transfers was queued to the block copier, and the

time to completion measured as above. This was repeated for each of the command

types. Table 5.4 shows that two- and three-dimensional strided transfers have a

considerably longer latency than simple transfers.

15

6. CONCLUSIONS

This thesis presented a block copier interface for heterogeneous platforms. The

interface facilitates asynchronous data transfers directed through a command queue,

and allows for inter-device signalling through device memory. The speci�cation

supports two- and three-dimensional strided transfers, in addition to simple, one-

dimensional transfers, for e.g. image processing algorithms.

The presented example design implementing the interface reached the maximum

clock frequency of the bus interconnect on an FPGA platform, and a 69 % maxi-

mum bus utilization rate was measured. As well as functioning as-is on AXI-based

platforms, the design has been designed to be modi�able and can also act as a

starting point for implementations e.g. supporting other bus architectures.

Future improvements to the example design for better average bandwidth include

hardware support in the block copier function unit for overlapping transfers, that

is, a transfer could initiate a read before the previous transfer has �nished. A queue

for loads over the AXI interface would allow the delay of fetching parameters from

host memory to be partly masked by performing multiple memory accesses and

computation in parallel. Further, the signi�cant overhead in small strided transfers,

likely due to loading parameters from external memory, could be almost completely

removed by storing the transfer parameters to the block copier's local memory,

and using the load-store units directly connected to these memories to load the

parameters.

16

BIBLIOGRAPHY

[1] L. A. Barroso and U. Hölzle, The Datacenter as a Computer: An Introduction

to the Design of Warehouse-Scale Machines. Morgan & Claypool, 2009.

[2] M. J. Flunn and W. Luk, Computer System Design - System on Chip. Wiley,

2011.

[3] M. B. Taylor, �Is dark silicon useful? harnessing the four horsemen of the

coming dark silicon apocalypse,� in Proceeedings of the 49th annual Design

Automation Conference. ACM/IEEE, 3.-7. Jun. 2012, San Francisco, CA,

USA, pp. 1131�1136.

[4] HSA Platform System Architecture Speci�cation 1.1, HSA Foundation, Jan.

2016, Available: http://www.hsafoundation.com/standards/.

[5] OpenCL 2.0 C Language Speci�cation, Khronos Group, Apr. 2016, Available:

https://www.khronos.org/registry/OpenCL/.

[6] OpenCL 2.1 API Speci�cation, Khronos Group, Mar. 2016, Available: https:

//www.khronos.org/registry/OpenCL/.

[7] J. Bottleson, S. Kim, J. Andrews, P. Bindu, D. N. Murthy, and J. Jin, �clCa�e:

OpenCL accelerated Ca�e for convolutional neural networks,� in International

Parallel and Distributed Processing Symposium Workshops. IEEE, 23.-27. May

2016, Chicago, IL, USA, pp. 50�57.

[8] �Halide programming language,� Available (accessed on 2017-05-15): http://

halide-lang.org/.

[9] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative

Approach, 5th ed. Morgan Kaufmann, 2012.

[10] W.-T. Shiue and C. Chakrabarti, �Memory exploration for low power, embedded

systems,� in Proceedings of the 36th annual Design Automation Conference.

ACM/IEEE, 30 May-2 Jun. 1999, Orlando, FL, USA, pp. 140�145.

[11] A. Carroll and G. Heiser, �An analysis of power consumption in a smartphone,�

in Proceedings of the USENIX annual technical conference, vol. 14. 23.-25.

Jun. 2010, Boston, MA, USA, pp. 21�21.

[12] HSA Programmer's Reference Manual Version 1.1, HSA Foundation, Feb. 2016,

Available: http://www.hsafoundation.com/standards/.

BIBLIOGRAPHY 17

[13] J. Liedtke, H. Hartig, and M. Hohmuth, �OS-controlled cache predictability

for real-time systems,� in Proceedings of the Third Real-Time Technology and

Applications Symposium. IEEE, 9-11 June 1997, Montreal, Quebec, Canada,

pp. 213�224.

[14] Open Core Protocol 3.0 Speci�cation, Accelera, 2013, Available: http://www.

accellera.org/downloads/standards/ocp/�les.

[15] AMBA AXI and ACE Protocol Speci�cation, Issue E, ARM, 2013, Available:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022d/

index.html.

[16] R. Hofman and B. Drerup, �Next-generation CoreConnect processor local bus

architecture,� in Proceedings of the 15th Annual International ASIC/SOC Con-

ference. IEEE, 25-28 Sept. 2002, Rochester, NY, USA, pp. 221�225.

[17] WISHBONE System-on-Chip (SoC) Interconnection Architecture for Portable

IP Cores, Revision B.3, OpenCores Organization, 2002, Available: https://

opencores.org/cdn/downloads/wbspec_b3.pdf.

[18] X. Yang and J. H. Andrian, �A high-performance on-chip bus (MSBUS) design

and veri�cation,� Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 23, no. 7, pp. 1350�1354.

[19] Intel R© 64 and IA-32 Architectures Software Developer's Manual, Volume 2,

Intel Corporation, Mar. 2017, Available: https://software.intel.com/en-us/

articles/intel-sdm.

[20] ARMv8-A Reference Manual, Issue B.a, ARM, Mar. 2017, Available:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0068b/

Chdhbfcd.html.

[21] Embedded Peripherals IP User Guide, UG-01085, Altera, May 2017, Avail-

able: https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/

literature/ug/ug_embedded_ip.pdf.

[22] Primecell DMA Controller Technical Reference Manual, Issue G, ARM,

Dec. 2005, Available: http://infocenter.arm.com/help/topic/com.arm.doc.

ddi0196g/DDI0196.pdf.

[23] AXI DMA v7.1 LogiCORE IP Product Guide, PG021, Xilinx, Oct. 2016, Avail-

able: https://www.xilinx.com/support/documentation/ip_documentation/

axi_dma/v7_1/pg021_axi_dma.pdf.

Bibliography 18

[24] OpenCL Best Practices Guide, Version 1.0, Nvidia, Aug. 2009, Available:

http://www.nvidia.com/content/cudazone/cudabrowser/downloads/papers/

nvidia_opencl_bestpracticesguide.pdf.

[25] Zynq-7000 All Programmable SoC Overview, DS190 (v1.10), Xilinx, 2016,

Available: https://www.xilinx.com/support/documentation/data_sheets/

ds190-Zynq-7000-Overview.pdf.

[26] Zynq-7000 All Programmable SoC Technical Reference Manual, UG585 (v1.11),

Xilinx, 2016, Available: https://www.xilinx.com/support/documentation/

user_guides/ug585-Zynq-7000-TRM.pdf.

19

APPENDIX A. FIRMWARE

1 #define _data __attribute__ ((address_space (0))) // DMEM

#define _shared __attribute__ ((address_space (1))) // PMEM

#define _global __attribute__ ((address_space (2))) // AXI

typedef _global unsigned* axi_ptr;

typedef vo l a t i l e _global unsigned* vol_axi_ptr;

6

#define AQL_PACKET_SIZE 64

#define AQL_PACKET_INVALID 1

#define AQL_PACKET_BARRIER_AND 3

11 #define AQL_PACKET_AGENT_DISPATCH 4

#define AQL_PACKET_BARRIER_OR 5

#define AXI_BUS_WIDTH 4

#define MAX_BURST_LENGTH (256* AXI_BUS_WIDTH)

16 #define MAX_UNALIGNED_BURST_LENGTH ((256 -1)* AXI_BUS_WIDTH)

#define AXI_AS_BOUNDARY (1024*4)

// Word offsets for agent dispatch packet arguments

#define SIGNAL0 2

21 #define SIGNAL4 10

#define ARG0 4

#define ARG1 6

#define ARG2 8

#define ARG3 10

26 #define CMPL_SIG 14

#define COMPLETE 1

vo la t i l e _shared unsigned queue_spec [4]; // ptr , mask , read_iter , write_iter

31 unsigned minu(unsigned arg0 , unsigned arg1) {

return arg0 < arg1 ? arg0 : arg1; }

void queue_bursts(unsigned from , unsigned to, unsigned length) {

while (length != 0) {

36 // Figure out the longest burst possible within AXI constraints

// Burst may not cross 4 KB address boundary

unsigned src_boundary_distance = AXI_AS_BOUNDARY - (to & (AXI_AS_BOUNDARY -1));

unsigned dst_boundary_distance = AXI_AS_BOUNDARY - (from & (AXI_AS_BOUNDARY -1));

unsigned boundary_check_max;

41 boundary_check_max = minu(src_boundary_distance , dst_boundary_distance);

// Burst may not exceed 256 words , but unaligned 256-word transfers

// might take 1 word extra

unsigned burst_len;

APPENDIX A. Firmware 20

i f (((from | to) & 3) == 0) {

46 burst_len = minu(MAX_BURST_LENGTH , length);

} e l se {

burst_len = minu(MAX_UNALIGNED_BURST_LENGTH , length);

}

burst_len = minu(boundary_check_max , burst_len);

51 unsigned burst_len_actual = burst_len - 1;

_TCE_BURST_BC(burst_len_actual , from , to);

length -= burst_len;

from += burst_len;

to += burst_len;

56 }

}

int main() {

// Wait for host to set queue pointer

61 while (! queue_spec [0]) {}

vo la t i l e _shared char* queue = (vo la t i l e _shared char*) queue_spec [0];

while (1) {

// variables for strided transfers

66 unsigned src;

unsigned dst;

unsigned src_row_pitch;

unsigned dst_row_pitch;

unsigned src_slc_pitch;

71 unsigned dst_slc_pitch;

unsigned region [3];

axi_ptr parameter;

// Check packet at iterator

vo la t i l e _shared char* packet = AQL_PACKET_SIZE * (queue_spec [2] & queue_spec [1])

76 + queue;

vo la t i l e _shared unsigned* packet_uint =

(vo la t i l e _shared unsigned*)(packet);

// if Packet status != INVALID , process it:

i f (* packet != AQL_PACKET_INVALID) {

81

unsigned done = 0;

axi_ptr compl_signal = (axi_ptr)(packet_uint[CMPL_SIG]);

switch(* packet) {

86 case AQL_PACKET_BARRIER_AND:

for (int i = SIGNAL0; i <= SIGNAL4; i += 2) {

i f (packet_uint[i] != 0) {

vol_axi_ptr signal = (vol_axi_ptr)(packet_uint[i]);

while (* signal == 0) {}

91 }

APPENDIX A. Firmware 21

}

i f (compl_signal) {

*compl_signal = COMPLETE;

}

96 break;

case AQL_PACKET_BARRIER_OR:

while (!done) {

for (int i = SIGNAL0; i <= SIGNAL4; i += 2) {

i f (packet_uint[i] != 0) {

101 vol_axi_ptr signal =

(vol_axi_ptr)(packet_uint[i]);

i f (* signal) {

done = 1;

break;

106 }

}

}

}

i f (compl_signal) {

111 *compl_signal = COMPLETE;

}

break;

case AQL_PACKET_AGENT_DISPATCH:

switch (packet [2]) { // function code

116 case 1: // 2d strided transfer

parameter = ((axi_ptr)(packet_uint[ARG0]));

src = parameter [0];

dst = parameter [1];

src_row_pitch = packet_uint[ARG1];

121 dst_row_pitch = packet_uint[ARG2];

parameter = ((axi_ptr)(packet_uint[ARG3]));

region [0] = parameter [0];

region [1] = parameter [1];

for (int i = 0; i < region [1]; ++i) {

126 queue_bursts(src , dst , region [0]);

src += src_row_pitch;

dst += dst_row_pitch;

}

break;

131 case 2: // 3d strided transfer

parameter = ((axi_ptr)(packet_uint[ARG0]));

src = parameter [0];

dst = parameter [1];

parameter = ((axi_ptr)(packet_uint[ARG1]));

136 src_row_pitch = parameter [0];

src_slc_pitch = parameter [1];

parameter = ((axi_ptr)(packet_uint[ARG2]));

APPENDIX A. Firmware 22

dst_row_pitch = parameter [0];

dst_slc_pitch = parameter [1];

141 parameter = ((axi_ptr)(packet_uint[ARG3]));

region [0] = parameter [0];

region [1] = parameter [1];

region [2] = parameter [2];

for (unsigned i = 0; i < region [2]; ++i) {

146 for (int i = 0; i < region [1]; ++i) {

queue_bursts(src , dst , region [0]);

_TCE_ADD(src , src_row_pitch , src); // Avoid loop

_TCE_ADD(dst , dst_row_pitch , src); // unrolling

}

151 src += src_slc_pitch;

dst += dst_slc_pitch;

}

break;

default : // 0, single transfer

156 queue_bursts(packet_uint[ARG0],

packet_uint[ARG1],

packet_uint[ARG2]);

}

161 // wait until transfer finishes

unsigned status = 0;

while (status == 0) {

_TCE_STATUS_BC(status , status);

}

166 // Signal completion

i f (compl_signal) {

*compl_signal = COMPLETE;

}

break;

171 default :

// signal error

i f (compl_signal) {

*compl_signal = COMPLETE;

}

176 }

// Reset packet status

*packet = AQL_PACKET_INVALID;

queue_spec [2]++;

}

181 }

}

Program 6.1 The C language program running on the block copier ASIP.

	Introduction
	Background
	Software framework
	Caching
	System-on-a-chip overview

	Specification
	Requirements
	Agent interface

	Implementation
	Hardware
	Software

	Evaluation
	Results

	Conclusions
	Bibliography
	APPENDIX A. Firmware

