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Conducting polymers, especially Polypyrrole (PPy), have been extensively used for the 

modification of the electrode surface by electrochemical deposition. The combination of 

carbon nanotubes (CNTs) and PPy has also been successfully electrodeposited on the 

electrode surface to lower the impedance. The morphology of such coated electrode 

were also found to be rougher than PPy or CNT alone  which could indicate greater 

electroactive area of the coated film.  

The thesis is based on electrodeposition of two types of biopotential electrodes: a) 

Microelectrode arrays (MEAs) and b) Macroelectrodes. The electrodeposition process 

was evaluated by chronopotentiometric measurement by measuring the charge and 

current density. 

The PPy and PPy/CNT solutions were successfully electrodeposited onto the 

Platinum(Pt) macroelectrode surface. PPy/CNT decreased the macroelectrode 

impedance. Optical Profilometer analysis showed that PPy-CNT 0.25 sample (made 

from 0.25mg/ml of  CNT) produced the roughest surface and PPy-Control sample 

produced the smoothest surface. Atomic Force Microscopy(AFM) analysis showed that 

the PPy-CNT 0.5 sample (made from 0.5mg/ml of  CNT) was more rougher than the 

PPy surface. Micrograph analysis showed thick coating with PPy-CNT 0.25 and PPy-

CNT 0.5 samples than PPy-Control and PPy-CNT 0.1 (made from 0.1mg/ml of  CNT) 

samples. 

 A wide range of electrical properties were also observed in different frequencies. PPy-

CNT 0.5 was highly resistive at 1kHz with phase angle of 29° and most capacitive at 

1.0Hz with phase angle of -68°compared to coated electrodes. PPy-CNT 0.25 showed 

maximum impedance magnitude at 1.0Hz and PPy-CNT 0.5 showed least magnitude at 

1KHz. Bare Pt was highly capacitive at 1Hz with the phase angle of -78°. PPy-CNT 0.5 

was highly capacitive at lower frequencies (<100Hz) than any other coated electrodes 

while PPy-CNT 0.25 was most resistive.  

Plasma treatment reduced the MEAs impedance. However, the MEA was not coated 

with PPy solution. Variations in charge and current densities was observed with MEAs 

electrodeposition. These types of electrodeposition analysis could be useful in future 

research to characterize the impedance of the coated film to improve the performance of 

biopotential electrodes.  
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1 INTRODUCTION 

 

Biopotential electrodes are generally used for recording and stimulating the bioelectric 

signals. The bioelectric potentials in the electrolytic media are transduced by the 

electrodes into electronic signals by means of (Frölich et al. 1996; Weiland & Anderson 

2000): 

a) Capacitive coupling (without net charge transfer) which happens during recording 

and b) charges transfer reactions in which the ions in the physiologic environment 

exchange electrons on electrodes through redox reactions. This process happens mainly 

during stimulation. These reactions could be reversible or irreversible generating gases 

at the electrode site and leading to tissue damage and electrode corrosion due to its 

oxidation. 

 It is not so clear that the recording would be capacitive and stimulus require charge 

transfer, so it is possible to have a capacitive electrode for both recording and 

stimulation. Similarly we can have good Ag-AgCl electrodes with lower capacitance 

that can be used for recording. Thus this transduction phenomena depends on the type 

of electrodes used. 

One important goal of electrode fabrication is the low impedance. With the small 

microelectrode size, the recording and stimulation can be confined to a single cell or 

neuron, thus preventing the interference with the neighboring cells. Hence, high-density 

microelectrodes with a large number of electrode sites could be useful. However, this 

decreases the geometric area of the electrodes and results in higher electrode impedance 

thus high electronic noise during recording. Also, the safe injection charge through an 

electrode to stimulate the cells is reduced. These factors presents a major drawback 

when using a small surface area electrode. One way to decrease the electrode impedance 

is to coat the electrode with electrically conducting polymers, whose nodular surface 

topography increases the active surface area of the electrode. The two most important 

criteria/limitations for electrodes selection are:  a) surface area of the electrode and b) 

charge transfer capacity between electrode and cell. (Heim et al. 2012) 

Various biopotential electrodes have been coated with the conducting polymers to 

reduce the electrode impedance and to improve the electrical properties of the electrode. 

Electrochemical Impedance Spectroscopy has been extensively used to measure the 

electrical properties of the coated surface and to predict and build several electrical 

models of the electrode-electrolyte interface (Xiao et al. 2004; Abidian & Martin 2007; 

Harris et al. 2013). 

Conducting polymers (CPs) are a special class of polymeric materials with electronic 

and ionic conductivity. Their porous structures and electric conductivity (Schultze & 

Karabulut 2005) allow them to be used in dry as well as in wet state (Xu et al. 2005). 
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The conducting and semi conducting properties of CPs have made them an important 

class of material for a wide variety of applications (Ravichandran et al. 2010). The 

scope of CPs in biomedical engineering application includes the development of 

artificial muscle (Otero & Sansinena 1998), controlled drug release (Abidian et al. 

2006), neural recording (Abidian et al. 2009) and the stimulation of nerve regeneration 

(Schmidt et al. 1997). CPs can be easily fabricated by electrochemical method where 

they can be deposited on the surface of a given substrate. This allows producing a 

polymer surface whose thickness and formation rate can be controlled (Vidal et al. 

2003). 

 CPs can be physically or chemically modified. Chemical modification has been studied 

by using biomolecules as dopants (Cui et al. 2003) or by immobilizing bioactive 

molecules on the surface of the material (Zhong et al. 2001). Physical modification has 

been done by increasing the surface roughness of the material by various methods such 

as creating microporous films, fabricating nanoparticles and nanopeptides, growing CPs 

within hydrogel and blending CPs with biomolecules to produce 'fuzzy' structures 

(Ravichandran et al. 2010). The increased surface roughness due to CPs coating 

increases the surface area of the electrodes and hence lowers the electrode impedance. 

Among CPs, Polypyrrole (PPy) is one of the most studied electroactive conducting 

polymers for coating the electrode surface to lower the impedance. It can be doped with 

various reagents to change its physical, chemical and electrical properties. 

Carbon nanotubes (CNTs) are built from carbon units, which have seamless structure 

with hexagonal honeycomb lattices. They have closed topology and tubular structure, 

and they are several nanometers in diameter (Caglar 2017). They are widely used in 

electroanalytical applications because of their ability to promote electron transfer and 

provide stable polymer film coatings. It is one of the most important materials used in 

nanotechnology. The PPy/CNT has been successfully electrodeposited and it has shown 

better electrical results than PPy or CNT alone (Shaffer et al. 1998; Han et al. 2005; 

Almohsin et al. 2012). The combination of PPy and CNT has been used in several 

electrochemical applications to characterize the behaviour of the coated surface. Such 

applications include electrochemical supercapacitors (Li & Zhitomirsky 2013) and 

CNT/PPy electrodeposition on glassy carbon electrode (GCE) for neurotransmitter 

detector sensor (Agui et al. 2008). 

The purpose of this thesis was to coat platinum electrodes having two dimensions, 

microscopic electrodes (microelectrode arrays, MEAs) and macroscopic electrodes. The 

MEAs was coated with PPy while macroelectrodes was coated both with PPy and 

PPy/CNT. For fabrication, we used the electrochemical method. The coated films were 

then characterized by measuring the impedance and surface imaging.  
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2 THEORETICAL BACKGROUND 

 

2.1 Conducting polymers 

The unique feature of the conducting polymer is the conjugated molecular structure of 

the polymer main chain where the 𝜋-electrons delocalize over the whole polymer chain. 

Conjugated polymers becomes conducting after the doping process. Among the 

conjugated polymers, polyacteylene has the simplest chain structure composed of an 

alternate single bond and double bond carbon chain. According to the locations of the 

hydrogen atoms on the double bond carbons, there are two kinds of structures: trans-

polyacetylene and cis-polyacetylene as shown in Figure 2 below. In trans-polyacetylene 

structure, the two hydrogen atoms are located on the opposite side of the double bond 

carbon whereas in cis-polyacetylene structure, the two hydrogen atoms are located on 

the same side of the double bond. trans-polyacetylene is a degenerate conjugate 

polymer which possesses an equivalent structure after exchanging it's single and double 

bonds. cis-polyacetylene is nondegenerate conjugated polymer which have non-

equivalent structures after exchanging it's single and double bonds. The structures of 

various conjugated polymers is shown in Figure 1 below. (Li 2015) 

 

 

Figure 1: Main chain structures of several representative conjugated polymers (Li 

2015). 
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                 a)                                                             b) 

  

    Figure 2: Isomers of polyacteylene a) cis-polyacteylene and b) trans-polyacetylene         

(Goh et al. 2009). 

Conjugated polymers possess delocalized 𝜋-electron structure, which includes the band 

structure of 𝜋-valence band and π*-conducting band. In the basic state of intrinsic 

conjugated polymers, all the valence bands are filled by electrons and all the conduction 

bands are empty. The difference between the top of the valence band (the highest 

occupied molecular orbital) and the bottom of the conduction band (the lowest 

unoccupied molecular orbital) is called the bandgap (Eg). The Eg values of most 

conjugated polymers are in the range 1.5-3.0 electronVolt (eV). Therefore, the intrinsic 

conjugated polymers are organic semiconductors. (Li 2015) 

2.1.1 Doping structures of conducting polymers 

The unique feature of conducting polymers is the p-doped and n-doped states of the 

conjugated polymer main chain. In the p-doped state, the main chain of the conducting 

polymer is oxidized with counterion to maintain the electron neutrality of the whole 

molecule. There are holes in the main chains (lost electrons) which makes the 

conducting polymer p-type conducting. In the n-doped state, the main chain of the 

conducting polymer is reduced with counterion to maintain the electron neutrality of the 

whole molecule. There are electrons in the main chains which makes the conducting 

polymer n-type conducting. (Li 2015) 

 

Figure 3: p-Doped structure of conducting PPy (Li 2015). 

Figure 3 shows the p-doped structure of the conducting PPy. The positive charge is 

delocalized on the PPy main chain. A-  represents counteranions such as nitrate (NO3
 − ), 

chlorate (ClO4 
− ), chloride (Cl− ). 
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Figure 4: Conductivities of insulators, semi-conductors, metals and conjugated 

polymers (The Nobel Prize in Chemistry 2000). 

The number of counteranions per monomer unit of the conducting polymer (or the 

concentration of the charge carrier in the conjugated main chain of the conducting 

polymer) is called the doping degree of the conducting polymer. The maximum doping 

degree is related the main polymer chain structure. For example, the doping degree for 

polyacetylene is usually 0.1-0.2, 0.25-.0.35 for polypyrrole, 0.4-0.5 for polyaniline, 0.3-

0.4 for polythiophene. For the p-doped polypyrrole, the doping degree of 0.25-0.35 

implies that the conjugated chain including 3-4 pyrrole units can be doped with 1 

counterion (or there is a hole within the polypyrrole main chain containing 3-4 pyrrole 

units), as shown in Figure 3. The doping degree is much higher in conducting polymers 

where the charge carrier concentration reaches 1021 /cm3. This value is several orders 

higher than that of inorganic semiconductors as shown in Figure 4. In addition, the 

doping in conducting polymers also results in morphology changes and volume 

expansion because of the counteranion doping. (Li 2015) 

2.1.2 Charge carriers in conducting polymers 

For trans-polyacetylene with the degenerate basic state, the charge carriers are polarons 

and solitons. For the basic state nondegenerate cis-polyacetylene, PPy, PTh, Pani. the 

charge carriers are polarons and bipolarons. The soliton is an unpaired 𝜋 -electron 

resembling the charge on free radicals. It can be delocalized on a conjugated polymer 

chain. The neutral soliton can be oxidized to lose an electron and form a positive 

soliton, or it can be reduced to gain an electron to become negative soliton. The soliton 

possesses a spin of 1/2 whereas there is no spins for positve and negative solitons. 

Polarons are the major charge carriers in conducting polymers including basic state 

degenerate trans-polyacetylene and the basic state non degenerate conjugated polymers. 

P+ denotes positive polaron which is formed after oxidation of the conjugated polymer 

main while and P- denotes negative polaron which is formed after the reduction of the 

conjugated polymer main chain. P+ and P- possess spin of 1/2. (Li 2015) 



6 

 

 

Figure 5: Polaron and bipolaron formation upon oxidation (p-doping) of polypyrrole 

(Jangid et al 2014). 

The bipolaron is the charge carrier that possesses double charges by coupling of two P+ 

or two P- on a conjugated polymer main chain. It has no spin and can be formed when 

the concentration of polarons are high in the conjugated polymer main chains. The 

positive bipolaron and negative bipolaron correspond to the hole pair or the electron 

pair. Figure 5 shows the polaron and bipolaron structure of polypyrrole upon oxidation. 

(Li 2015) 

2.1.3 Doping characteristics 

Doping of conducting polymers can be realized chemically or electrochemically by 

oxidation or reduction of the conjugated polymers. (Li 2015) 

2.1.3.1 Chemical doping 

The chemical doping includes p-type doping and n-type doping. p-Doping is also called 

oxidation doping, which refers to the oxidation process of the conjugated polymer main 

chain to form polarons. The oxidants like Iodine (I2), Bromine (Br2), Arsenic 

pentafluoride (AsF5), etc. can be used as p-dopants. After p-doping, the conjugated 

polymer is oxidized and loses electron to form p-doped conjugated polymer chain, and 
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the dopant gains an electron to become the counteranion. The p-doping process can be 

realized from the following reaction:  

 

 

 

(1) 

 

where CP denotes conducting polymers. 

n-Doping is also called reduction doping, which refers to the reduction process of the 

conjugated polymer main chain to form negative charge carriers. The reductants like 

alkali metal vapor, sodium naphthalenide (Na+ (C10H8) 
− ), etc. can be used as n-

dopants. After n-doping, the conjugated polymer is reduced and gains electron to form 

n-doped conjugated polymer chain, and the dopant losses an electron to become the 

countercation. The n-doping process can be realized from the following reaction:  

 

 

 

(2) 

 

where CP is the conducting polymer. 

2.1.3.2 Electrochemical doping  

Electrochemical doping is realized by electrochemical oxidation of reduction of the 

conjugated polymers on an electrode. For electrochemical p-doping, the conjugated 

polymer main chain is oxidized to lose an electron (gain a hole) where the doping of 

counteranions is accompanied from  electrolyte solution :  

 

 

(3) 

where A- denotes the solution anion, CP+(A-) represents the main chain oxidized 

conducting polymer and counteranion doped. (Li 2015) 

For electrochemical n-doping, the conjugated polymer main chain is reduced to gain an 

electron  where the doping of countercations is accompanied from  electrolyte solution:  

 

 

 

(4) 

where M+ denoted solution cation, CP-(M+) represents the main chain reduced 

conducting  polymer polymer and countercation doped. (Li 2015) 

The electrochemical doping is simple and reproducible, and it can be carried out 

amperometrically or potentiostatically or with a cyclic scan of a potential 

(voltammetric). (George et al. 2006) It is usually performed in an electrochemical cell. 
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The electrochemicall cell can be of three types used to fabricate the conducting 

polymers: (Yang & Martin2004). 

a) current-controlled (galvanostatic) method: A current source is attached between 

working and counter electrodes and a user-defined current is passed. 

b) voltage-controlled (potentiostatic) method: A current is pushed between working 

electrode and counter electrode as required to control the working electrode potential 

with respect to a reference electrode.  

c) VWE-CE control (voltammetric): A voltage source is applied between the working and 

counter electrodes. The potential of these electrodes with respect to reference electrode 

are not controlled. Here only the net potential between working and reference electrodes 

are controlled.  

The electrodeposition process is very fast, and takes usually a few seconds. The film 

thickness can be easily calculated with the measurement of total charge in the formation 

of CPs. In the same way, the final potential and the anion (or anions) of the supporting 

electrolyte regulates the level of doping as well as the oxidation state and conductivity 

of polymer. The final polymer can reach conductivities upto 1.0-105 S/cm. (George et 

al. 2006) 

2.1.4 Application of CPs 

Conducting polymers (CPs) are discovered over 30 years ago with a growing interest on 

their electronic conducting properties and unique biophysical properties. Some of the 

applications of the CPs are: 

a) Chemical sensors: Conducting polymers such as PPy, Pani, PTh, and their derivatives 

have been used as the active layers of the gas sensors (McQuade et al. 2000). 

b) Drug delivery: The biocompatibility of CPs opens up the possibility for them to be 

used as in vivo biosensors applications for continuous monitoring of drugs or 

metabolites in biological fluids (Harwood & Pouton 1996). 

c) Bioactuators: Bioactuators are the device which are used to create mechanical force, 

which in turn can be used to create artificial muscles. The process of change in the 

volume of CP scaffold upon electrical stimulation has been amployed in the 

development of bioactuators (Ravichandran et al. 2010). 

d) Tissue engineering applications: The desired properties of CPs for tissue engineering 

applications are conductivity, reversible oxidation, redox stability, biocompatibility, 

hydrophobicity, three-dimensional geometry and surface topography. They are widely 

used in tissue engineering applications because of their ability to subject cells to an 

electrical stimulation (Ravichandran et al. 2010). 
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e) Biosensors: CPs acts as an excellent materials for the immobilization of biomolecules 

and fast electron transfer for the development of efficient biosensors. They are used to 

enhance speed, sensitivity and versatility of biosensors in diagnostic medicine to 

measure vital analytes in the human body and thus are widely used in medical 

diagnostic reagents (Heller 1990). 

They have also attracted much interest as a suitable matrix for the entrapment of 

enzymes. The ideas of incorporating of enzymes into electro-depositable conducting 

polymeric films permit the localization of biologically active molecules on electrodes of 

any size or geometry, mostly for the fabrication of multi-analyte micro-amperometric 

biosensors. (Unwin & Bard 1992) 

They are also known to be compatible with biological molecules in neutral aqueous 

solutions. They can be reversibly doped and undoped electrochemically along with 

significant changes in conductivity and spectroscopic properties of the film that can be 

used as a signal for the biochemical reaction. The electronic conductivity of CPs 

changes in response to change in pH and redox potential of their environment. (Paul et 

al.1985) 

They have the ability to transfer electric charge produced by biochemical reaction to 

electronic circuit. It can be deposited over a desired area of electrodes. This property of 

CPs together with the possibility to entrap enzymes during EP has been exploited for 

the development of amperometric biosensors. (Foulds & Lowe 1986) 

Other applications include corrosion protection layer, solar cells, Field-Effect Transistor 

(FET) sensors and chemiresistors (Gerard et al. 2002). 

2.1.5 Polypyrrole 

Polypyrrole (PPy) is an electrically conducting polymer that can be polymerized 

electrochemically and deposited onto the electrodes. PPy is one of the most widely 

studied electroactive conducting polymer because of its solubility in aqueous solution 

and low oxidation potential of the monomer, ease of use, controllable surface properties 

and compatibility with the mammalian cells. (Harris et al. 2013) It can be doped with 

various counterions ions to change its physical, chemical and electrical properties 

(George et al. 2005). The ability to control PPy surface properties such as charge 

density and wettability initiate the potential for modifying neural interactions with the 

polymer (Cui et al.2001). It enables flexibility in the design of three-dimensional 

polymer implants because of ease of fabrication and the ability to control its growth rate 

(Lavan et al. 2003). PPy is a relatively soft material when coated on the surface of the 

electrodes which promotes cell attachment onto the surface (Heim et al. 2012). 
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2.2 Carbon nanotubes (CNTs) 

CNTs are one of the most commonly used building blocks of nanotechnology. They are 

used in various commercial products like rechargeable batteries, automotive parts and 

sporting goods. Advancement in CNT synthesis, purification and modification have 

enabled them to be use in thin-film electronics and large-area coatings.  Although they 

do not have compelling mechanical strength or electrical or thermal conductivities, 

CNTs have shown promising performance for application including supercapacitors, 

actuators and lightweight electromagnetics shields (Volder et al. 2013). The properties 

of CNTs, such as high electronic conductivity and high mechanical resistance have 

driven extensive research in recent years mostly in the field of electroanalytical 

chemistry. The ability of CNT's to promote electron transfer in electrochemical 

reactions is the main reason for its successful use in electroanalytical applications. It has 

been widely used in design and testing of various biological and electrochemical sensors 

(Agui et al. 2008; Vairavapandian et al. 2008). It has single-walled and multi-walled 

structures as shown in Figure 1.  

 

 

                         Figure 6: A) Single-wall CNT and B) Multi-wall CNT (Vidu et al. 2014). 

Single-walled CNTs (SWCNTs) are made of a cylindrical graphite sheet capped by 

hemispherical ends. It has diameter typically around 1 nanometer. The multi-walled 

CNTs (MWSNTs) are made of several concentric cylinders of graphitic shells with a 

layer spacing of 0.3-0.4 nm. It tends to have diameter in the range of 2-100 nm. 

(Merkoci et al. 2009) 

2.3 Biopotential electrodes 

Biopotential electrodes are used for recording and stimulating the bioelectric 

phenomena. The bioelectric signals are mainly produced by muscles and nerves due to 

the migration of ions. The migration of ions generates potential differences at cellular 

level including the body's outer surface. Each potential can be picked up by placing 
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electrodes at any two points at the surface of the body and measured with a recording 

device. A typical cell potential waveform is shown in Figure 2. (Indian Institute of 

Technology 2010) 

 

 

     Figure 7: A typical cell potential waveform (Indian Institute of Technology 2010). 

When a cell is excited by ionic currents or external stimulus, the membrane potential of 

a cell changes from its original state. The potential rises due to high influx of sodium 

ions and reaches the maximum value, which is called action potential. An exciting cell 

with an action potential is said to be depolarized; this process is called depolarization. 

After a certain time, the cell becomes polarized and returns back to it's resting potential. 

This process is known as polarization. After an action potential, there is a period, known 

as absolute refractory period, in which cell does not respond to any new stimulus. This 

is followed by a relative refractory period when another action potential may be 

triggered by a stronger stimulus.  

One of the important desirable characteristics of electrodes to pick up these signals is 

that they should not polarize, meaning that the electrode potential must not vary 

considerably even when the current is passed through the electrode. Other properties of 

good electrode includes biocompatibility, good electrical conductivity and corrosion 

resistance. (Indian Institute of Technology 2010) 

2.3.1 Electrode-electrolyte interface 

A redox reaction needs to occur at the interface between the electrode and electrolyte 

for a charge to be transferred between electrode and the ionic solution. A redox reaction 

is an electrochemical oxidation-reduction reaction. The oxidation is dominant when the 

current flow is from the electrode to the electrolyte, and the reduction dominate when 

the current flow is in the opposite. There are two kinds of currents: faradic current due 
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to the charge transfer through the interface and displacement current arising from the 

displacement of charge carriers at the interface. The displacement current is also called 

as capacitive current. (Riistama  2010; Woo 2015) An electrode-electrolyte interface is 

shown in Figure 3. 

 

 

 

Figure 8: Electrode-electrolyte interface (Woo 2015). 

 

When the metallic atoms of the electrode are oxidized, the reaction can be stated as:       

 C ↔ Cn+ +n(e-) (5) 

 

where C represents the metal atom, n its valence, e-  an electron and n(e-) number of 

electrodes. When the reduction/oxidation of the electrolyte ions is to occur, the reaction 

will be written as: 

                                             An- ↔ A+ n(e-)                 

 
(6) 

where An-  represents an anion atom or molecule of the electrolyte solution and A is the 

atom or molecule of the electrolyte.   
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Thus, the net current crossing the electrode-electrolyte interface are: a) electrons 

moving in an opposite direction of current, b) cations (C+) moving in the same direction 

as current and c) anions (A-) moving in an opposite direction of current. These redox 

reaction causes a changes in the charge distribution between the interface and rest of the 

electrolyte. The charge distribution at the interface can be measured as the higher 

electrode potential than in the bulk electrolyte. The layer with a high charge density at 

the interface is called a double layer. (Riistama  2010; Woo 2015) 

2.3.2 Electrical characteristics 

The electrical characteristics of a biopotential electrode can be represented by RC 

circuit in Figure 4 below. In the circuit below, Cd is the capacitance across the charge 

double layer, Rd  is the leakage resistance across the charge double layer, Rs is the 

resistance of electrolyte and Ehc is the Dc voltage source or half call potential. Rd and Cd 

are the impedance associated with the electrode-electrolyte interface and polarization 

effects. Rs is the series resistance associated with the interface effects and due to 

resistance in the electrolyte. The value of Cd and Rd  changes with frequency, current 

density, electrode material and electrolyte concentration whereas value of Rs changes 

with electrolyte concentration. (Woo 2015) 

 

Figure 9: The equivalent circuit for a biopotential electrode in contact with an 

electrolyte (Woo 2015). 

The impedance of the electrode is frequency dependent as show in Figure 5. At low 

frequencies the impedance is dominated by the series combination of Rs and Rd, 

whereas, at higher frequencies Cd bypasses the effect of Rd so that impedance is now 

close to Rs. Thus, it is possible to determine the component values for the equivalent 

circuit for a electrode by measuring the impedance at high and low frequencies. 
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Figure 10: An example of biopotential electrode as a function of frequency (Neuman 

2000). 

The impedance is characterized by a magnitude (|Z|) and phase angle (ϴ) and is most 

generally represented as a function of frequency. For a capacitor, the impedance is 

purely imaginary, the phase angle is 90° and the current is out of phase with voltage by 

90°. For a resistor, the impedance is real, the current and voltage are in phase and the 

phase angle is 0°. For a system composed of combination of these components like in 

the electrical electrode-electrolyte interface, a large phase angle value indicates that the 

impedance is predominantly capacitive, while small angle values are resistive. (Cui et 

al. 2001) The electrical characteristics of electrodes are also affected by it's physical 

properties which is shown in Table 1below. It is seen that the increase in surface area 

and surface roughness of the electrode decreases the electrode impedance. However, 

polarization of the electrodes increases the electrode impedance at lower frequencies. 

Table 1:The Effect of Electrode Properties on Electrode Impedance (Neuman 2000). 

 

Property Change in Property Changes in Electrode Impedance 

Surface area   

Polarization                        At low frequencies 

Surface roughness   

 

2.3.3 General requirements of the electrode material   

The noble metals electrode like platinum(Pt), gold, iridium, palladium and rhodium 

have been commonly used for electrical stimulation. Their intended application might 

be different due to their material properties. Platiunum is relatively soft material and 

may not be mechanically acceptable for all stimulation applications. Iridium is harder 

than Platinum making it more suitable as intracortical electrodes. (Merrill et al. 2005) 

Some of the  basic requirement criteria of an electrode material are listed in Table 2 

below.  
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      Table 2: Basic requirements of an electrode material (Merrill et al. 2005). 

Biocompatibility The electrode material should be biocompatible 

to avoid a necrotic cell response.  

Stable junction A stable junction should be formed between 

electrode and tissue, especially in long term in 

vitro and in vivo measurements. 

Mechanical strength Electrode material should offer sufficient 

mechanical strength  combined with stable 

electrical properties for reliable long term 

performance of MEA. 

High charge injection 

capacity 

A safe stimulation conditions for reliable 

stimulation of excitable tissue can be achieved 

by a sufficient high charge capacity per surface 

area. 

Electrical conductivity A good electrical conduction between electrode 

and tissue is crucial for stimulation and 

recording of bioelectrical signals. 

Corrosion resistance An electrode material should not erode in 

biological environment when implanted. 

 

2.3.4 Safe charge injection limit and stimulation protocol 

The two most important parameters for designing a stimulation protocol is: a) 

Efficiency and b) safety. An efficient stimulation pulse requires to have a sufficient high 

charge per pulse whereas  a safety pulse requires a sufficient low charge per pulse to 

prevent electrode corrosion. (Merrill et al.2005) The maximum safe charge that can be 

injected through a microelectrode depends on several factors including the electrode 

material, the electrolyte, stimulation parameters (charge per pulse, duration, waveform 

type, frequency) as well as the shape and size of the electrode. Microelectrodes of small 

dimensions may safely inject less charge than macroelectrodes, however the efficiency 

may be compromised in such case. Therefore, sufficient charge injection into the 

microelectrode often brings the limiting factor for the efficient stimulation of the 

surrounding tissues with electrodes. One way to overcome this problem is by increasing 

the effective surface area of the microelectrodes, which decreases the impedance and 

the thermal noise of the electrode and also allows to inject higher charges, necessary for 

efficient and reliable stimulation of excitable tissues. (Heim et al. 2012) 

 

The basic design criteria for a safe stimulation protocol can be stated according to 

Merrill et al.2005 as: "The electrode potential must kept within a potential window 

where irreversible faradic reactions do not occur at levels that are intolerable to the 
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physiological system or electrode. If irreversible faradic reactions do occur, one must 

ensure that they can be tolerated (e.g. that physiological buffering systems can 

accomodate any toxic products) or that their detrimental effects are low in magnitude 

(e.g. that corrosion occurs at a very slow rate and the electrode will last for longer than 

its design lifetime)." Therefore, currents injected into a microelectrode should not 

exceed a certain safe limit to avoid irreversible faradic reactions at the electrode surface.  

2.3.5 Charge vs charge density relationship 

According to Shannon (1992),an expression for the maximum safe level for stimulation 

is given by : 

 

 

 log(Q/A) = k-log(Q) (7) 
 

where  Q is the charge (µC) per phase, Q/A is charge density (µC/cm2) per phase and 

2.0 >k > 1.5, where k is constant which fits to the empirical data findings in the above 

research(Merrill et al. 2005). Figure 6 illustrates the charge vs charge density 

relationship of equation (4) using k values of 1.7, 1.85, and 2.0. 

 

 

 
 

Figure 11: Charge (Q) vs. charge density (Q/A) for safe stimulation at the frequency of 

50 Hz. A microelectrode with relatively small total charge per pulse might safely 

stimulate using a large charge density, whereas a large surface area electrode (with 

greater total charge per pulse) must use a lower charge density. (Merrill et al. 2005) 

 

The data shows that as the charge per phase increases, the charge density for safe 

stimulation decreases. Above the threshold for damage, experimental data demonstrates 

tissue damage, and below the threshold line, the data indicates no damage. When the 

total charge is small as with a microelectrode, a relatively large charge density may 

safely be used.  It is seen that both charge per phase and charge density are important 

parameters that determines the neuronal damage to cat cerebral cortex. In terms of the 

mass action theory of damage, charge per phase determines the total volume within 

which the neurons are excited, and the charge density determines the proportions of 
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neurons that are close to an excited electrode. (Merrill et al. 2005) The area of safe 

stimulation also depends upon the types of tissues stimulated (mass action theory) 

(McCreery et al.1990). For example, the limits for safe stimulation in deep brain was 

found to be 30 µC/cm2 for an injected charge of 2 µC per phase (Kuncel & Grill 2004). 
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3 MATERIALS AND METHODS 

 

3.1 Material and solution preparation 

We used Pyrrole (Py) monomer (Sigma Aldrich, St. Louis, USA)of concentration0.2 M 

and Dodecyl-benzene sulphonate (DBS) (Acros Organics, Geel, Belgium) concentration 

of 0.05 M to make the solutions. A (PPy)-DBS solution was made by adding 1.39 ml of 

Py solution and 1.98 g of DBS to 100 ml of distilled water. We used magnetic stirrer for 

30 minutes to achieve homogenous solution. We had single-walled carbon nanotubes 

(SWCNTs) functionalized with COOH (University of Oulu) of three different 

concentrations. We used three different concentrations of CNTs: 0.1 mg/ml, 0.25 mg/ml 

and 0.5 mg/ml of COOH/DI-water. The chemical structures of these chemicals are 

shown in Figure 7 below. 

 

 

Figure 12: The chemical structures of a) DBS b) Py monomer (Royal Society of 

Chemistry2015).  c) PPy (Chidichimo et al. 2010). d) CNT (C29H42O10, MW 550.64) 

(Yang et al. 2014). 

We used two types of platinum electrodes for the coatings, MEA electrodes and 

macroelectrodes. MEA electrodes (MEA60 100 Pt, Qwane Biosciences, City, Country) 

consisted of 60 recording electrodes with a diameter of 30 µm and interelectrode 

distance of 100 µm. The size of the MEA electrode array is 15mm*15mm*0.7mm.  
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Each electrode has impedance value of  800-1100KOhm at frequency of 1KHz. 

Macroelectrode were made of 99.95%  Pt with the dimensions of 1.0mm*0.5mm*15 

mm (Labor-Platina Kft, Pilisvörösvár, Hungary). We used PPy-DBS and PPy-

DBS/CNT solutions for macroelectrode coating while only PPy-DBS solution for MEA 

electrode coating. The coating solution used for each type of coating is presented in 

Table 3 below. 

 

                            Table 3: Electrodes and coating solutions used. 

Electrode types Coating solution 

MEA electrodes PPy-DBS 

Macroelectrodes PPy-DBS 

PPy-DBS+CNT 

0.1mg/ml 

PPy-DBS+CNT 

0.25mg/ml 

PPy-DBS+CNT 

0.5mg/ml 

 

3.2 Polymerization 

The electrochemical polymerization was carried out using a potentiostatic step method 

at a constant voltage in a two-electrode electrochemical cell as shown in Figure 8 

below. The coating solution for each electrode types are listed in Table 3. All the 

electrodes were polymerized by using VersaSTAT Series potentiostat/galvanostat 

device  controlled by VersaStudio software (Princeton Applied Research, South Illinois, 

USA). We used the linear scan voltammetry and chronopotentiometry technique to 

generate the current and charge density curves. 

We controlled the process by charge limits. The settings for the each electrodeposition 

are listed in the Results section 3.1 later. The experiment were carried out at room 

temperature. The data from the software was exported to CView software (Scribner 

Associates, North Carolina, USA) to further analyze the data. 

The electrode to be coated (working electrode) was supplied with certain potential (V) 

with respect to the reference electrode from the potentiostat and the current (I) was 

measured from the counter electrode. We used Pt counter electrode of dimesnions 

1.0mm*0.5mm*15 mm (Labor-Platina Kft, Pilisvörösvár, Hungary).  We used 12ml of 
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solution for macroelelectrode coating and 2ml for microelectrodes coating. The values 

of currents, voltages and times are given in Result section later.    

 

Figure 13: Electrochemical cell setup (Li & J 2010). 

3.3 Impedance measurement 

We used two devices for the impedance measurement. The MEA electrodes impedance 

was measured with Impedance testing device MEA-IT (Multi Channel Systems, 

Reutlingen, Germany). The macroelectrodes were measured with Solartron Model 

1260A Frequency Response Analyzer in combination with 1294A Impedance Interface 

and SMaRT Impedance Measurement Software (Solartron Analytical, Hampshire, UK). 
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Figure 14: a) Mounting the MEA electrodes b) MEA-IT device and c) Ag-Agcl silver 

wire ground electrode  d) Virtual MEA layout e) Measurement with MEA-IT software 

and f) Measured electrode impedance (Impedance Testing Device MEA-IT 

Manual2013). 

First we carefully inserted the MEA in the middle of the lid as shown in Fig 9 a) making 

sure that it is correctly oriented. Then, we filled the MEA dish with a conducting 

Phosphate Buffered saline (PBS) solution (Sigma Aldrich, St. Louis, USA) and 

approximately fifteen minutes was waited before measuring the electrodes. At the same 

time, we externally grounded Ag-Agcl silver wire even though we measure a MEA with 

internal reference electrode as seen in Fig 9 c). Otherwise the impedance values would 

be out of range. We used MEA-IT software (Multi Channel Systems, Reutlingen 

,Germany) to control the impedance measurement as seen in Figure 9. 

3.3.1 Macroelectrode impedance measurement 

We used Solartron Model 1260A Frequency Response Analyzer, 1294A Impedance 

Interface  and computer equipped with the SMaRT Impedance Measurement Software 

(Solartron Analytical, Hampshire, UK)  to measure the impedance. 
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We used three-electrochemical cell setup for impedance measurement as shown in 

Figure 10 below. We used MF-2052 RE-5B Ag/AgCl reference electrode with flexible 

connector (Labor-Platina Kft, Pilisvörösvár, Hungary),  Pt as a counter electrode and Pt 

sample as a working electrode. The potential (V) was supplied between reference and 

working electrode and the current flow between WE and CE was measured. We used 

10ml PBS solutions as electrochemical solution. The dc level voltage and ac voltage 

were set to 0V to 5mV, respectively. Impedance was measured at 26 discrete frequency 

points from 1.0 Hz to 100 000 Hz using frequency sweep option. These measurements 

were analyzed by using Smart v3.2.1 software (Solartron Analytical, Hampshire, UK) 

and Microsoft Excel (Microsoft, Washington, USA). 

 

 

             Figure 15: Three-electrode electrochemical setup (Ayoub et al. 2016). 

3.4 Imaging device 

We used Wyko NT1100 Optical Profilometer, (Veeco, City, Country), Park XE-

100AFM Atomic Force Microscopy (Park Systems, Santa Clara, USA), and Olympus 

BH-2Optical microscope (Olympus Optical Co., Tokyo, Japan) equipped with a 

BestScope BUC4-500C5.0 MP digital camera (BestScope International Limited, 

Beijing, China) to capture the images of  the coated electrodes. 

3.4.1 Optical Profilometer 

We used Wyko NT1100 Optical Profilometer to capture the 3D image of 

macroelectrodes. The basic principle and the measurement of the device is described 

below in Fig 11 and Fig 12 respectively. 
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3.4.1.1 Principle 

Optical Profilometer uses the wave properties of light to compare the optical path 

difference between a test surface and a reference surface. A light beam is split, 

reflecting half the beam from a test material which is passed through the focal plane of 

microscope objective, and the other half of the split beam is reflected from the reference 

mirror. Interference occur in the combined beam wherever the length of the light beams 

vary. The interference beam is focused into a digital camera to create light and dark 

interference image as shown in Figure 11 below.  With a known wavelength, the height 

differences across a surface is calculated. From these height differences, a surface 3D 

map is obtained. (Zygo Corportion 2017)  

 

   Figure 16: Schematic of an optical profilometer (Zygo Corportion 2017). 

3.4.1.2 Measurement 

First of all, the profilometer was calibrated in Vertical Scanning Interferometry (VSI) 

measurement  mode with VSI calibration sample as shown in Figure 12 below. The 

sample was mounted on the Profilometer stage and the program was started by double 

clicking the Vision64 software icon, to open the calibration mode. We selected the filter 

to VSI mode and adjusted the intensity and focus with the slider in the computer 

window. The illumination was increased until we see red on the screen and decreased 

the illumination until the red was un-illuminated. Then the calibration sample was 

focused by rotating the focus Knob slowly until we get the good contrast image of the 

sample. Then, we repeated the process with the Pt samples and the images were saved 

in a suitable format. 
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Figure 17: Measurement with Optical Profilometer Vision software with intensity 

window a), Calibration window b), Veeco NT1100 c) and Measurement option window 

d) (Marcel 2003). 

3.4.2 Atomic Force Microscopy (AFM) 

We used Park XE-100AFM  Atomic Force Microscope, to image the surface 

topography of coated electrode. We calculated the peak-to-valley roughness index(Ra) 

of the image using the vertical height of the image surface (The Research membranes 

Environment, 2009) in Figure 26 below in the Results section. The basic measurement  

and hardware setup are shown below in Figure 13 and Figure 14, respectively. 
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                        Figure 18: Basic AFM principle (Stonecypher 2011). 

3.4.2.1 Principle 

An AFM uses a cantilever tip to scan over a sample surface. As the tip approaches the 

surface, attractive forces between the tip and surface causes the cantilever to deflect 

towards the surface. However, if the tip makes contact with the surface, repulsive force 

takes over and causes the cantilever to deflect away from the surface. A laser beam is 

used to detect deflections away or towards from the surface. A deflection in the 

cantilever causes the changes in the direction of the reflected beam. The photodiode can 

be used to measure these changes and thus the topography of the sample image can be 

created with feedback and electronic circuits. (Stonecypher  2011) 
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        Figure 19: Basic hardware setup of Park XE-100 AFM (Fei & Brock 2013). 

3.4.2.2 Measurement 

First we mounted sample on the stage and rested the tips in the tips box and that 

bearings fits into tip slots. Then we replaced head and pushed flaps away until slightly 

tight. Then after, we checked the Scanning probe mcroscopy (SPM) Controller and 

Monitors. We turned on the Light Bank, isolation stage and Laser light. After that, we 

processed the image with 'XEC' program and saved it. (Fei & Brock 2013) 

3.4.3 Optical Microscope 

Olympus BH-2Optical microscope (equipped with a BestScope BUC4-500C, 5.0 

MPdigital camera) was used to capture the mircographs image. The micrographs were 

taken at 5X, 10x and 20x magnifications. 
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4 RESULTS 

 

4.1 MACROELECTRODES 

The macroelectrodes were successfully electrodeposited with PPy and PPy/CNT 

solutions. The electrodeposited electrodes are: PPy-Control, PPy-CNT 0.1, PPy-CNT 

0.25 and PPy-CNT 0.5. Their impedances were measured using Electrical Impedance 

Spectroscopy and the images were analysed with AFM, Optical Profilometer and 

Optical Microscope. The electrodeposition results are presented in section 4.1.1. The 

Electrical Impedance Spectroscopy and impedance measurement results are presented in 

section 4.1.2 to 4.1.4. The imaging results are presented in section 4.1.5. 

4.1.1 Macroelectrode electrodeposition 

All electrodes were polymerized using chronopotentiometry method with a reference 

potential of 1.0 V. We used charge limit of  0.258C/cm2 and electrode area of 0.15cm2   

for electrodeposition. The electrodes were successfully polymerized with PPy and 

combination of PPy and CNT solutions. All the electrodes showed almost similar 

charge and current density values. The results looked more consistent in each coating 

than with the microelectrodes plates. PPy-CNT 0.25 showed the maximum current 

density of 0.0023A/cm2 as seen in Figure 15 below. All the current density curves 

reached the peak and then decreased within a second after the deposition process. After 

a period of some seconds, all the current density curves decreased at constant value of 

0.002A/cm2. 
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                   a)                                                                        b) 

Figure 20: Charge a) and current b) densities during electrodeposition. 

 All the coated platinum samples showed linear increase in charge density as in fig a). 

Also PPy-Control and PPy-CNT 0.5 showed almost similar response and had a higher 

time duration of about 1500sec than PPy-CNT 0.1 and PPy-CNT 0.25 samples. No 

major difference was seen in the current curve as in fig b). PPy-CNT 0.25 showed 

maximum current density within a few seconds of the electrodeposition process. 

4.1.2 Electrical Impedance Spectroscopy 

Figure 16 below shows the average bode plot measurements of various samples. PPy-

CNT 0.25 showed the highest impedance magnitude while PPy-CNT 0.5 showed lowest 

value upto frequency of 100Hz. However, the values were very closer after frequency of 

100Hz. Bare Pt samples had the highest negative phase angle value upto a frequency of  

900 Hz. After this frequency, PPy-CNT 0.25 showed highest negative values. PPy-CNT 

0.5 showed least negative phase angle after a frequency of 300Hz. It is seen that the 

average Bare Pt samples had a dominant capacitive impedance until a frequency of 
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around 300Hz after which PPy-CNT 0.25 was more capacitive. The electrode 

impedance was reduced with PPy/CNT composition at lower frequencies, however,PPy-

CNT 0.25 was an exception.  

 

 

 a) 

 

 

b) 

Figure 21: a) Average Bode plot of different Pt samples Impedance plot a) and phase 

plot b). 
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At low frequencies (upto 100Hz) bare Pt and PPy-Control 0.25 showed dominant 

impedance than any other electrodes. However, the values looked similar after 100Hz as 

seen in Figure 16 a). They also showed a dominant phase angle values at certain range 

of frequencies which can be clearly noticed from Figure 16 b). The impedance of the 

individual sample were measured three times to observe the difference in their results as 

shown in Figure 17, 18, 19, 20 and 21 below. All the measurement samples showed 

quite similar changes in impedance magnitude and phase. However, PPy-Control and 

PPy-CNT 0.1 samples showed more variation in their measurement in terms of phase 

and impedance values respectively. 

 

 

                                                a) 

 

                                                   b) 

Figure 22: Bode plot of bare Pt sample measured three different times Impedance plot 

a) and phase plot b) as a function of frequency.  
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No major difference in the measurement was seen either from impedance magnitude or 

phase plot. The maximum impedance magnitude of bare Pt sample was around 

32000Ohm at the frequency of 1.0Hz. A sharp decrease in impedance magnitude was 

then observed until the frequency of the 90Hz. The value at this frequency was around 

350 Ohm. The values looked consistent after this frequency. The maximum phase angle 

was around -80°. The phase angle showed almost all similar values until the frequency 

of 90Hz. After this frequency, the phase angle sharply decreased until the frequency 

about around 9000Hz. After this frequency, the variation in phase angle values was 

slower.  

 

 

 a)  

 

                                                             b) 

Figure 23: Bode plot of PPy-Control sample measured three different times Impedance 

plot a) and phase plot b) as a function of frequency. 
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The maximum impedance magnitude of PPy-Control sample was around 16400Ohm at 

the frequency of 1.0Hz. A sharp decrease in impedance magnitude was then observed 

until the frequency of the 90Hz. The value at this frequency was around 560 Ohm. The 

values looked consistent after this frequency. The maximum phase angle was around -

60°. The phase angle showed almost all similar values until the frequency of 90Hz. 

After this frequency, the phase angle sharply decreased until the frequency about around 

9000Hz. After this frequency, the variation in phase angle values was slower.  

 

 

a) 

 

 

b) 

Figure 24: Bode plot of PPy-CNT 0.1 sample measured three different times Impedance 

plot a) and phase plot b) as a function of frequency. 
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.No major difference in phase angle measurement was seen from fig b). However, 

variation of impedance magnitude during the measurement was seen at lower 

frequencies as in fig a). 

The maximum impedance magnitude of PPy-CNT 0.1 electrode was around 16000Ohm 

at the frequency of 1.0Hz. A sharp decrease in impedance magnitude was then observed 

until the frequency of the 90Hz. The value at this frequency was around 520Ohm. The 

values looked consistent after this frequency. The maximum phase angle was around -

70°. The phase angle showed almost all similar values until the frequency of 90Hz. 

After this frequency, the phase angle sharply decreased until the frequency about around 

9000Hz. After this frequency, the variation in phase angle values was slower.  

 

 

                                                        a) 

 

                                      b) 

Figure 25: Bode plot of PPy-CNT 0.25 sample measured three different times 

Impedance plot a) and phase plot b) as a function of frequency. 
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The maximum impedance magnitude of PPy-CNT 0.25 electrode was around 

34400Ohm at the frequency of 1.0Hz. A sharp decrease in impedance magnitude was 

then observed until the frequency of the 90Hz. The value at this frequency was around 

550 Ohm. The values looked consistent after this frequency. The maximum phase angle 

was around -60°. The phase angle showed almost all similar values until the frequency 

of 90Hz. After this frequency, the phase angle sharply decreased until the frequency 

about around 9000Hz. After this frequency, the variation in phase angle values was 

slower.  

 

 

                                                        a) 

 

 

                                                             b) 

Figure 26: Bode plot of PPy-CNT 0.5 sample measured three different times Impedance 

plot a) and phase plot b) as a function of frequency. 
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No variation in the impedance magnitude and phase angle was seen in Fig a) and b). 

The maximum impedance magnitude of PPy-CNT 0.5 electrode was around 12000Ohm 

at the frequency of 1Hz. A sharp decrease in impedance magnitude was then observed 

until the frequency of the 90Hz. The value at this frequency was around 200 Ohm. The 

values looked consistent after this frequency. The maximum phase angle was around -

70°. The phase angle showed almost all similar values until the frequency of 90Hz. 

After this frequency, the phase angle sharply decreased until the frequency about around 

9000Hz. After this frequency, the variation in phase angle values was slower.  

4.1.3 Impedance measurement at frequencies of 1Hz and 1kHz 

The impedance measurement of different electrodes were done three times. M1 means 

the first measurement and so on. The measurement values of the samples: Bare Pt, PPy-

Control, PPy-CNT 0.1, PPy-CNT 0.25 and PPy-CNT 0.5 is shown in Table 4 below. 
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  Table 4: Impedance magnitude and phase of different electrodes at 1.0Hz and 1000Hz. 

Frequency(Hz) Impedance magnitude(Ohm) Phase (ϴ°) 

Bare Pt M1 M2 M3 M1 M2 M3 

1.0 32000 31250 31760 -80 -80 -80 

1000 110 100 100 -40 -40 -40 

PPy-Control M1 M2 M3 M1 M2 M3 

1.0 10900 15600 16400 -60 -60 -60 

1000 160 170 150 -40 -40 -40 

PPy-CNT 0.1 M1 M2 M3 M1 M2 M3 

1.0 11600 12800 16000 -70 -70 -70 

1000 100 120 130 -30 -30 -30 

PPy-CNT 0.25 M1 M2 M3 M1 M2 M3 

1.0 34400 30380 29600 -60 -60 -60 

1000 270 250 240 -60 -50 -50 

PPy-CNT 0.5 M1 M2 M3 M1 M2 M3 

1.0 12000 11700 11340 -70 -70 -70 

1000 120 110 100 -40 -40 -40 

 

The maximum impedance magnitude for bare Pt electrode was around 32000Ohm at the 

first measurement at frequency of 1.0Hz, the while all the phase angle was equal to 

around -80°.  Similarly, the maximum magnitude at 1000Hz was around 110Ohm and 

all the  phase angle was equal to around -40°. The least magnitude at 1.0Hz and 1000Hz 

was around 31250Ohm and 100Ohm respectively. 

The maximum impedance magnitude for PPy-Control electrode was around 16400Ohm 

at the third measurement at frequency of 1.0Hz, the while all the phase angle was equal 

to around -60°.  Similarly, the maximum magnitude at 1000Hz was around 170Ohm and 

all the  phase angle was equal to around -40°. The least magnitude at 1.0Hz and 1000Hz 

was around 10900Ohm and 150Ohm respectively. 

The maximum impedance magnitude for PPy-CNT 0.1 electrode was around 

16000Ohm at the third measurement at frequency of 1.0Hz, the while all the phase 
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angle was equal to around -60°.  Similarly, the maximum magnitude at 1000Hz was 

around 130Ohm and all the  phase angle was equal to around -40°. The least magnitude 

at 1.0Hz and 1000Hz was around 11600Ohm and 100Ohm respectively. 

The maximum impedance magnitude for PPy-CNT 0.25 electrode was around 

34000Ohm at the first measurement at frequency of 1.0Hz, the while all the phase angle 

was equal to around -60°.  Similarly, the maximum magnitude at 1000Hz was around 

270Ohm and all the  phase angle was equal to around -50°. The least magnitude at 

1.0Hz and 1000Hz was around 29600Ohm and 240Ohm respectively. 

The maximum impedance magnitude for PPy-CNT 0.5 electrode was around 

12000Ohm at the first measurement at frequency of 1.0Hz, the while all the phase angle 

was equal to around -70°.  Similarly, the maximum magnitude at 1000Hz was around 

120Ohm and all the  phase angle was equal to around -40°. The least magnitude at 

1.0Hz and 1000Hz was around 11340Ohm and 100Ohm respectively. 

4.1.4 Average measurement at 1.0Hz and 1.0kHz 

The PPy-CNT 0.25 showed highest negative phase angle of 60° at  frequency of 1.0kHz 

while PPy-CNT 0.1 showed least negative value of -30°. PPy-CNT 0.25 also showed 

least negative phase angle of -58° at 1.0Hz while bare Pt showed highest negative value 

of -80°. This shows that PPy-CNT 0.1 was highly resistive at 1.0kHz while bare Pt was 

highly capacitive at 1.0Hz. 

Bare Pt showed high impedance values at 1Hz and least magnitude at 1.0kHz compared 

to coated electrodes. PPy-CNT 0.25 showed maximum magnitude at 1.0Hz and PPy-

CNT 0.5 showed least magnitude at 1.0kHz. The average impedance and phase were 

taken from the different measurement of the samples as shown in Fig 22 below at 

frequency of 1.0Hz and 1.0kHz. The frequency Figure 22 below shows the average 

values at 1.0Hz and 1.0kHz. PPy-CNT 0.25 showed highest impedance magnitude 

while PPy-CNT 0.5 showed lowest among the coated samples. Also PPy-CNT 0.5 

showed lowest standard deviation compared to other coated samples at both 

frequencies. The average impedance measured for both bare Pt and PPy-CNT 0.25 was 

around 3200Ohm while for PPy-CNT 0.5 was around 1200Ohm at frequency of 1.0Hz. 

PPy-Control and PPy-CNT 0.1 showed the difference of around 200Ohm at 1.0Hz.  

PPy-CNT 0.25 showed highest impedance magnitude of around 90Ohm while PPy-

CNT 0.5 showed lowest with around 60Ohm at frequency of 1.0kHz.  
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                                                       a)At 1.0Hz 

 

 

                                                      b)At 1.0kHz 

Figure 27: Average impedance magnitude of different samples at 1.0 Hz a) and at  1.0 

kHz b). 
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a)At 1.0Hz 

 

 

b)At 1.0kHz 

Figure 28: Average phase of different samples at 1.0 Hz a) and at  1.0 kHz b). 

Bare Pt showed highest phase angle value at 1.0Hz and PPy-CNT showed least value at 

1.0kHz compared to coated electrodes. PPy-Control showed least phase angle  at 1.0Hz 

and PPy-CNT 0.5 showed least angle at 1.0kHz. From the Figure above, PPy-CNT 0.5 

showed highest negative phase angle of around -70° with least standard error while 

PPy-control showed least negative phase angle of around -50° with the highest standard 

error among all the samples as shown in Figure 23. PPy-CNT 0.25 showed the most 

negative phase angle of around 50° while PPy-CNT 0.5 showed lowest value around -

30° with least standard error among all the samples at frequency of 1.0kHz. This 

suggests that PPy-CNT 0.5 had most resistive impedance at 1.0kHz and most capacitive 

impedance ( compared to other coated electrode) at 1.0Hz. 
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4.1.5 Surface characterization 

The surface morphology of the coated Pt macroelectrode samples were analysed by 

using AFM, Optical Profilometer and Optical microscope. We calculated the surface 

roughness from AFM and Optical Profilometer. We observed the coating with the 

Optical microscope at different magnifications. 

4.1.5.1 AFM imaging  

The surface roughness of the coated electrodes were measured by using Park XE-

100AFM as shown in Figure 24 below. The AFM imaging was conducted on  two 

electrode types: PPy-control and PPy-CNT 0.5. The calculated value of Ra for PPy-

Control sample was 1.2µm while Ra for PPy-CNT 0.5 was 5µm. The higher value of Ra 

showed that the PPy-CNT 0.5 was more rougher than the PPy-Control surface. 

 

 

 a) b) 

Figure 29: Measurement of peak-to-valley roughness index(Ra) of the AFM image PPy-

Control sample with vertical height of the image surface of 0.8µm a) and PPy-CNT 0.5 

sample with vertical height of the image surface of 3µm b). 

4.1.5.2 Profilometer imaging 

The coated electrodes surface were further analysed by the Wyko NT1100 optical 

profilometer. Profilometer images are shown in Figure 25 below. The surface roughness 

parameter (Rz) was calculated from the Vision64 software. We calculated Rz at two 

different magnifications of 20x and at 50x. The calculated values is given in Table 5 

below. 
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Table 5: Calculated Surface roughness parameter (Rz) values at 20x and 50x 

magnifications (µm). 

Pt samples PPy-Control PPy-CNT 0.1 PPy-CNT 0.25 PPy-CNT 0.5 

At 20x (µm) 198   239.2 243.4 228.4 

At 50x (µm) 234.8 235.7 245.7 240.2 
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              a) PPy-Control (20x)                                                          b) PPy-Control (50x) 

 

               

             c) PPy-CNT 0.1 (20x)                                                         d) PPy-CNT 0.1(50x) 

 

   

 

          e) PPy-CNT 0.25 (20x)                                                         f) PPy-CNT 0.25 (50x) 

 

              

          g) PPy-CNT 0.5 (20x)                                                          h) PPy-CNT 0.5 (50x) 

Figure 30: Profilometer images of PPy-Control (20x) a), PPy-Control (50x) b), PPy-

CNT 0.1 (20x) c), PPy-CNT 0.1 (50x) d), PPy-CNT 0.25 (20x) e), PPy-CNT 0.25 (50x) 

f), PPy-CNT 0.5 (20x) g) and PPy-CNT 0.5 (50x) h). The coating looks pretty dense on 

the PPy-CNT 0.5 and PPy-CNT 0.25 samples than PPy-Control and PPy-CNT 0.1 

samples. 

The highest value of Rz was observed in PPy-CNT 0.25 surface which indicates that 

PPy-CNT 0.25 electrode had the roughest surface compared to other electrodeposition 

coating. The lowest roughness was observed in PPy-Control film. The order of 
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roughness in 20x scan was: PPy-CNT 0.25>PPy-CNT0.1>PPy-CNT0.5>PPy-Control 

while 50x follows: PPy-CNT0.25>PPy-CNT0.5>PPy-CNT0.1>PPy-Control. 

4.1.5.3 Micrograph Imaging 

The coated samples were imaged with Optical microscope (Olympus BH-2, Olympus 

Optical Co., Tokyo, Japan) as shown in Figure 26 below. The electrode surface were 

clearly visible in case of PPy-Control and PPy-CNT 0.1 which indicates that these films 

were lightly coated. However, electrode surface were almost smoothly coated in case of 

PPy-CNT 0.25 and PPy-CNT 0.5. Also a thick coating was observed with PPy-CNT 

0.25 and PPy-CNT 0.5 micrographs than PPy-Control and PPy-CNT 0.1. 

 

Figure 31:  Micrograph images of various PPy/CNT coated samples PPy-Control a), 

PPy-CNT 0.25 b), PPy-CNT 0.5  c) and PPy-CNT 0.5 d). A darker coating can be seen 

in case of PPy-CNT 0.25 and PPy-CNT 0.5 than PPy-Control and PPy-CNT 0.1. 

4.2 MEA 

The polypyrrole-bentzenesulphonate (PPy/DBS) coatings were electrodeposited on 

platinum microelectrodes. The electrodeposition results are presented in section 4.2.1. 

The plasma treatment results are presented in section 4.2.2 and the micrograph imaging 

results are presented in section 4.2.3. 
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4.2.1 Electrodeposition 

Linear Scan Voltammetry technique was used to ramp the voltage  from an intial 

potential to the final potential with the given scan rate. The final potential was then 

fixed with certain charge limits to generate the current waveform by 

chronopotentiometry technique. The area of one electrode in MEA was 0.707*10-5cm2. 

This value was fitted to get the desired density curves. Also some of the curves are not 

drawn to the ''end'' because the electrodeposition process was stopped because of 

unstable negative current. The settings is given in Table 6 below. 

Table 6: Settings for electrodeposition of PPy/DBS coatings 

Electrodes E17 E54 E47 E52 E62 E73 E65 

Initial potential (V) 0 0 0 0 0 0 0 

Final potential (V) 1.0 1.0 1.5 1.0 1.3 1.5 1.5 

Scan rate (V/s) 0.2 0.2 0.5 0.2 0.2 0.5 0.5 

Charge limit (C/cm2) 

 

7.07 7.07 7.07 7.07 7.07 7.07 7.07 
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a) 

                        

 

                                                                     b)  

Figure 32: Charge a) and current b) densities during electrodeposition. 
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We varied the final potential and scan rate of the electrodeposition to test their effect on 

the electrodeposition process. It was clear from charge density curve that E54 and E47 

seemed to be coated for longer duration until 275sec. E62 was found to be coated for 

shortest of time until70sec. E65 showed similar response as E62. Charge density 

reached peak with E52 within 70sec which is quickest among any other electrodes. 

From the current density curve, it was seen that the current was unstable. E54 and E73 

showed a large positive current while E17 and E65 showed a negative current within a 

few milliseconds. Only E54 showed positive current values. No coating of the 

electrodes were observed which was confirmed by micrograph image and unstable 

negative current during the polymerization process. 

However, variations in the charge and current density was significantly high. E52 had 

the maximum charge and current density of  approximately 7.81C/ cm2 and 0.26A/ cm2 

respectively while E62 had the minimum charge and current density values of 3.32C/ 

cm2 and 0 .14A/ cm2 respectively. We tried to overcome the problem of unstable 

negative current during the process by connecting a shunt resistor in the circuit with  

electrodeposition settings as shown in Table 6 above. However, negative current were 

still observed with no coating of the electrodes as shown in Figure 27 above. 

4.2.1.1 The effect of shunt resistor on electrodeposition process 

We used adjustable shunt resistor to overcome the problem of unstable negative current. 

We used the resistor of 0.5MOhm and 1.0MOhm with charge limits as shown in Table 7 

below. The obtained charge and current densities are shown in Fig 28 below. 

             Table 7: Settings for electrodeposition of PPy/DBS coatings (shunt resistor). 

Resistor (MOhm) 0 0 0.5 1.0 

Initial potential (V) 0 0 0 0 

Final potential (V) 1.0 1.5 1.5 1.5 

Scan rate (V/s) 0.5 0.5 0.5 0.5 

Charge limit (C/cm2) 

 

7.07 7.07 7.07 7.07 
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                                                               a) 

 

                                    b)  

Figure 33: The effect of shunt resistor on electrodeposition process. Charge a) and 

current b) densities during electrodeposition with and without adjustable shunt resistor. 
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As seen from charge density curve, the maximum charge density was found with no 

shunt resistor at 1.5V while with no resistor at 1.0V showed least charge density. Higher 

resistor value of 1.0MOhm showed higher charge density with longer time duration 

(160sec) than resistor value of 0.5MOhm, which showed time duration of 40sec. As 

seen from current density curve, the current values were negative for all 

electrodeposition. The deposition without resistor at 1.5 V had maximum positive and 

negative current. 

4.2.1.2 The effect of used voltage on electrodeposition process 

Since no coating of the electrodes were observed with adjustable shunt resistor, we used 

further more, different final potentials of 0.9V and 2V along with different charge limits 

values as shown in above Table 8 to lower the negative current. However, the negative 

current prevailed in the system with no coating of the electrodes as shown in Figure 29 

below.  

               Table 8: Settings for electrodeposition of PPy/DBS coatings (higher potential). 

Electrode E33 E33 

Initial potential (V) 0 0 

Final potential (V) 0.9 2 

Scan rate (V/s) 0.5 0.5 

Charge limit(C/cm2 ) 0.14 1.41 
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 a) 

 

                                                    b) 

 Figure 34: The effect of used voltage on electrodeposision process. Charge a) and 

current b) densities during electrodeposition of a single microelectrode (E33) at a 

voltage of 0.9V and 2V. 
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As seen from charge density curve, electrode coated at lower potential reached 

maximum charge density while at higher volt couldn't reach at first coat (0.16Q/cm²). 

However, at the second coat the charge density was risen until 0.45Q/cm² and then 

decreases. From the current density curve, it was seen that all the electrodeposition 

showed negative current. The coating at lower potential showed maximum positive and 

maximum negative values of current density. 

4.2.2 Impedance measurements 

Pt MEA L1133 was plasma treated and then polymerized. The MEA-IT device was 

used to measure the impedance at 1.0 kHz of microelectrodes before plasma treatment, 

after plasma treatment and after polymerization. The measurements of plasma treated 

plate were done at three time points (30mins, 1h and 2h) after plasma treatment. 

4.2.2.1 The effect of plasma treatment on electrode impedance 

The impedance of the microelectrode before and after plasma treatment were measured. 

A significant decrease in impedance magnitude values were observed after plasma 

treatment. The initial impedance magnitude of the MEA plate was around 80220kOhm 

before the plasma treatment. The decrease in impedance magnitude was almost four 

times, around 21800kOhm, when measured after 30 minutes after plasma treatment. 

Similarly, the impedance was 9530kOhm and 480kOhm after one and two hours of 

plasma treatment respectively as shown in Figure 30 below. The standard error before 

plasma treatment was around ±441310kOhm. The standard errors after 30mins, 1h and 

2h of plasma treatment were around ±42460kOhm,  ±29330kOhmn and ±50kOhm 

respectively. 
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                                                             a) 

 

 

                                                                              b) 

Figure 35: The effect of plasma treatment on the microelectrode plate impedance 

Impedance magnitude a) and phase b) at the frequency of 1.0 kHz before plasma 

treatment and after plasma treatment. 
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The phase angle was almost constant with approximately 67° until the last time point of 

measurement. However, the phase angle was higher, 80°, when measured after 2h with 

a large decrease in impedance values shown in Figure.  The standard error before 

plasma treatment was ±23°. The standard errors after 30mins, 1h and 2h of plasma 

treatment were ±21°, ±20° and ±2° respectively. It was seen that the plasma treatment 

had completely stabilized the electrode impedance after 2 hours as seen in Figure 31 a) 

below. The phase angle was maximum after 2 hours of treatment as seen from Figure 31 

b). However, not much difference in phase angle was seen after 30mins and 1h of 

treatment. 

 

a) 

b) 

Figure 36: The effect of plasma treatment on the microelectrode impedance: Impedance 

magnitude a) and phase b) at the frequency of 1.0 kHz before plasma treatment and 

after plasma treatment. 
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The impedance of the individual electrodes were measured before and after plasma 

treatment as shown in Figure 31. The impedance magnitude of E44 before plasma 

treatment was 106000kOhm. The magnitude was almost half, around530kOhm when 

measured after 2h of plasma treatment. The magnitude were around 610kOhm and 

640kOhm after 30mins and 1h of plasma treatment respectively. The impedance 

magnitude of E54 before plasma treatment was 2920kOhm. The magnitude was  

470kOhm when measured after 2h of plasma treatment. The magnitude after 30mins 

and 1h of plasma treatment were 670kOhm and 690kOhm respectively. The impedance 

magnitude of E64 before plasma treatment was 106000kOhm. The magnitude was  

510kOhm when measured after 2h of plasma treatment. The magnitude after 30mins 

and 1h of plasma treatment were both same, 106000kOhm. 

The phase angle of E44 before plasma treatment was 75°. The magnitude was  80°  

when measured after 2h of plasma treatment. The magnitude were 81°  and 82°  after 

30mins and 1h of plasma treatment respectively. The impedance magnitude of E54 

before plasma treatment was 75°. The magnitude was  80°  when measured after 2h of 

plasma treatment. The magnitude after 30mins and 1h of plasma treatment were 81°  

and 80°  respectively. The impedance magnitude of E64 before plasma treatment was 

65°. The magnitude was  81°  when measured after 2h of plasma treatment. The 

magnitude after 30mins and 1h of plasma treatment were 60°  and 61°  respectively. 

4.2.2.2 The effect of electrodeposition on electrode impedances 

The impedance of the individual electrodes E54, E54 and E64 were measured before 

and after electrodeposition as shown in Figure 32 below. The impedance magnitude of 

E44 before and after electrodeposition were 106000kOhm and 123kOhm respectively. 

The impedance magnitude of E54 before and after electrodeposition were 2920kOhm 

and 620kOhm respectively. The impedance magnitude of E64 before and after 

electrodeposition were 106000kOhm and 93kOhm respectively. 
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 a) 

 

 

 b)  

Figure 37: Effect of electrodeposition on the electrode impedance: Impedance 

magnitude a) and phase b) at the frequency of 1 kHz before polymerization and after 

polymerization. 

The phase angle of E44 before and after electrodeposition  were 75° and 67°  

respectively. The phase angle of E54 before and after electrodeposition  were 75° and 

72°  respectively. Similarly, the phase angle of E64 before and after electrodeposition 

were 65° and 68° respectively. 
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4.2.3 Micrograph Imaging 

The micrograph images of the MEA plate after electrodeposition of electrodes E44, E54 

and E 64  are shown below in Figure 33. It was hard to notice the coating on  E44 as 

seen in Fig 20 b). The electrode ''E44'' is shown by an arrow. Moreover, the electrolyte 

solution looked to be spilled between the electrode gaps. It looked as if the  plate and 

electrodes were burned.  

   

 

Figure 38: Micrograph imaging of MEA plates E44 (5x) a), E44 (10x) b), E54 and E64 

(5x) c) and E54 and E64 (10x) d). 

Likewise no coating of the electrodes were observed in E54 and E64 as seen in above 

Figure 20 d). The electrodes numbers E54 and E64 are shown by an arrow. 
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5 DISCUSSION AND CONCLUSIONS 

The general aim of this project was to coat the electrodes and to measure their electrical 

properties and also to predict their surface roughness. The aim was also to measure the 

electrical properties and to predict the roughness of the film by imaging or to observe 

the effect of coating on the electrode surface. 

Firstly, we performed electrochemical deposition of Pt microelectrode using different 

scan rate of 0.2V/s and 0.5V/s and different final potential of 1.0V, 1.3V and 1.5V. We 

selected some electrodes for the deposition process and applied different scan time and 

final potential. No coating of the microelectrodes were observed with PPy solution 

during the first trial. The polymerization currents were negative and some electrodes 

even did not reach the maximum charge limit. We tried to overcome this problem by 

changing the resistance in the circuit by connecting a potentiometer in the 

electrochemical cell and by plasma treatment. The resistor values used was 0.5MOhm 

and 1.0MOhm. We changed the scan potential to 0.5V/s and final potential to 1.0V and 

1.5V. However, the negative current was still observed. At the third time, we tried to 

coat the electrodes at higher volts, 2V and also by plasma treatment. But we were not 

able to get the positive current and we were not able to coat the electrodes. 

 The plasma treatment was very effective in reducing the electrode impedance however 

it did not help in coating of the electrodes. The reduction in impedance of plasma 

treated film were almost only few hundred kOhm compared to impedance of thousands 

of kOhm of untreated microelectrode plate. The plasma treated plates were also 

compared with the polymerized plate. A major decrease in impedance magnitude was 

observed with microelectrodes coating on electrode number 44 (E44) and 54 (E54) at all 

time points and after electrodeposition process with only few hundred kOhm as shown 

in Figure 19. The measured phase angle of E44 and E54 looked quite close at each 

measurement phase with the highest value being close to 80°. The lowest value 

observed was around 54° with E64. No such measurement for microelectrode has been 

done before. 

We then tried to coat the Pt macroelectrode with PPy and PPy/CNT solutions. We 

successfully coated the macroelectrode with PPy and PPy/MWCNT composite. Similar 

coating of PPy-MWCNT composite by electrochemical deposition was also observed in 

previous research  (Shaffer et al. 1998; Han et al. 2005; Almohsin et al. 2012; Li & 

Zhitomirsky2013). However, in this thesis, results were not very convincing as there 

was variation  and the small concentration of CNT did not improve the electrical 

properties. However, high concentration of CNT was successful in improving the 

electrical properties of the coated electrode. The surface properties of PPy changed with 

the addition of CNT. The PPy/CNT composition produced a more rougher film than the 

PPy alone. Higher concentration of CNT (PPy-CNT 0.5) film was almost five times 

more rougher than just PPy film as observed with AFM imaging. The increase in 

surface roughness with addition of CNT was also observed in previous research 
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(Almohsin et al. 2012) (Shi & Zhitomirsky 2013). Some previous research showed that 

the increase in surface roughness of coated electrode contributed to the increase in 

resistive impedance of the electrode (Xiao et al. 2004) (Cui et al. 2001).  

Similarly, the lowest roughness was observed with PPy-Control film as observed with 

Optical Profilometry. The difference in roughness between PPy and PPy-CNT 0.25 

surface was about 45.4µm in 20x scan and 10.9µm. This suggests that the PPy/CNT 

composite could be useful to produce a rougher electrode surface. This could be of great 

importance in the future research to predict the electrical behaviour of the electrode-

electrolyte interface. This might also help to have a better underestanding of the role of 

CNT  and PPy/CNT in electrochemical deposition. However, some variation in 

chronopotentiometry measurement in this project was observed which might help to 

motivate such coating in the future. Overall, this study highlights that the 

macroelectrode was easily coated than microelectrodes.    
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6 APPENDIX 

Table 9: Pre-treatment of microelectrodes. "-" indicates that no information is given 

about the subject in the source. 

Electrode/Area 

Pre-treatment 

of monomer pre-treatment of MEAs References 

Au sites(neural 

probe)/1250µm² 

monomer 

purged 

 with N2 for 5 

mins.    - 

(Cuiet al. 

2003) 

Au/Ir 

1250or3900µm²(neural 

probe) 

monomer 

purged with 

 N2 for 5 

mins.   - 

(Cui et al. 

2001) 

Au/1250 µm² (neural 

probe) 

monomer 

purged with 

 N2 for 10 

mins. 

The probes are degreased 

in acetic acid (5%), then 

rinsed several times with 

water and acetone before 

electrochemical 

deposition. 

(Yang & 

Martin 

2004) 

Au/1250 or 3900µm² 

(neural probe)/  

16 channel MEAs. 

monomer 

purged with 

 N2 for 5 mins. 

The probes were cleaned 

for 5 min at 80°C in a base 

solution containing 1 part 

ammonium hydroxide, 1 

part 30% hydrogen 

peroxide, and 5 parts 

deionized water. 

(Cui et al. 

2001) 

36 Au microelectrodes 

area  

degassed by 

nitrogen  

stream for 

PSS and 

pyrole          - 

(Ge et al. 

2009) 

1.6*10-3cm²/Pt 

Pyrole was 

purified by  

distillation 

under reduced 

pressure 

substrate treated with 

alkysilane. 

(Nishizawa 

et al. 2007) 
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