


TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

MATIAS BERG
DYNAMICS OF GRID-FORMING INVERTER

Master of Science thesis

Examiner: Assist. Prof. Tuomas Messo
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 1st February 2017



ABSTRACT

MATIAS BERG: Dynamics of Grid-Forming Inverter

Tampere University of Technology

Master of Science thesis, 60 pages, 6 Appendix pages

July 2017

Master's Degree Programme in Electrical Engineering

Major: Power Electronics

Examiner: Assist. Prof. Tuomas Messo

Keywords: grid-forming, inverter, dynamics, micro-grid, islanding, islanded, standalone

Islanded micro-grids are increasingly becoming a vital factor in improving the relia-
bility of a power system. In the islanded micro-grid power is produced from a local
energy source that can be a renewable energy plant or an energy storage system.
If for example, the energy produced from solar panels and energy storage systems
is fed to the grid an inverter is required to change the direct current produced by
the solar panels to the alternating current. In the islanded micro-grid the inverter

is used to form the phase voltages.

Dynamic models of power electronic converters have been previously developed in
the literature. A useful feature of a dynamic model is that it can be used to tune
controllers for the inverter and analyze stability. However, a dynamic model of the
grid-forming inverter with respect to its true dynamics has not been reported and

analyzed at the same time properly.

This thesis investigates, how to develop a dynamic model of the grid-forming in-
verter. A circuit diagram of the inverter, where the load is modeled as an ideal
current sink is used as a basis for the modeling. Equations from the circuit diagram
are written for a state space model. The state space model consists of linearized
equations in a synchronous reference frame. The synchronous reference frame is
used so that traditional control theory can be employed. Transfer functions that de-
scribe the dynamics from the system inputs to the system outputs are solved from

the state-space presentation.

Analysis of the solved open-loop transfer functions shows that the dynamics of the
grid-feeding and grid-forming inverter differ significantly. In orderer to tune rea-
sonable controller the size of the capacitor in a commonly used LCL-filter has to
be increased compared to grid-feeding inverter. The dynamic model could be used
to develop a cascaded controller. It is analyzed that capacitor current feedback

provides good output current disturbance rejection.
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Sahkoverkkojen saarekekdyttomahdollisuudesta on tulossa entistd tarkeAmpid, kun
sdhkonjakelun luotettavuutta halutaan parantaa. Saarekkeessa tehoa tuotetaan
paikallisesta ldhteestd, joka voi olla uusiutuva energialdhde tai energian varastointi-
jarjestelmd. Jos esimerkiksi aurinkopaneeleilla tuotettua sidhkod halutaan syot-
tda verkkoon, tarvitaan vaihtosuuntaaja, joka muuttaa aurinkokennojen tuotta-
man tasajannitteen vaihtojannitteeksi. Saarekekiytossd vaihtosuuntaajaa kiytetdan

muodostamaan jénnitteet verkkoon.

Vaihtosuuntaajille on kehitetty dynaamisia malleja, joita voidaan kiyttad sdatojen
suunnitteluun ja stabiiliusanalyysiin. Verkon muodostavalle vaihtosuuntaajalle ei

ole vield kuitenkaan esitetty kunnollisesti mallia, joka mallintaisi aitoa dynamiikka.

Téassd diplomityossd tutkittiin, miten verkon muodostavan vaihtosuuntaajan dy-
naaminen malli johdetaan. Dynaamisen mallin johtamisen perustana kéytetiin verkon
muodostavan vaihtosuuntaajan piirikaaviota, josta kirjoitettiin ja muokattiin yhtalot
tilaesitystd varten. Tilamalli koostuu linearisoiduista yhtaloistéd, jotka on esitetty
synkronisessa koordinaatistossa, jotta perinteistéd sdatoteoriaa voidaan kdyttad. Tila-
esityksesta ratkaistiin siirtofunktiot, jotka kuvaavat tulosuureiden ja lahtosuureiden

vélistd piensignaalikiyttaytymista.

Johdettujen siirtofunktioiden taajuusvasteista paiteltiin, ettd verkon muodostavan
vaihtosuuntaajan dynamiikka eroaa merkittivisti verkkoa syottdvian vaihtosuun-
taajan dynamiikasta. Jotta sddtimet saatiin viritettyd jarkevisti, yleisesti kéyte-
tyn LCL-suotimen kondensaattorin kokoa tdytyi kasvattaa. Dynaamista mallia
kdyttamalld viritettiin toimiva kaskadisdato. Analyysi vahvisti aiemmat havainnot,
etta sisempi takaisinkytkentd kondensaattorin virrasta tuottaa paremman vasteen

kuormavirrasta aiheutuviin héiriéihin kuin takaisinkytkenti kelavirrasta.
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1. INTRODUCTION

Global warming and contamination of the environment caused by polluting energy
production imperil the diversity of the nature [1],[2] and may reduce the living space
due to rising sea level [2],[3]. This threat has been observed and responsible political
decisions and guidelines on a national and international level usher and support the
change in energy production from using polluting coal and oil to renewable resources
[4], [5], [6]. In addition nuclear production is run down completely in Germany |[7].
Thus, there will be demand in the marker for renewable energy in many Western

countries.

The increase in electrical energy produced by renewable energy sources between 2004
and 2014 in European Union provides view on the rapid increase. In 2004 approxi-
mately 480 TWh electrical energy was produced from renewable energy sources and
in 2014 the amount was increased to 920 TWh [8]. The three most significant rising
sources during that time were wind energy, biomass and solar power. From year
2014 to year 2015 electricity produced from solar power has increased from 92 TWh
to 100 TWh in European Union [9].

Solar power is especially interesting since the size of a solar power plant is relatively
easy to scale. Individual solar cells that generate electrical energy from sunlight
are used as a building block for solar modules [10]. Solar panels that consists of
solar modules can be connected series and parallel so that desired nominal current
and power can be achieved. Solar panels can be used to form large hundreds of
megawatts-size centralized solar power plants [11], small scale centralized micro-

grid power plants and roof-top home systems [12].

Electricity produced by photovoltaic cells is direct current (DC) [10]. The direct
current must be transformed to alternating current (AC) to be delivered in AC
power systems [13]. Thus, a photovoltaic inverter is an essential power electronics
device that is needed to transform the direct current to alternating current [14],
[15]. Depending on the connection topology, DC-DC converters that step-up the
voltage and track the maximum power point of the panels might be required for the

connection [15].
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Fluctuation in irradiance that reaches the panels causes variation in the power pro-
duced by the solar plant [16]. Battery energy storage system (BESS) can be used
to attenuate the adverse effect of the power fluctuation of photovoltaic generators
[17],[18]. Adding energy storage enables forming of micro-grids. According to a
European Commission publication [19] micro-grids contain distributed generation,
controllable local loads and energy storage devices. During a failure in the distribu-
tion network a micro-grid can operate in islanded mode [19]. In islanded operation
the dynamics are denoted by the local loads and sources in which case there is only

small amount of inertia in the system [20)].

An islanded micro-grid should be controlled by a hierarchical control system so that
the frequency and voltage deviations remain acceptable [21]. The lowest level in the
hierarchy is the inner control loop of an individual inverter. The controller consists
of the inner current controller and voltage controller [21]. This thesis focuses on
dynamic modeling the inverter in grid-forming mode. In turn, the model can be

used to tune the inner control loop.

The structure of the thesis is following. The second chapter begins by giving a brief
overview of the main differences between grid-feeding and grid-forming inverter.
The second chapter continues with development of the dynamic model of the grid-
forming inverter. Control design and step response test of the grid-forming inverter
is presented in the third chapter. The fourth chapter examines the effect of the
current feedback variable on the output impedance. Summary of the results and

conclusions are presented in Chapter 5.



2. DYNAMIC MODELING OF GRID-FORMING
INVERTER

The motive of this chapter is to introduce the reader to few major differences in
topologies and control between grid-forming and grid-feeding inverters. A detailed
discussion of control of grid-feeding inverter falls out of scope of this thesis. Once a
circuit diagram of a grid-forming inverter is justified, an open-loop dynamic model

of the inverter is derived.

2.1 Grid-Feeding Inverter

The grid-feeding mode of the inverter is required when the power produced by a
PV generator is fed to the grid. Figure 2.1 shows a simplified diagram of a grid-
connected PV inverter. The inverter is fed by the PV generator, which is equipped
with an input capacitor. The input capacitor is required for the proper operation of
the inverter [22]. On the AC-side a LCL-filter is connected to the inverter to reduce

the current ripple. The ideal AC voltage source stands for an ideal grid.

In the grid-feeding mode a current sourced PV inverter is usually controlled by a
cascaded controller. If the generator is operated at the constant current region the
PV generator can be modeled as a current source. In order to implement a maximum
power point tracker the primary control variable is the input voltage of the inverter
[22]. The secondary control variable is the output current [23]. When equipped with
a shunt capacitor as in the case of the LCL-filter, the feedback current can be the
inverter side inductor current or the grid current [24], [25]. Thus, there are multiple

options for the feedback variables on the AC-side.

| =L
Y

Figure 2.1 Grid-feeding inverter.
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Figure 2.2 Circuit diagram of the grid-feeding inverter including o simplified control block
diagram.

Figure 2.2 shows a more detailed circuit diagram of the grid-feeding inverter. The
main points in the figure to be noticed are, how the source and load are modeled and,
how the cascaded feedback control is constructed. The ideal uncontrollable current
source enables maximum power point tracking by input voltage control [22], [26].
The load is a ideal AC voltage source the same as in Figure 2.1, but all three phases
are shown. These simplifications are justified and actually required, because in order
to derive a general dynamic model the load and source effects should be excluded
[22], [27]. The modeling of nonideality in the sources and loads is helpful for the
control design, but they can be included as source and load effects be in the model
afterwards [22], [27]. Figures 2.1 and 2.2 show a battery and a constant voltage
source drawn by a dashed line as alternative sources, respectively. The alternative

sources are needed for purposes of comparison later.

The cascaded controllers are expressed by simplified control block diagrams. It
should be noticed from which variables the feedbacks are taken. The secondary
control feedback is taken from the inverter side inductor current and the primary

feedback is from the input voltage. The voltage reference V'

is created by maxi-
mum power point tracker which ensures that maximum available power is produced
by the PV generator. The tracker is omitted for clarity from Figure 2.2. The volt-
age controller creates the current reference that is fed to the current controller. The
duty ratio is formed by the error between measured current and its reference from
the current error. Sinusoidal pulse-width-modulation (SPWM) is used so that sinu-
soidal currents are achieved. If the AC side control is realized in the synchronous
reference frame the as in the figure the currents and their reference consist of d-

and ¢- components. Modeling in dg¢-domain is analyzed in more detail in the case
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of grid-forming inverter. Both voltage and current controllers can be realized by
PI-controllers as the figure shows [28].

2.2 Grid-Forming Inverter

According to a European Commission publication, micro-grids contain DG, control-
lable local loads and energy storage system (ESS) [19]. However, the controllable
local loads are not always included in the definition of a micro-grid [29]. If local loads
and DG are isolated from the distribution network or the transfer network and the
loads are supplied by the local DG the mode is called as standalone operation |30].
This is essentially same as the intentional islanding of a micro-grid [29]. Also the
term voltage control mode of the inverter has been used to refer to the stand-alone
operation [31].

In the case of the islanded micro-grid the inverter forms the voltages and controls the
frequency [32|. Thus, it is reasonable to use the term grid-forming inverter to define
the converter during that operation. Throughout this thesis the terms grid-forming

inverter and grid-forming mode are used interchangeably.

As mentioned previously an energy storage system is an essential part of a micro-grid
system. Batteries are used commonly as the energy storage with PV generators [17],
[33], [34]. Figure 2.3 shows a common connection of a battery with DC-DC converter
to input capacitor of the inverter [17], [33]. It should be noted that the inverter is
voltage-fed and there is no stiff grid in the output of the LCL-filter. The output filter
and input filter remain unchanged in comparison to the grid-feeding mode. This is
justified by the assumption that no changes are made in the hardware topology of
commercial inverters for the purposes of the grid-forming mode. Generally speaking
the local load in a micro-grid can vary from industrial loads to house-hold loads.

Thus, the load in Fig. 2.3 remains unspecified in the simplified block diagram.

|

| = LOAD
A T

iy
T

Figure 2.3 Grid-forming inverter.
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Figure 2.4 Circuit diagram of the grid-forming inverter including a simplified control
block diagram.

This thesis focuses on how to model the true dynamics of the grid-forming inverter.
Consequently the grid-forming inverter must be assumed to operate in voltage out-
put mode and the load is assumed to be an ideal current sink. Regarding the source
similar assumption must be made. The source is considered as an ideal voltage
source. For example if the load would be assumed resistive true dynamics of the

inverter would remain hidden. [27]

Figure 2.4 shows a more detailed diagram of the grid-forming inverter. The above
mentioned assumptions regarding the sources and loads are applied in the model.
The first obvious difference between the simplified model of Figure 2.3 and the more
detailed circuit diagram is the AC-side filter. The filter has reduced from a LCL-
filter to a LC-filter. The reason for this lies in the circuit theory. It is well known
that a series connection of current source and an inductor is inconsistent. Thus, the
load side inductor of the LCL-filter must be omitted for analysis.

In the grid-forming mode the most important variables to be controlled are the grid
voltage and grid-frequency [21]. Practically when a cascaded controller is imple-
mented, the primary control variable is the output voltage. The secondary control
variable is either the inverter side inductor current, capacitor current or output cur-
rent. It should be noted that the primary feedback and the secondary feedback
are taken from the same side of the inverter. In the system of Figure 2.4 the cur-

rent feedback is realized the same way as in the case of the grid-feeding inverter
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in Figure 2.2. This combination of current loop and voltage loop has been widely
investigated in the literature in the case of grid-forming inverter a well as in the case
of uninterruptible power supply (UPS) solutions [29], [32], [35], [36]. In this the-
sis, the operating mode of UPS inverters is regarded equivalent to the grid-forming
mode. However, an issue of this thesis is to analyze the grid-forming mode as an

alternative to the grid-feeding mode in micro-grids.

The circuit in Figure 2.4 resembles the one investigated in the case of UPS systems.
The most significant difference between the aforementioned systems is the lack of
input capacitor from the input of the inverter in the UPS. A key problem with the
much of literature regarding the true dynamics grid-forming inverter is that the load
is commonly assumed resistive and inductive [37]. However, in [38| the authors have
investigated output impedance of an UPS inverter with respect to true dynamics.
The aim is to formulate open loop transfer functions that describe the true dynamics
from all input variables to all output variables. The open loop transfer functions
are to be used to tune the cascaded controller in the grid-forming mode.

2.3 Dynamic Modeling in Synchronous Reference Frame

There is a considerable amount of literature of implementing the cascade controller
in the synchronous reference frame [29], [32] and in the stationary reference frame
[21], [35]. In the stationary reference frame there are sinusoidally changing variables
in the steady state. One of the major drawbacks of the sinusoidally changing steady
state is the impossibility to use traditional PI-controllers. Therefore, modeling in
a synchronous reference frame is chosen for this thesis because the waveforms have

constant steady-sate and controllers from the traditional control theory can be used.

Modeling starts from the open-loop model and the circuit of Figure 2.4 works as
basis for analysis. In order to facilitate analysis, switches are modeled as single-
pole double-throw (SPDT) switches. Figure 2.5 shows the circuit where the original
six switches have been replaced by three SPDT switches. The SPDT switches are
always connected either up or down position. In the six switch model this means
that constantly either the upper or lower switch is turned on. Hence, the essential

dead-time is not taken into account.

The model parameters are chosen in a way that the duty ratios define the on-time
of the upper switches. Variables d,, d;, and d. are used to refer to the duty ratios in
upper switch in the phase A, B and C, respectively. The lower switches are turned
on when the upper switches are turned off. In the case of SPDT switches the duty

ratios denote the ratio of connection time to the positive and negative rail of the
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Figure 2.5 Circuit diagram of the grid-forming inverter. The switches are replaced by
SPDT switches for the dynamic analysis.

DC link. The DC rails are denoted by P and N, respectively. Parasitic resistance of
a switch is referred by rg,. The equivalent series resistance (ESR) of the inductor L
is denoted by r1, and the ESR of the filter capacitor Ct is included in the damping
resistor R4. The input capacitor and its ESR are denoted by C' and r¢, respectively.

The input variables of the system are the input voltage, upper switch phase duty
ratios and phase load currents. The input voltage and the output phase currents
are denoted by vy, %oa, top and i.., respectively. The outputs of the system are the

input current %, inductor phase currents ir,, i1, and i1, and output voltages voa,

Uoby Voc-

Commonly the currents through the inductors and voltages over the capacitors are
chosen as states in the state-space modeling. Thus, the states are the input capacitor

voltage v, filter capacitor voltages veg,, vem and veg, and filter inductor currents.

2.3.1 State Space Average Model of Grid-Forming Inverter

An average model means that the system parameters are averaged over one switching
cycle [39]. The switch in Figure 2.5 has two possible positions. Thus, two sub circuits
can be formed. The on- and off-time equations of derivatives of the state variables
are shown in (2.1), (2.2), respectively. The equations are similar for the three phases.

Thus, subscript ¢ =a,b,c is used to denote all three phases.

di1i—on 1 ] ]
I;lt = diz [Uin — (7L + Tsw + Ra)ivni + Raioi — vori — Unn] (2.1)
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dr i—o 1 ) )
Ldt L= (1-d) 7 1= (rL 4 7w + Ra)ivi + Raioi — vt — Unn] (22)

By compiling expression of (2.1) and (2.2) time average equations over one switching
period can be achieved. Equations (2.2) and (2.4) show the sum operation and the

result, respectively.

d<iLL’> o divi—on | divi—off
dt  dt + dt (2.3)

d S‘;ﬁ _ % [d; (vin) — (rL + Tow + Ra) {irs) + Ra (ies) — (vors) — (van)]  (2:4)

The remaining state variables are the input capacitor voltage and the output fil-
ter voltages. They can be equated with other state variables and input variables.
Thus, the equations of these do not contain duty ratio-dependent terms and they
directly express the time averaged dependencies. Equations (2.5) and (2.7) show
that the capacitor current is expressed in the both cases as a function of one input
variable and one state variable. Equation (2.6) shows an intermediate formulation

to calculate the average input capacitor current (ic).

= = [{iri) — {ios)] (2:5)

(ic) = C~ = ~ (2.6)

d  C

rc rc

divc) 1 {Q B <'vc>} (2.7)

The inductor currents are state variables, but they will be also used in the current
control feedback. Thus, they are also output variables. The remaining output
variables are the input current and the output voltages. The average current ip
flowing from the DC link toward the inverter switches must be solved first in order
to calculate the input current. Equation (2.8) shows the intermediate relation that

expresses the average current.

(ip) = (dq (ira) + db (iLb) + de (iLc)) (2.8)

By summing the average capacitor current (ic) and the average current (ip) from

the DC link toward the inverter switches the average input current (7;,) is achieved.
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Equation (2.9) shows the result.

<1:;1> - % -l {ia) -+ i) + A (i) (2.9)

<iin> -

The output voltages v,; that are to be controlled in the system can be expressed as

equation (2.10) shows.

{(Voi) = (vorti) + Ra (iLe) — Ra (i0i) (2.10)

Space vectors can be used to present a three phase system [40]. A three phase
three component x,, oy, z. system reduces to a two component system x,, 3 and
a zero component xg. Equations (2.11) and (2.12) show the relation between phase
domain and stationary reference frame in matrix and vector notation, respectively.
In the latter case the zero component has to be calculated separately addition to
vector x that contains the z, as a real and xg as an imaginary component. In
practice the transformation to the stationary reference frame must be made by
using the operations defined in (2.11), because complex number calculation cannot
be implemented easily. K is the scaling factor. Throughout this thesis 2/3 is used

as the scaling factor so that the transformation is amplitude invariant.

Tq 1 —-1/2 —=1/2 T,
g | =K | 0 V3/2 —V3)/2 T, (2.11)
%o 12 1/2  1/2 Ze

x = K(2a + zpe37/3 4 g 4/3) (2.12)

However, the vector notation is useful for analyzing the transformations and equa-
tions. Making use of the complex vector presentation in equation (2.12) reveals that
if x,, x,, and z. are equal, the sum is zero. This is due to the angles in the complex
exponents. Thus, the common mode voltage (v,,x) sums to zero in the transforma-
tion. The zero component on the lower most row of (2.11) is zero in symmetric three

wire systems.

By using the transformation to the stationary reference frame equation for the
derivatives of the inductor currents can be presented by separate o and 3 com-

ponents. Equations (2.13) and (2.14) show the transformed equations.
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dlia) 1. . . ,. L,
o) 2 v = (i T+ B i) + Fafio) = {vcal] (213
L) _ Ly ) = 11+ v R) )+ Ra o) — (ol (214)

where subscripts a and 8 denote alpha and beta components, respectively. It is
to be noticed that there is no cross coupling between alpha and beta components
and the equations are similar to the original ones. By combining equations (2.13)
and (2.14) to a vector presentation advantage of vector operations can be taken.
The significance of vector presentation will be shown to be important in the later

analysis. The vector presentation is shown in equation (2.15)

a (i)

i g 47 = et R (i) 4 Ra) - ()] e

where d*?, <i§ﬁ >, <i§5>, <vg§ > are the vectors containing of the duty ratio and
averages of the inductor current, output current and capacitor voltage alpha and
beta components. The transformation can be done for the equations of average

filter capacitor voltages and output voltages and the results are shown in (2.16) and
(2.17).

V%f
d< > 1 [<ig/ﬁ> _ <i§5>} (2.16)

dt C;

(vaPy = {v&l ) + Ra (i”) — Ra (i) (2.17)

Analyzing the system in the synchronous reference frame is chosen as stated pre-
viously. The space vectors in the stationary reference frame must be transformed
to synchronous reference frame. Equations (2.18) and (2.19) show complex vector
presentation of the transformation and its inverse, respectively. The superscript dq
denotes the synchronous reference frame. Throughout this thesis terms synchronous

reference frame and dq-domain are used interchangeably.
x4 = x*Pemiwst — g 4 i, (2.18)

X —elwatxdd, (2.19)
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where x99 is a variable in the synchronous reference frame and x*? the variables

in the stationary reference frame. Step by step transformation for (2.15) to the
synchronous reference is shown in (2.20)-(2.23).

a(ift) et g |
N7 = [ddqejwsf (V) — (ry, + Tew + Ra) <iiq> elwst

dt L (2.20)
+ Ry (109) et = (v} e
jwst d i td <iiq> 1 da iw.t
Juse™ <1Lq> +eet et = [dMe (o)
— (rn A re + Ra) () oot (221)
+ R4 <iﬁq> elwst <V%‘}> elwst
q d <iLq> I )
i itd —_ adlo N _ |, .dq
Jws <1L > + at -7 [d <Um> (f’L + rew + Rd) <1L > (222)

+ Ra (109 = (v&)

«d
: <:;q> :% [ddq {in) — (ry + Tow + Ra) <icqu> B <iiq> (2.23)
+ Ra (i) — (vi)

In Equation (2.20) the variables in the stationary reference frame are expressed as

a inverse Clark’s transformation of the corresponding dg-variables to the stationary
reference frame. The product rule for derivatives is applied in (2.21). At the next
step in (2.22) the both sides of the equation are divided by the inverse transformation
operator. Equation (2.23) shows the end result. It should noted that there is a
cross coupling between d- and g-components. In order to clarify the effect of cross
coupling, the vector notation is divided to d and q components in (2.24) and (2.25).

d{ira) 1 o . o .
dtd =7 [da (vin) — (11, + Tew + Ra) (ira) + weirg + Ra (fea) — (vora)]  (2-24)
- <cll;q> - % [dq (Vin) = (7L + Tow + Ra) (irg) — wsira + Ra (loq) — (verg)]  (2:25)

In the above equations subscripts d and q denote if the corresponding variable is the
direct or quadrature component of the vector. The equations for derivatives of the

filter capacitor voltage in dg-domain can be derived similarly. The filter capacitor
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equations are shown in (2.26) and (2.27).

d <Ucfd> 1

i = Ff [<2Ld> + WsUctq — <’i0d>] (226)
d{verg) 1. .
=g = g Nina) = wsvor — {ioq)] (2.27)

Equation 2.7 for the derivative of the input capacitor voltage remains unchanged,
because coordinate transformation are only used on three phase AC variables. The

average input current can be calculate from dg-variables as Equation (2.28) shows.

{Oim) _ (vc)

e rc

(iin) = (ic) + (ip) = + % (da (ira) + dq (irq)) (2.28)

The output voltages are solved in dq-domain in equations (2.29) and (2.30).
(Voa) = (Vcia) + Ra (ira) — Ra (lod) (2.29)

(Voq) = (Votq) + Rd (iLq) — Ra (ioq) (2.30)

2.3.2 Steady-State Operating Point

In order to derive transfer functions and use linear controllers for the systems the sys-
tem must be linearized in an operation point [41]. The equations in the dq-domain
are inspected in steady-state. Capital letters are used to denote steady state. In
steady-state the value of all derivatives is zero. Output current g-component I,q
is defined zero and output voltage g-component V, is chosen zero so that the syn-
chronous reference frame is aligned with the d-component. Now the filter capacitor
voltage g-component can be solved from (2.30) that is presented in (2.31) in the
steady-state. Equation (2.32) shows an intermediate solution for Vig,.

Voq = Rd[Lq — Rd[oq -+ chq (2.31)
Votqg = —Raliqg (2.32)

Inductor current d-component in steady-state can be solved from (2.33) as the ca-

pacitor voltage derivative is zero. Solved Vig, from (2.32) can be substituted to
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(2.34). The solution is shown in (2.35).

1 1
i WVt — =1Iog =0 2.
oy + ws Vg o o (2.33)
Ina = Ioa — weCiVerq (2.34)
[Ld = ]od + wSC'f(RdILq) (235)

The solved I4 can be substituted to (2.36). The equation for Vo4 reduces then to
(2.37).

Voa = Ralta — Raloa + Voga (2.36)
Vod = Vot + RiwsCrliq (2.37)

Equation (2.38) shows a steady state relation from which the inductor current g-

component can be solved. Since I, is zero, the solution reduces to (2.39).

1 1
Ie —wsVogg — = 1I,q =0 2.
Cf Lq Cfd Cf q ( 38)
Iq = wsCtVira (2.39)

Solved Irq from (2.39) can be substituted to (2.37). Capacitor voltage d-component

can be expressed as a function of input variable Vo4 as shown in (2.40).

1

—V 2.40
1+ R2w2C? ™ (2.40)

Ve =
I14 from Equation (2.39) is known now and so is Vi from (2.32). I14 is shown in
(2.34) as a function of known variables. Equations (2.24) and (2.25) contain duty
ratio d-and g-components Dy and D when written in the steady state. All other
variables in the operation point are known now. Equations (2.41) and (2.42) show
the solved steady-state duty ratios Dgq and D,.

W Ry) g — ws Ll — Ral, V
Dd:(r + 7, + Ra)lra ‘;d Lq aloa + Vesa (2.41)
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SW I SLI - [0 {
Dq _ ('r + 7+ Rd) Lq -Q—‘;J ta — Ra q+ VCiq (2.42)

2.3.3 Linearization

The model must be linearized in the steady state operation point. Linearization is
done by taking derivatives of the equations in respect to all variables separately and
multiplied by the small signal variation of the variable [27]. It corresponds to the
first degree Taylor series approximation. This means that the system is considered
linear around the steady state operating point. The linearized equations for state

derivatives and outputs are shown in (2.43-2.50).

dipg (rr, + rew + Ra) » Dy . R~ Vin

o= 7 iLq 4 Welng — Z@Cfd + 7 Uin + 7 lod + i dq (2.43)
df';q _ (ot TS[VJV + Rd)%Lq — il — %@qu + %@in 4 %qu + %ciq (2.44)
Do _ G+ i — (2.45)

d'lj;fq _ Cif'qu " oon — Ciflq (2.46)

% = —TCLC@C + m%ﬁm (2.47)

bin = —%@C + % Din + ng%Ld + qu%Lq + gIdeZd + gquciq (2.48)

Dod = Raira — Ratod + Ot (2.49)

Doq = RaiLq — Raloq + Dctq (2.50)

Hats over the variables denote small signals. The variables are organized in the equa-
tions so that first are the input variables followed by the state variables. Equation
(2.51) shows the inputs and the outputs as well the states in the vector notation.
The input and output variables are arranged among themselves from the DC side
to the AC side.
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Vin lin 11.d
lod 11.d I1q
u = Log Yy = lLq X = VCfd 3 (251)
dq Uod Uctq
i dy ] | oq | | 9|

where u, y and x stand for input vector, output vector and state vector, respectively.
By using the vectors and collecting the coefficients from (2.43-2.50) the linearized
state-space model can expressed in (2.52) similarly as it has been done in [42].

dx . .
afojLBu (2.52)

y = Cx + Da

where matrices A, B, C and D are coefficient matrices. The matrices are shown in
(2.53)-(2.55).

B rL+rsw+R
—{rtrowtRy) W -1 0 0
— . (”’L“r?"s[v/v‘i’Rd) O _% 0
A — & 0 0wy 0 (2.53)
0 & —ws 0 0
1
I 0 0 0 5]
240 Ry 0 i 1 0 00 0
B=| 0 —Cif 0 0 0 |C=| 0 1 000 (2.54)
0 0 —c% 0 0 Ry, 0 10 0
| e 0 0 0 0 Ry 01 0 |
K
0 0 0 0
D=|0 0 0 0 0 (2.55)
0 —Rqy O 0 0
0 0 —-Ry 0 0 |
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2.4 Open-Loop Dynamics

2.4.1 Deriving Transfer Functions

In order to solve the transfer functions (2.52) is transferred to frequency domain.

Equation (2.56) shows the frequency domain notation.

sX (s) = AX (s) + BU (s)

(2.56)
Y (s) = CX (s) + DU (s)

The transfer functions from the inputs to the outputs can be solved as shown
in (2.57).

G

A\

~

Y (s) = (C(sI— A) B + D) U(s), (2.57)

where matrix G contains the transfer functions. Equation (2.58) shows the expanded

transfer function matrix.

%in Yinfo Toidfo Toiqfo CTYcidfo Gciqfo r[}in
%Ld GiOLd—o GOLd—o Goqu—o Gch—o C"Ychd—o 'zod
%Lq = GioLq—o Goqu—o C;’oLq—o Gchq—o Gch—o %oq ) (258)
ﬁod Giod—o — 4%od—o _Zoqd—o Gcod—o Gcoqd—o dd
L ﬁoq | L Gioq—o _Zodq—o _Zoq—o Gcodq—o Gcoq—o 1 L dq i

where elements of the matrix are the transfer functions. Because the converter is

voltage fed and voltage output the system is defined by G-parameters.

The subscripts of the elements define in order the input variable, output variable,
necessary information on the d- and g-components and if there are closed control
loops in the system. For example Gcrdq—o is the transfer function from the control
d-component (i.e. duty ratio d-component) to the inductor current q-component in
the open-loop system. Exceptions are the transfer functions from output terminal
to input terminal, input side to input side and output side to output side. Transmit-
tances Toia—o and Tgiq—o denote transfer functions from the output-side terminal to
the input-side terminal. The transfer function from the input voltage to the input
current is input admittance Yi,_,. The transfer functions from the output currents
to the output voltages are denoted by —Zoq—0, —Zoqd—0, —Zodq—o and —Zoq—o. The

minus is required in front of the impedances because the output current is defined
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to flow away from the inverter. Thus, the sign convention of impedance is fulfilled.
In oder to facilitate further analysis the notation of (2.58) is condensed. The d- and
g-components of the same variable are replaced by vectors and transfer functions

are collected to transfer matrices. Equation (2.59) shows the condensed notation.

~

Z.in Yin—o Toi—o Gci—o i}\in
iL = GiL—o GoL—o GCL—O i0 (259)
</\o Gio—o _Zo—o Gco—o a

This matrix notation is useful when calculating closed loop systems, because the
effect of cross coupling is automatically taken into account. Matrices are chosen
so that matrix multiplication gives the same result as scalar calculation. Matrices
Yin—o and Z,_, are shown in (2.60) for example.

Yoo = (2.60)

Yo O
Zo—o =
0 O :|

Zo—d Zoqd—o
Zodq—o Zod—o

It is to be noted that as the minus sign is in (2.59) in front of Z,_, there are no
minus signs in front of the elements of Z, .. All matrices are shown in detail in

Appendix A. Figure 2.6 shows a small signal diagram of the grid-forming inverter.

' oy 1
IYin AN Gcoa<f> V_OQ)IO

'
GiL"}in GoLio (}CL(’\1

Figure 2.6 Small-signal diagram of the grid-forming inverter.

=
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) AN

<>
®

in

The diagrams in Fig. 2.6 visualize the dependencies of the variables. The subscript
o that would denote open-loop is omitted from the matrices, because the the same

diagrams can be used also in the case of closed-loop transfer functions.
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2.4.2 Comparison to Open-Loop Dynamics of Grid-Feeding

Inverter

The grid-forming inverter is analyzed with parameters that have been used in re-
search of the grid-feeding inverter in [24]. A damping resistor of 2.00 €2 is added
to the system that is not present in the grid-feeding inverter. The parameters are
shown in Table 2.1. It is to be noted that the formed grid is a three phase 60 Hz
120 V system. As stated earlier the grid side inductor is not taken into account in
the dynamical analysis of the grid-forming inverter. Thus, the grid-side inductor Ly
is needed only for purposes of comparison between the dynamics of the operation
modes. Table 2.2 shows the parameter values in the steady state operating point.
The voltage 120 V is the root mean square (rms) phase voltage of the system. Since
amplitude invariant transformation is used, the output voltage d-component V4 is
the peak value of the sinusoidal voltage. The parameters and solved steady-state
values in (2.31)—(2.42) are applied to the derived model equations in (2.43)—(2.50)

and the transfer functions are solved.

Figure 2.7 shows the frequency response of G. q_o. In addition to the frequency
response of the derived transfer function a simulated frequency response is shown.
The simulated frequency response is measured from a Matlab Simulink model of
the system and it is used to verify the derived model. Figure 2.7 shows that the
correlation between the simulated frequency response and the derived model is exact.
The model derived by the state-space averaging method is valid up to half the
switching frequency [42]. Thus, the frequency response is shown up to the frequency
of 4 kHz that is sufficient for the purposes of dynamic analysis. Half the switching
frequency fs is 5 kHz.

Table 2.1 Inverter parameter values

Parameter Value Parameter  Value

C 1.9 mF ro 100 m{2
L 2.5 mH TL 25 mf2
L2 0.6 mH 12 22 mSf?
Ct 10 uF Ry 2.1 Q

fs 10 kHz Taw 10 m<)

Wy 2760 Hz
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Figure 2.7 Simulated frequency response (solid line) and model based frequency response
(dotted line) of Gerd—o-

As explained earlier the grid-forming inverter is controlled by a cascaded controller.
The control-to-inductor d and g-component transfer functions Gerq—o and Gerq—o are
identical. Thus, similar controllers can be used for both d- and g-components. It
would be straightforward if the same tuning of the current controllers could be used
both in the grid-feeding and grid-forming modes. Therefore, comparison between
the frequency responses of G4, in the both operation modes needs to be made.
Appendix B shows the averaged and linearized equations in dq-domain that have
been used to develop the state-space model and transfer functions of the grid-feeding
inverter that is used in the comparison. A voltage source is shown as an alternative
input source for the grid-feeding inverter in Section 2.1 in Fig. 2.2. The grid-feeding

inverter is considered to be voltage fed now.

Table 2.2 Operating point values

Parameter Value Parameter Value

Vod 169.7 V Vg 0.0000 V
Lo 27.49 A Log 0.0000 A
I 27.50 A I 0.6397 A
Ve 1697V Vi -1.286 V
Vi 416.0 V I 16.93 A
Dy 0.4088 D, 0.0624
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Figure 2.8 Frequency response of GcrLd—o in the grid-forming mode (dotted line) and in
the grid-feeding mode (thin line).

Obviously the inverter component parameters are the same in the grid-feeding op-
eration. Nevertheless, in the grid-feeding mode the grid side inductor L, of the
LCL-filter is taken into account and it affects the dynamics of the grid-feeding in-
verter. Therefore, an additional resonance can be seen in the frequency response
of the grid-feeding inverter. Figure 2.8 shows frequency responses of G q4_o in the
grid-forming and grid-feeding modes. A significant difference can be seen in the fre-
quency responses. The gain of the grid-forming inverter is low at high frequencies,
whereas the gain of the grid-feeding inverter is low. In the case of the grid-feeding
operation the frequency response contains a parallel resonance at 60 Hz that comes
from the coordinate transformation. The resonances at around 2 kHz stem from
the LCL-filter. The parallel resonance is at 1kHz in the case of the grid-forming in-
verter. Due to the different locations of the resonances the phase drops at different
frequencies in different modes. Generally speaking the frequency responses differ

considerably from each other apart from the high frequencies above 3 kHz.

The differences in the transfer functions can be understood by analyzing simplified
dynamics of both inverters. Figure 2.9(a) shows a single-phase circuit that can
be used to analyze dynamics of the grid-feeding inverter. In order to analyze the
dynamics from the duty ratio to the inductor current a steady state operation must

be assumed. Small signal perturbation is made to the duty-ratio and it is analyzed,
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Figure 2.9 a) Single-phase equivalent circuit b) Linearized DC' circuit for the dynamic
analysis of the grid-feeding inverter.

how it affects the state and output variables. Other input variables than the duty
ratio are kept constant. On the basis of the previous, a DC-model is derived for
dynamic analysis and it is shown in Fig. 2.9(b). The DC-model approximates the d
or g-channel of the dg-system that has been presented by equations in the previous
section. The voltage source presenting grid-voltages is replaced by a short circuit.
This stems from dynamic model of the voltage source. The grid voltage is an input
variable that is kept constant, because only the dynamics from the duty ratio to the
inductor current are inspected. Thus, small signal perturbation in other variables
on the system have no effect on the voltage source. However, the current through
an ideal voltage source is defined by the circuit that is connected to the terminals
of the source. Only the perturbations outside the source are taken into account.
Hence, in the small signal sense a constant voltage source is presented by a short

circuit.

It is approximated that the short circuit branch draws all the current and the ca-
pacitor branch does not need to be taken into account. This is a significant simpli-
fication, but it is done in order to highlight the differences between the grid-feeding
and grid-forming modes later. The current through the inductors L and L, is same.

Equation (2.61) is formed on basis of this.

d%L Vi s Tsw T TL + 7124
Qiy _ d— 2.61
dt L+ L, Bt By O (2:61)

The derivative is replaced by the Laplace variable s and the relation from i, to d is
solved in (2.62).

‘/In
= (2.62)

Gc —0 —
v (L+L2>S+T5w+TL+TL2

Qolr‘ 7
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Figure 2.10 Frequency response of the transfer function from the duty ratio to the in-
ductor current by the simple model (dotted line) and the state space average model (thin
line) in the grid-feeding mode.

The accuracy of this less lengthy approach is compared to the G.q_, of the LCL-
filtered grid-feeding inverter in Fig. 2.10. It can be seen that there is great difference
in the simple model and in the complete state space average model. However,
with the given parameters the dynamic behavior of the phase of the simple model
corresponds to the state-space averaged model at frequencies ranging from 200 Hz to
1 Khz. The accuracy at this frequency range is particularly important because the
crossover frequency of the current loop is commonly within it. Comparison between
the frequency responses of the simplified transfer of the grid-feeding inverter and
the state-space average model of the grid-forming inverter in Fig. 2.10 shows that
the simplified model cannot be used to tune the current controller of the inverter in

the grid-forming mode.

A simplified single-phase model is derived for the grid-forming inverter. Figure2.11(a)
shows a single-phase equivalent circuit that can be used to analyze the dynamics in
a more convenient way. As in the case of the grid-feeding inverter only the dynamics
from the duty ratio to the inductor current are analyzed. The load current is kept
constant. Thus, the load current is not affected by the small signal perturbations in
the input and state variables. However, the voltage over the constant current sink is
dependent on circuit connected to its terminals. Figure2.11(b) shows a DC circuit
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Figure 2.11 a) Single-phase equivalent circuit b) Linearized DC circuit for the dynamic
analysis of the grid-forming inverter.

where the constant current sink is replace by an open branch in order to model the

above mentioned small signal behavior.

Equation for the derivative of the inductor current is shown in (2.63). The circuit
diagram in Fig. 2.11(b) shows that there is no other path for the inductor current
than capacitor. Due to this small signal changes in the filter capacitor voltage has
to be taken into account. The small signal derivative of the filter capacitor voltage
can expressed as in (2.64). Equation (2.65) shows the filter capacitor small signal
dependency on the inductor current. The expression in (2.65) can be substituted to
(2.63). The equation after the substitution is shown in (2.66).

diL Mn 7 Tsw + .- Rdf 1 ~

— = d— —41 — —47 — — }
dt L L ropnT e (2:63)
d'ﬁcf 1 A
= —ic, 2.64
bo, = ——i (2.65)
v = SCfZL ’
~ Vm A Tsw + 7L+ R A 11 ~
Sy, = Td — %ZL — ZS—C'fZL (266)

Equation (2.67) shows the solved simplified G'pq—o.

ﬁs
= L (2.67)
82 + (’I .9117+2L+Rd)8 + Ll(jf

GcL—o -

Qolh >
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Figure 2.12 Frequency response of the transfer function from the duty ratio to the in-
ductor current by the simple model (dotted line) and the state space average model (thin
line) in the grid-forming mode.

Figure 2.12 shows a comparison between the simplified model and the derived state-
space average model. It can be seen from Fig. 2.12 that the simplified DC model
corresponds to the dynamics of the state space average model well. The difference in
the frequency response at around the parallel resonance originates from the different
domains. The parallel resonance has two peaks in the synchronous reference frame.
The simplified dynamics are derived from a DC-circuit and the state-space average

model is derived in dg-domain that contains the cross coupling.

The simplified DC circuits in Figures 2.9(b) and 2.11(b) and the transfer functions
derived from them show, why the dynamics of G.q_, in the grid-forming mode
and grid-feeding mode differ. Equation (2.68) shows a transfer function that is
commonly used to tune the current controller of the grid-feeding inverter. The

equation describes the dynamics from the duty ratio to the inductor current.

Vi

Gc -0 = 7 T
L sL+ R

(2.68)

where L and R are an inductor and a resistor connected in series. A reason why the
filter capacitor was not taken into account in the simplified transfer function of the

grid-feeding inverter is to highlight that equation form of (2.68) cannot be used to
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approximate dynamics of the grid-forming inverter. It is important to be conscious

of the different dynamics of ideal voltage sources and ideal current sinks.

2.4.3 LCL-Filter Parameter Influence on Transfer Functions

The parameters shown in Table 2.1 are suitable for the grid-feeding mode. With
the given parameters the parallel resonance of the LC-filter is at around 1 kHz.
The location of the resonance is disadvantageous to the current controller tuning.
It has been noted in [43] that enabling of the grid-forming mode requires a larger
filter capacitor in the LCL-filter. The larger capacitor can cause problems in the
grid-feeding operation and might require special attention in the controller design
[43]. Thus, it is beneficial to inspect, how the changes in the LCL-filter parameter
values affects the transfer functions. Figure 2.13 shows the frequency response of
Gera_o with different capacitance values of the filter capacitor Ct. The inductor L

remains unchanged.

Figure 2.13 shows that as the filter capacitor size is increased the resonant frequency
moves to lower frequencies. The same can be seen in Fig. 2.14 that shows the
frequency response of output impedance Z,q_,. Apparently the magnitude of the

output impedance decreases when the capacitor is increased. A large capacitor can
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Figure 2.13 Frequency response of the transfer function G.rq_o with different capacitor
Ct sizes.
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Figure 2.14 Frequency response of the output impedance Zoq—o with different capacitor
Ct sizes.

T T T
0T o osam o _
/M — 2.5mH 3 S
S 20F —« s50mH S
£ e
B b m e _
T3]
S
20 F i
10" 10t 10% 10°

Phase (deg)

Frequency (Hz)

Figure 2.15 Frequency response of the output impedance Gerq_o with different inductor
L sizes.
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Figure 2.16 Frequency response of the output impedance Zoq—o with different inductor
L sizes.

be charged or discharged longer without a noticeable change in the voltage. This

originates from the fact that Farad can be defined as ampere second per volt.

Figure 2.15 shows that as the inductor size is increased the resonant frequency moves
to lower frequencies. Naturally the resonant frequency of the output impedance
Zod—o moves also to lower frequencies in Fig. 2.16. However, the output impedance
still increases. The advantage of decreasing or increasing the output impedance with

respect to operation mode can ne analyzed from an equivalent small-signal circuit.

O,

Figure 2.17 Equivalent small-signal circuits of the grid-feeding inverter (a) and grid-
forming inverter (b).
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Figure 2.17(a) shows the equivalent small-signal circuit of the grid-feeding inverter,
where ig is the source current. A small admittance Y, (i.e. large impedance Z,)
is favorable for the grid-feeding mode. When the impedance is large deviations in
the grid voltage v, have small effect on the current that is fed to the grid. Figure
2.17(b) shows the equivalent small-signal circuit of the grid-forming inverter, where
vg is the source voltage. Regarding the grid-forming mode a small output impedance
Z, is advantageous. Changes in the load current i, have small effect on the output
voltage v, when the output impedance is small. The load impedance Y7, is drawn
in gray in Fig. 2.17(b), because the load is modeled as an ideal current sink in
this thesis. Increasing the capacitor size is beneficial for the grid-forming mode and
disadvantageous to the grid-feeding mode. On the other hand the final analysis of

the output impedances and admittances has to be made from the closed-loop model.
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3. CONTROL DESIGN OF GRID-FORMING
INVERTER

As was mentioned in Section 2.2 a cascaded control is commonly used to control
the grid-forming inverter. The controller consists of the inner current controller
and outer voltage controller. This chapter investigates the tuning of the cascaded
control and forming of the closed loop transfer functions. The functionality of the

controllers is tested by time-domain responses.

3.1 Cascaded Control Scheme

3.1.1 Inner Loop Current Controller Tuning

Since the load is an ideal constant current sink, the load current is not an option
for the current feedback. Thus, the current feedback alternatives are the inductor
current and the filter capacitor current. Comparison on the inductor current and
filter capacitor current feedbacks has been carried out in [35],[44]. According to
them the capacitor current feedback is superior to the inductor current feedback in
terms of rejection of disturbances caused by the load current change. However, the
controllers were P-+Resonant controllers in the comparisons in [35],[44]. Still the
inductor current feedback is considered first because it has been implemented in the
case of the grid-feeding inverter [24].

Delay has to be taken into account in the tuning of the controllers. Delay is caused
by sampling and pulse width modulation (PWM). The time delay of the sapling is
one switching period Ty that is the inverse of the switching frequency of f;. PWM
causes a time delay that is half the switching period. Thus, the total time delay Ty
of the system is 1.57;. Similar to [24] the whole delay in the system is considered
to take place before PWM. Equation (3.1) shows, how the delay e~7¢* in Laplace
domain can be approximated by a third-order Padé approximation, where Gge is

the delay transfer function.
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Figure 3.1 Frequency response from the control d-component to the inductor current
d-component with and without the delay.
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Figure 3.1 shows the frequency response from the control d-component to the in-
ductor current d-component with and without delay. It can be clearly seen that the
delay has a significant effect on the phase. The maximum feedback loop crossover
frequency is fs/5 [27]. In this case the maximum current loop crossover frequency
would be 2 kHz. Nevertheless, Figure 3.1 shows that phase lag due to the delay
is too high to be compensated by loop shaping at higher frequencies than 1 kHz.
Thus, the target crossover frequency of the current loop is 1 kHz. This is required
for a voltage controller with a bandwidth of 100 Hz since the secondary control loop
should be approximately 10 times faster than the primary control loop in a cascaded
control. However, the resonance location in the frequency response is a challenge.
It is very difficult or even impossible to achieve a reasonable crossover frequency by

using P-, PI- and PID-controllers even if low pass filtering is used.

It was shown in Section 2.4.2 that the dynamics from the duty ratio to the induc-
tor current are different in the grid-forming inverter and the grid-feeding inverter.
However, it is still useful to verify what happens if similar controller are used. The

current controller that could be used for a grid-feeding inverter consists of two poles
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Figure 3.2 Control block diagram of the inductor current loop gain d-component.
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Figure 3.3 Control block diagram of the full-order inductor current loop gain d-
component.

at 1950 Hz, zeros at 60 Hz and 600 Hz, an integrator and a gain of 15.8 dB. Figure 3.2
shows a control a block diagram of the inductor current d-component. Sensing gain
Gsec is included in the model. The control block diagram for the g-component is
similar and both channels are controlled by identical controllers that are denoted by

the transfer function Gec.

Equation (3.2) shows the current loop gain Loutc_q that is written from the block
diagram in Fig. 3.2. Figure 3.4 shows the frequency response of L,c_q. The gain
margin is only 2.74 dB at 1630 Hz. The phase margin at 1430 Hz is 17.2 °.
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LoutC—d = GcL—deechche (32)

The block diagram in Fig. 3.2 does not include the fact that the duty ratio d-
component has an effect on the inductor current g-component due to the cross
coupling between the channels. Transfer function Geraq—o describes this effect.
The deviation in the current g-component is compensated by the g-channel con-
trol loop that adjusts the duty ratio g-component. The deviation in the duty-ratio
g-component affects the d-channel current according to Gepqa—o. Figure 3.3 shows
the d-component current loop where the cross coupling between the control loops is
included. The current sensing gain is assumed to be 1. Thus, Ggc is omitted from
the control block diagram for simplicity. By using the model, the full-order loop
gain LFQ,_, that includes the cross coupling can be solved. Input @ and output ¢
are marked in the control block diagram in Fig. 3.3. They are defined on different
sides of the sum operator so that the minus does not affect the loop gain. LFQ, ,is

solved from @ to §. The steps to solve the transfer function are shown in (3.3)—(3.9).

Small signal duty ratio d-component dy is expressed as a function of @ in (3.3). afq
is expressed as a function of dy and dg in (3.4). Equation (3.5) shows the relation
from cid to ciq. Inductor current d-component is expressed as a function of the both
duty ratios in (3.6). Duty ratio g-component in (3.6) is substituted by (3.5) in (3.7).
Inductor current d-component irq and duty ratio d-component dy are replaced by ¢
and @ in (3.8). Solved L¥Q ., is shown in (3.9).

Cid - Gdechcd (33)

~

dq = _Gchq—oGdechc(Zd - CTYch—OCTYdelGch(iq (34)

A

dq _Gchq—o G(lechc

- = 3.5
dd L+ CTYch—OCTYdelC:cc ( )
/Z.\L(l = Gchd—o(Zq + GCL(I—OCZd (36)
-~ _Gch foGdechc 7 7

= G a dy + Geraod 3.7
" bad 1+ GchfoGdel G(cc a b d ( )

Gc foG c Gcc ~ ~
U= _Gchdfo L Ll Gccu + GCLd*OGdelGCCu’ (38)

1 + Gchfo Gdel Gcc
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Figure 3.4 Frequency response of the current loop Lowtc—q of the grid-forming inverter
with a current controller of the grid-feeding inverter. The cross coupling is excluded.

FO _
LoutC—d -

GC —OGC —0
kg g GdelGCCGdechc (39)

= Gc —OG e Gcc -
b el L Gch—oGdelGCC

S|

Figure 3.5 shows the frequency response of LEQ, ;. It can be seen that the frequency
response is affected by the cross coupling at the low frequencies. There is a peak
in the frequency response at around 9 Hz and the phase approaches -180 ° at low
frequencies. Also the resonant peaks at around 1 kHz are changed into one peak.

Closed loop transfer functions are calculated by using the matrix notation that was
explained in Section 2.4.1. The open loop matrices are defined in Appendix A. At
first the loop gain is expressed using the matrix notation. The cross coupling effect is
not taken into account separately in the matrix loop gain. Thus, the analysis of the
loop gain in (3.9) is required. However, in the closed loop system the cross coupling
is taken into account, when calculating by the matrix notation. Equation (3.10)

shows the current controller loop gain Lguc, where subscript C denotes current

loop.

LoutC = GCL—OGdelGCCGseC (310)

The loop gain Lyc is required to calculate the closed loop transfer functions from
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Figure 3.5 Frequency response of the full-order current loop Lgl?t(]—d of the grid-forming
inverter with a current controller of the grid-feeding inverter. The cross coupling is in-

cluded.

the input variables to the inductor current in (3.11)—(3.13). Superscript sec in the
following transfer functions comes from the abbreviation for second and it denotes

the secondary controller. The secondary controller of the cascaded control is the

current controller. Subscript ¢ denotes closed.

G?EC—C = (I + LUutC>71GiL—o (311)
foﬁfc = (I + LoutC)ilGoLfo (312)
i‘ic—c = (I W LOutC)_lGCL—oGdelGCC (313)

The above transfer function matrices are used to calculate the closed loop transfer

functions to the input current and output voltages. They are shown in (3.14)—(3.19).

Ysee — Yin—o - G’ci—oGdechcheC ?EC_C (314)

m-—c
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T5 . = Toio — Gei0GaelGec Gsec GIT_ (3.15)

dre = G 0GaelGee — Gei0GaelGecGeec G (3.16)
G5l = Giomo = Geo—0GaelGecGoec G, (3.17)
2 =2 o+ GeooGaa GecGoec GIT (3.18)
G e = Geo0GaelGee — Geo—0Gael GecGeec Goy e (3.19)

In equation (3.18) a multiplication by minus one is done so that the definition of

sec

impedance holds still in the case of Z5°. .

3.1.2 OQOuter Loop Voltage Controller Tuning

The outer voltage controller is tuned according to the loop where the current control
loop is closed. Figure 3.6 shows the voltage reference to output voltage small signal
block diagram presentation of the cascaded controller. The transfer function from
the current reference 21 to output voltage ©,_q can be solved from the control
block diagram. However, it is already solved in (3.19). The transfer function G°
contains the information and it is drawn by a dashed line as an alternative in Fig. 3.6.
The first element of GI° _ contains G that includes the cross coupling effect that
was separately calculated for the current loop in (3.9). The closed loop functions
that are calculated by the matrix notation inherently include the cross coupling

effect.

sec
cod—c

The frequency response of G is used to tune the voltage controller and the
frequency response is shown in Fig. 3.7. A Pl-controller with two poles is tuned for
the voltage loop. The voltage controller Gy, consists of an integrator, zero at 6 Hz,

two poles at 100 Hz and 150 Hz and a gain of 17.4 dB.

The d-channel loop gains are defined in (3.20) and (3.21). The full-order loop gain
is derived the same way as in the case of the current loop in (3.9). Figure 3.7
shows also the frequency response of the loop gains Louwyv_a, LEGy_q and a simu-
lated frequency response of the voltage loop. The simulated frequency response is

measured from a Matlab Simulink model of the grid-forming inverter. The Simulink
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model corresponds to the grid-forming inverter that is shown in Fig. 2.4. Figure 3.7

indicates that derived transfer function LEQy,_, is correct.

LoutVfd = z?)fjchvc (320)
sec sec
FO codg—c ™~ coqd—c
Lowtya = facd—chc - GveGre (3‘21)

1+ GG,

____________________ igsee

: G| ;

1

I I
A ref ref! A &
\"% i d 'V

o L ! _ )
Gvc = Gcc Gdel Gco—o
iL
GseC GCL-O

GseV
Figure 3.6 Control block diagram of the cascaded controller.

Equation (3.22) shows the output voltage loop gain Loyty, where Ggey is the voltage
sensing gain. The sensing gain is assumed to be unity so that is has no effect on
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Figure 3.7 Frequency responses of Ghog_., Lowtv—da and Lfl?tv_d and a simulated fre-

quency response of the voltage loop gain.
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Figure 3.8 Frequency response of Zgﬁt_c and a simulated frequency response of the output

impedance gain.

the dynamics. The closed loop transfer functions where the output voltage loops
are closed are shown in (3.23)—(3.31). Superscript tot denotes that both the current

and voltage loop are closed.

Lowv = G (G Gev (3.22)
Gt = (I+ Lowv) G2, (3.23)
Z' = (I + Lowv) ' (Z5,)) (3.24)
G = (T+ Lowy) T G (Gue (3.25)

Yt =Y — GE G Gaov Gi (3.26)
Tt, = Toe — GHE G Gaev 282, (3.27)
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Gl = GELGe — GEL Gy Gaav G (3.28)
e =G — G GGy Git, (3.29)
Gi_. = Gii_. + GG Gsev Zo (3.30)
Gic = G Gve — GG Gsev G- (3.31)

Figure 3.8 shows the frequency response of Z'S and the simulated frequency re-

od—c

sponse of the output impedance. The correlation between the frequency responses

indicates that the model is good.

=>

B

e >

~ ref

Figure 8.9 Control block diagram of the dynamics of the grid-forming inverter.

The block diagram of Fig. 3.6 forms the basis for the block diagram that includes
the dynamics from disturbances to the outputs. Figure 3.9 shows a control block

diagram of all input-to-output dynamics of the grid-forming inverter.
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3.2 Control Performance of Cascade Control

Control performance of the cascaded controller in the time domain is tested by
making step changes in the input voltage, output current d-component and output
voltage reference d-component. In the previous sections 3.1.1 and 3.1.2 the loop
gains and closed-loop transfer functions were derived. The current controller was
tuned by using parameters that could be used to control the inductor current of a
grid-feeding inverter. The outer voltage controller was tuned according to the model

where the current loop is closed.

The output voltage response to step changes in input variables is shown in Fig. 3.10.
The voltage d-component and g-component references are 169.7 V and 0 V, respec-
tively. At t = 0.5 s the d-component reference is increased by a tenth of nominal
value, at t = 0.6 s decreased by 0.3 times the nominal value and at ¢ = 0.65 s in-
creased back to nominal value. As it can be seen from Fig. 3.10 the output current
ioq 1s decreased to 30 % of the nominal value at ¢ — 0.1s. Att —=0.2sandt = 0.3s
the output current is increased to 90 % of the nominal value and back to the nom-
inal value, respectively. The input voltage is increased by 10 % at ¢ = 0.75 s and
decreased back to nominal ¢ = 0.8 s.

The voltage d-component response to output current step changes is not good. Due
to the step change in the current, a high spike is caused to the voltage d-component.
High output impedance that is shown in Fig. 3.8 implies that changes in the output
current affect significantly the output voltage. It takes almost 0.1 s for the voltage
to settle back to the reference value. The response to the voltage reference step
changes is fast and there is no overshoot. At ¢ = 0.75 s and 0.8 s the errors caused

by the step changes in the input voltage are compensated fast by the controller.

The performance of the cascade controller is not good in the terms of output cur-
rent disturbance rejection. Thus, the current controller is tuned especially for the
grid-forming mode. However, the resonant peak is at disadvantageous frequency in
Ger,—qGge in Fig. 3.1. The whole current loop is damped by a gain of -62.5 Db.
Hence, only a P-controller is used in the current loop. Figure 3.11 shows that there
is no difference between frequency responses Loutv_q and Lgav_d with this controller

tunning.

o 1s used to tune the voltage controller.

sec
cod—c

The closed loop functions are solved and G

Figure 3.12 shows the frequency response of G and the loop gains Lgyy-q and

LFO,, 4. The simulated frequency response indicates that the full-order model of the
voltage loop gain is correct. The controller G, consists of an integrator, zero at 150

Hz, two poles at 200 Hz, and gain of 66.4 dB. The phase margin is 65 “at 99.9 Hz
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Figure 3.10 Time domain response of output voltage d- and g-components to step changes
in the input variables.

and the gain margin is 17.3 dB at 482 Hz. The gain margin above the resonance at
937 Hz is 17.1 dB.
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Figure 3.14 Time domain response of output voltage d- and g-components to step changes
i wnput variables.

Figure 3.13 shows the frequency response of Z'S" .. The output impedance is lower
than with the previous controller. The voltage controller is essentially an I-controller
since the poles cancel almost completely the zero and there is some oscillation in
the time domain response. Figure 3.14 shows the time-domain response of the
system. The voltage spikes are still high, but the voltage settles to the reference
value significantly faster than with the previous cascaded controller in Fig. 3.10.
The response to the voltage reference and input voltage step changes is similar to

the response with the previous controllers.

3.2.1 The Effect of Larger Filter Capacitor

In section 2.4.3 it was discussed that increasing the filter capacitor size has beneficial
effect on the grid-forming mode. As the capacitor size is increased the resonance
in Gerq—o moves to lower frequencies and the open-loop output impedance Zyq_,
decreases. Now the filter capacitor Cf is increased from its original value 10 uF in
Table 2.1 to 100 pF. The inductor L is increased to 3 mH.
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Figure 3.19 Time domain response of output voltage d- and g-components to step changes
in input variables.

Figure 3.15 shows the bode diagram of G q_o. The model follows the exactly the
simulated frequency response from a Simulink model. The highest peak of the paral-
lel resonance is at 360 Hz. A P-controller is tuned for the system. A gain of -28 dB is
chosen. The loop gain Lyuic_q and the full-order one Lguotc_d are shown in Fig. 3.16.
The current loop bandwidth is from 105 Hz to 961 Hz. The gain margin is 6.01 dB
at 1.8 kHz. The phase margin at 961 Hz is 46.3 °.

The voltage controller is tuned to control G .. The controller consists of an
integrator, zero at 500 Hz, pole at 1000 Hz and gain of 31.1 dB. Figure 3.17 shows the
the frequency response of the full-oder voltage loop gain LEQy, , and the simulated
frequency response. The bandwidth of the voltage loop is 68.9 Hz and the phase

margin is 57.2 °. The gain margin is 29.3 dB.

The output impedance Z%¢

od—c

that is shown in Fig. 3.18 is lower than with the
previous controllers. Naturally the open loop impedance Z,q_, that is affected by

the large filter capacitor is the basis for the output impedance.

Figure 3.19 shows the time-domain response of the system. The disturbances in-
jected to the system are described in Section 3.2. The first voltage spike is only
292.9 V now as it was up to 450 V in the case of Fig. 3.10. In addition the con-
troller cancels out the error quicker than with the first controller tuning. However,

there are small overshoots due to the output voltage reference d-component changes.
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4. CURRENT CONTROLLER FEEDBACK
VARIABLE ALTERNATIVES

Hitherto, the current feedback has been taken from the inductor current. However,
there are still other alternatives. The capacitor current or the inductor current and
the output current of which difference corresponds the capacitor current measure-
ment can be measured. Obviously the latter is more expensive, but the overcurrent

protection can be implemented in that case [44].

The reasoning for the use of capacitor current is that the changes in the output
current have immediately effect on the capacitor current according to the circuit
theory. The inductor current cannot change until the output voltage has decreased.
In order to analyze the capacitor current feedback input-to-filter capacitor current
transfer functions need to be solved. The filter capacitor current ic, is defined
as the inductor current subtracted by the output current. Thus, it is simple to
modify the coefficient matrix D of the state-space representation in (2.55) so that
the intermediate output variable is the filter capacitor current instead of the inductor

current. The coefficient matrices A, B, C and D are shown in Appendix C.

The transfer functions can be solved from the state-space representation the same
way as in (2.57). The control to inductor current G.rq_, and control to filter capac-
itor current Gec,q—o dynamics are identical. The similarity of the dynamics can be
understood by keeping in mind that the output current is constant. Thus, the small
signal deviations in the inductor current that come from the power stage have to oc-
cur also in the filter capacitor current since it is the only path available. Due to the
identical dynamics no adjustments in the current controller tuning are needed when
the feedback variable is changed from the inductor current to the filter capacitor

current.

All the other transfer functions are identical between the both currents except the
output-to-current transfer functions. The output current-to-capacitor current trans-
fer function Goc,q—o differs greatly from Gora—o. The differences in the dynamics
can be understood by comparing frequency responses of the output-to-inductor cur-

rent transfer function Gorq—o and the output-to-capacitor current transfer function
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Figure 4.1 Frequency responses of Gold—o and Goced—o along with the simulated frequency
responses.

GoCpd—o that are shown in Fig. 4.1. The simulated frequency responses that are also

shown for both in the figure indicate that the models are correct.

It is important to analyze the gain behavior given the fact that current loop remains
unchanged and the bandwidth is from 105 Hz to 961 Hz. The gain of Gocda—0 is
positive in dB at frequencies above 200 Hz and approaches 0 dB at high frequencies
This means that at high frequencies all the output current flows through capacitor
as it is known by the circuit theory. At low frequencies the small signal output
current has practically no effect on the capacitor current since the magnitude of
the gain is very low. In the case of the inductor current it is the opposite. At low
frequencies before the resonance the gain is high and decreases after the resonance.
At around 100 Hz the phase in G, q_, begins to decrease. This means that the
high frequency content of the output current disturbance is not seen instantly by
the inductor current. Thus, output voltage is affected by disturbance before the
current controller can react. The filter capacitor current has the same weakness
that there is some phase shift in the current controller bandwidth. However, the
phase approaches -180 ° that means multiplication by -1. With respect to output
disturbance rejection this is beneficial. For example an increase in the load current
causes a decrease in the capacitor current. Compensating the decreased capacitor

current also compensates the error in the output voltage. The current controller
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Figure 4.2 Frequency response of the output impedance with the inductor current feedback.

increases the duty-ratio so that the capacitor current increases and reduces the

discharge of the filter capacitor.

In the case of inductor current feedback the effect of the increase in the output
current on the output voltage is different. Due to the increased output current also
the inductor current increases and the current controller decreases the duty-ratio.
This means that less current is drawn from the input voltage source and more current

is drawn from the capacitor. As a result the output voltage falls.

The comparison between the feedback alternatives can be made analyzing how
the output-to-current transfer functions affect the closed-loop output impedance.
In section 3.1.1 equations (3.12) and (3.18) show how the output-to-current open
loop dynamics affect the closed loop current dynamics G:__. output-to-current and

sec . The total output impedance Z". is affected by Z5°,

o— o—

output-to-output voltage Z
as shown in (3.24) in section 3.1.2. Figures 4.2 and 4.3 show the differences in Z$*,
with the inductor current feedback and with the filter capacitor current feedback, re-
spectively. It can be seen from Fig. 4.2 that the inductor current feedback increases
the output impedance as it should be low in terms of the output current disturbance
compensation. However, the LC-resonances at around 300 Hz are damped by the
current loop. This is consistent with the research on the output impedance of a
UPS inverter in [38]. Figure 4.2 shows that the output voltage feedback reduces the
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output impedance as it can be seen from the frequency response of Z'%!

od—c*

Figure 4.3 shows that in the case of the capacitor current feedback the output
impedance is decreased by the current feedback. The output voltage control loop
decreases the output impedance further. With respect to compensation of distur-
bances from the output current the capacitor current feedback seems to be superior.
Figure 4.4 shows comparison of the frequency response of the output impedance
with the inductor current feedback and with the filter capacitor current feedback,
respectively. Simulate frequency responses indicate that the models are correct. In
all probability the deviations is the simulated frequency response of Z'$' in the
case of capacitor current feedback are caused by the limited measurement accuracy.
As the gain is under -30 dB the simulated frequency response measurement is no
longer accurate. Appendix D shows the frequency responses of the cross coupling

output impedances Zjg, . and Zoy . in the case of inductor current feedback.

The time-domain response comparison between the inductor and capacitor current
feedbacks of the grid-forming inverter is shown in Fig. 4.5. The response to output
current step changes that take place at ¢ = 0.1 s, 0.2 s and 0.3 s is better with
the capacitor current feedback. The voltage spike at ¢t = 0.1 s is 292.9 V with
the inductor current feedback, but decreases to 230.5 V with the capacitor current
feedback. The input-to-current transfer functions like the control-to-current transfer

functions are identical in the both cases. Thus, the voltage reference changes at
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Figure 4.5 Time domain response comparison.
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Figure 4.6 Time domain response with capacitor current feedback.

t = 0.6 s and 0.65 s and input voltage changes t = 0.75 s and 0.8 s cause identical
responses as it is shown in Figures 4.6 and 3.19.

Although the capacitor voltage feedback provides significantly better output current
disturbance rejection, there might be problems is real applications. The frequency
response of Z' _with capacitor current feedback has its phase close to 180 °. It can
cause stability problems with the load admittance. In this thesis the load admittance

has been considered zero as the load has been modeled only by a current sink.
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5. CONCLUSIONS

Energy storage systems make it possible to maintain the operation in an islanded
micro-grid during a failure in the distribution grid. Inverters that normally feed the
energy produced by the renewable energy sources to the distribution network have
to form the grid during an islanded operation. In order to control the grid-forming

inverter, the dynamics of the inverter must be known.

Few researchers have addressed the dynamics of grid-forming inverter with respect
to controller tuning or output impedance analysis. For instance small-signal model
of the three phase voltage source UPS inverter has been created in [37]. However,
they use a series connection of a resistor and inductor as a load in each phase.
The drawback of this load assumption in the dynamic analysis has been clearly

recognized [27].

Output impedance transfer functions are derived in [38|. They show a small-signal
circuit model of a UPS inverter. However, their explanation, how the transfer func-
tions are derived from the circuit misses some steps and they solve only the output
impedances. Solving transfer functions from a circuit is possible as it is shown in
this thesis. However, it is laborious to solve transfer functions one by one from a lin-
earized small signal circuit diagram if the cross coupling between d and g-component
are taken into account. Thus, there is still need for a full order dynamic model of the
grid-forming inverter that clearly represents the transfer functions from the input

variables to the output variables of system.

In this thesis state-space average modeling is used. The linearized equations are
presented in the state-space matrices and only few matrix operations are needed to
solve the transfer functions. The transfer functions have been verified by simulated

frequency responses from the Simulink model of the grid-forming inverter.

A cascaded controller is tuned for the grid-forming inverter by using frequency
responses of the open-loop transfer functions. The control variable of the inner
loop is the inductor current and the output voltage is controlled by the outer loop.

Closed loop transfer functions are derived from the controller transfer functions and
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the open-loop transfer functions. Simulated frequency responses from the Simulink

model of the grid-forming inverter indicate that the models are correct.

The effect of current feedback variable on the ability to reject load voltage distur-
bances caused by the load current changes is inspected in [44], [35]. They come to
the conclusion that the filter capacitor current feedback is superior to the inductor
current feedback. The same result is achieved in this thesis. However, the analysis
is facilitated by the derived transfer functions. Since the transfer functions were
derived from all the input variables to all output and controllable variables, the
output current-to-inductor current and output current-to-capacitor current transfer

functions are easily available.

Based on the transfer functions it is easy to analyze how output current changes
affect the possible feedback current in the open loop. Frequency responses of the
closed-loop output impedances show, how the feedbacks affect the impedance. It is
shown that the inductor current feedback mainly increases and the filter capacitor
current feedback mainly decreases the output impedance of the grid-forming inverter.
The effects of inductor current feedback on the output impedance is in line with the
observations in [38]. The capacitor current feedback has been used in [45]. However,

the open-loop dynamics of the inverter are not analyzed properly in [45].

It should noted that the model represented in this thesis has some limitations. The
load of the grid-forming inverter is modeled as an ideal current sink that does not
correspond to any real load. However, the unideal load can be included as a load
effect in the dynamic model later. One next step to continue the research is to
include the load effect and the load-side inductor of the LCL-filter in the model that
could not be included in the model with the ideal load. Decoupling gains between
d and g-components in the current and voltage controller have been widely used in
the literature and they are still to be implemented to this model. Future work will

also look into hardware-in-the-loop simulation that can be used to verify the model.

As stated in the introduction, the thesis was carried out in order to develop dynamic
model of the grid-forming inverter. A full-order dynamic model that hasn’t been
represented before to this extent was made successfully and a cascaded control was
tuned. The results achieved by analyzing the model correspond to findings in the
literature. In addition the derived full order transfer functions facilitate the analysis
of the grid-forming inverter and new more detailed findings than before can be found

from the frequency responses of the system.
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APPENDIX A. TRANSFER FUNCTION
MATRICES

Equation (A1.1) shows the open-loop transfer function matrices.

Y S/in—o 0 o Toid—o Toiq—o
in—o 0 0 oi—o — 0 0
G.. - G"cidfo G(ciqfo G- _ GiLdfo 0
ci—o 0 0 iL—o GiLq_O 0
G o GoLd—o Goqu—o G o GCLd—O Gchd—o
oL—o — cL—o —
Goqufo G’oquo | Gchqfo GCLCI7O
G- _ Giod—o 0 7, _ Zod—o Zoqd—o
e Gioq—o 0 e ZOdq—O Zoq—o
G o Gcodfo G(coqdfo G o Gdel 0
co—0 — del —
Gcodqfo G(t:oqfo 0 Gdel i
Geec 0 Geev O
GseC = N GseV = v
0 GseC 0 GseV
G | G0 o | Ge 0
cc — 0 GCC ve — 0 GVC

|
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APPENDIX B. GRID-FEEDING INVERTER

The averaged and linearized equations describing the grid-feeding inverter that the
grid-forming inverter is compared to are shown here. The averaged equations in the

synchronous reference frame are shown in (B1.1)-(B1.10).

d <;Ltm> _ Lil [da (vin) — (1L + Tew + Ra) (iv1a) + woL (itag) + Ra (i12a) — (ver)]
(B1.1)
Lil [dq (0in) — (71, + o + Ra) (iLag) — woL (ia) + Ra (iaq) — (vor)]  (B1.2)
) — L [fit1a) = {ia) +Ct )] (B1.3)
L) L {Gi10) — (i) = C fca)] (BL4)
d(;;cﬁ _ % W? _ <;’_2>} (BL.5)
iy — Cdg;d _ <1:;1> _ <7;‘2> (B1.6)
(ip) = g (da (ir1a) + dq (ir1q)) (B1.7)
(im) = (ic) + (ip) = 0;2& - <:f—z> + g (dq (iv1a) + dq (ir1q)) (B1.8)
d <2L;d> _ LLQ [(vera) — (ria + Ra) (insq) + wsLo {iraq) + Ra (inia) — (ved)]  (BL.9)
4 <2Lt?q> — L% [(vetq) — (rLa + Ra) (iraq) — wsLa (inaa) + Ra (iLig) — (voq)] (B1.10)

The linearized equations are shown in (B1.11)—(B1.18).

dir1q (et + Tsw + Ra)~ -~ 1 Dy . Ry~ Vin =
_ , e — — Do+ 235, + 4 dy (B1.11
o L 1,14 + WslL1g L Vetd + I, Vin + L. Ir2d + L. a ( )
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divig  (rui+rev + Ra)~ ~ 1 Dy.. R~
a T 11,1q — WsiL1d I Uctq + T —Uin + — T 112q + I
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=—0 —ipg — —————>1 Wyl —7,
It T cfd + T, Lid I Lod + WslLoq — T d
Gz _ Lo R GwtRie oL
dt LQ Cfq LZ Llq LQ 'L2q stl.2d Lg oq
diocg 1~ n 1~
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di}\qu 1 -~ —~ 1 -~
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APPENDIX C. FILTER CAPACITOR CURRENT

FEEDBACK

The filter capacitor current is chosen as the intermediate output variable. Equation

(C1.1) shows the small signal input, output and state variable vectors. The linearized

state-space presentation in frequency domain is shown in (C1.2). Equation (C1.3)

shows the state-space matrices.

KN [ ] [ ira
2od %Cfd %Lq
U= | iy Y= | ics X=| Ucu
dd 'lA}od 'lA}qu
i dq | i @Uq i e
sX (s) = AX(s) + BU (s
Y (s) =CX(s) + DU (s)
[ _ (TL+Tsw+Rd) w _l O 0 7]
L s L
—wy _ (TL+T2N+Rd) 0 _% 0
1
A = I 0 0 Ws 0
0 é —ws 0 0
| 0 0 0 0 _'r;C ]
[ Da R Vin ] : 3Dq
gl fl 0 L 0 % 2 0
= 0 Ry 0 % 1 0 0
B = 0 —C%f 0 0 0 C = 0 1 0
0 0 —é 0 0 Ry 0 1
5o 00 0 0 | 0 Rq O
[ L 0 3lr,q 3lLg ]
rC 2 2
0 -1 0 0
D= 0 0 —1 0 0
0 —Ry 0 0 0
i 0 0 —Rq O 0 ]

- o O o O

o o o o3l
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APPENDIX D. OUTPUT IMPEDANCE
AFFECTED BY INDUCTOR CURRENT
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APPENDIX D. Output impedance affected by inductor current feedback
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Figure D.3 Frequency responses of Zodq in open loop and closed loop.
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