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Regeneratiivisen lääketieteen tavoitteena on korjata tai korvata vaurioituneita kudoksia. 

Kudosteknologiassa yhdistetään kantasoluja biomateriaalien ja liukoisten tekijöiden 

kanssa, minkä avulla pyritään vastaamaan kudos- ja elinsiirteiden puutteeseen. 

Luukudosvauriot sekä akuutit traumat yhdessä pidentyneen elinajanodotteen kanssa 

lisäävät tarvetta tuottaa luuistutteita kudosteknologisesti.  

Ihmisen rasvakudoksen kantasolut ovat helposti käytettävissä oleva ja riittoisa lähde 

monikykyisille hyvin jakaantuville kantasoluille, joita voidaan soveltuvissa in vitro 

olosuhteissa erilaistaa ainakin rasva-, luu-, lihas-, rusto-, ja jännekudoksen suuntaan. 

Potilaskohtaisten solujen avulla voidaan välttää elimistön hylkimisreaktioita.  

Työn tavoitteena oli testata uuden läpivirtausbioreaktorin soveltuvuutta aseptiseen 

soluviljelyyn. Toisena tavoitteena oli saada aikaan dynaamisen nestevirtauksen avulla 

ihmisen rasvakudoksen kantasolujen luuerilaistuminen uusissa ylikriittisellä CO2 -

menetelmällä työstetyissä polylaktidi-polykaprolaktonipohjaisissa 

komposiittitukirakenteissa eli skaffoldeissa, mihin oli sekoitettu 40 % painosta β-

trikalsiumfosfaattigranulaa (PLCL--TCP). 

Biokemiallisina tutkimusmenetelminä sovellettiin alan vakiintuneita 

analyysimenetelmiä. Läpivirtaussytometrian avulla varmistettiin solujen 

kantasoluominaisuudet. Solujen elinkykyä tutkittiin kvalitatiivisesti Live/Dead -

analyysin avulla ja solumäärä määritettiin kvantitatiivisesti DNA-määrään perustuvalla 

CyQUANT-analyysilla. Ihmisen rasvakudoksen kantasolujen luuerilaistumista 

analysoitiin kvantitatiivisesti alkaliinisen fosfataasin (qALP) aktiivisuuden mittauksella, 

kokonaiskollageenipitoisuuden sekä mineralisaation määrityksellä.  

Solut olivat elinkykyisiä kaikissa olosuhteissa. Läpivirtausbioreaktorin avulla saatiin 

aikaan korkeampi solumäärä sekä virtausnopeus- että rakennevertailussa. 

Kanavaskaffoldeissa solut olivat jakaantuneet tasaisimmin rakenteeseen. Dynaamisessa 

olosuhteessa qALP-, kokonaiskollageenipitoisuus- sekä mineralisaatiotulokset olivat 

samalla tasolla tai alhaisempia kuin staattisessa kontrolliolosuhteessa kaikissa kokeissa. 

Ihmisen rasvakudoksen kantasolujen luuerilaistumista ei saatu aikaan 

läpivirtausbioreaktorissa perussoluviljelymediumissa ilman lisättyjä kemiallisia tekijöitä.  

Tarvittaisiin lisäkokeita, että voitaisiin selvittää toiminnalliset soluviljelyolosuhteet ja 

nestevirtausparametrit läpivirtausbioreaktorissa ihmisen rasvakudoksen kantasolujen 

luuerilaistumisen tukemiseksi huokoisissa PLCL--TCP -skaffoldeissa. Uusi 

läpivirtausbioreaktori soveltuu aseptiseen soluviljelyyn, on helppokäyttöinen ja 

kustannustehokas. 
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ABSTRACT 
 
TAMPERE UNIVERSITY OF TECHNOLOGY 
Master’s Degree Programme in Materials Engineering 
VUORNOS, KAISA: Dynamic culture of human adipose stem cells in a flow 
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Regenerative medicine aims to restore or replace damaged tissue functions. Tissue 

engineering offers a solution to the growing shortage of suitable tissue and organ donors 

by combining stem cells with biomaterials and soluble factors. Bone defects and acute 

traumas together with increased life expectancy augment the demand for new tissue 

engineered bone tissue constructs. 

Among multipotent mesenchymal stem cells, human adipose stem cells (hASCs) are an 

abundant and accessible source of adult stem cells with capacity to proliferate and 

differentiate in vitro towards at least fat, bone, muscle, cartilage, and tendon tissues under 

appropriate conditions. With autologous cells, the risk of adverse immunological 

reactions is reduced.  

The aim of this work was to test the suitability of a new flow perfusion bioreactor for 

aseptic cell culture. The dynamic fluid flow was used to induce osteogenic differentiation 

of the hASCs in novel supercritical CO2 processed polymer composite scaffolds of 

polylactide-co-poly-ε-caprolactone with 40 wt-% β-tricalcium phosphate granules 

(PLCL--TCP).   

Biochemical analysis methods well established in the field were used. Flow cytometric 

cluster of differentiation marker expression analysis was used to verify the stem cell 

properties of the hASCs. Cell viability and adhesion was qualitatively analyzed with 

Live/Dead fluorescence staining. Cell number was analyzed using a quantitative assay 

based on the total amount of DNA in the sample. The hASC osteogenic differentiation 

was assessed by evaluating quantitative alkaline phosphatase (qALP) activity, total 

collagen content, and mineralization.  

Cells were viable in all the conditions. Higher hASC proliferation was obtained with the 

perfusion flow bioreactor in both the flow rate and structure comparison experiments and 

uniform cell distribution was gained for the channel scaffolds under perfusion. In the 

dynamic condition, the results for the qALP, total collagen content, and mineralization 

analyses were similar or lower compared to the static control in all the experiments. No 

osteogenic differentiation of the hASCs was achieved in the flow perfusion bioreactor 

with basic maintenance cell culture medium without added chemical factors. 

Further experiments are needed to define the functional cell culture conditions and fluid 

flow parameters in the bioreactor to support hASC osteogenic differentiation. The new 

bioreactor system is suitable for aseptic cell culture, easy to use and cost-effective. 
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1 INTRODUCTION 

Skeletal bone injuries requiring a critical sized bone graft affect roughly 1 million patients 

each year in the U.S. that combined with more than 6 million bone fractures constitute a 

growing demand for tissue engineered bone grafts [1; 2]. These muscoloskeletal disorders 

cause considerable healthcare costs worldwide in relation to serious injuries, increased 

life expectancy, and diminished quality of life. Biomaterials are needed to treat critical-

sized bone defects [3] because patient’s own autologous tissue is limited and there is a 

shortage of suitable allograft bone donors, in addition to which immunogenic responses 

can cause adverse effects and xenograft bone grafts from animal origin carry the risk of 

transmitting infectious diseases. [2; 4]   

According to the tissue engineering strategy, stem cells are differentiated with the support 

of the biomaterial scaffold structure and stimulation by growth factors [5]. Tissue 

engineering aims to maintain, improve or restore lost tissue function [5; 6]. In tissue 

engineering, it is important to utilize materials science to understand concepts of how 

cells adhere to biomaterial, material surface chemistry, topography and scaffold structure, 

and what material properties suit specific tissue engineering applications. What is more, 

also concepts of cell and molecular biology, developmental biology, chemistry and 

biochemistry together with immunology, tissue and body anatomy and physiology are all 

founding concepts in tissue engineering. In addition, adjacent fields of biotechnology 

such as imaging, bioinformatics, computer modeling, microfluidics and actuator 

technology offer important tools for tissue engineering development. 

Cell seeded scaffolds are cultured in vitro to induce extracellular matrix (ECM) synthesis 

and to allow for sufficient cell mass formation. Both are crucial to ensure neotissue 

growth when the engineered tissue construct will be implanted back to the patient and the 

site of injury. [7] For functional tissue engineering scaffolds, both high porosity and pore 

interconnectedness are desirable features for biodegradable materials in addition to a high 

surface area for cell adhesion [8]. Synthetic composite scaffolds of polymer and ceramic 

components that are osteoconductive, which means bone supporting, help meet the 

demand for new bone tissue engineering applications. In a potential tissue engineered 

bone graft, the polymer component allows the structure to be moulded while the calcium 

rich ceramic component drives osteoconductive properties together with the 

interconnected porous structure that permits ingrowth of bone forming cells and 

formation of vasculature into healing tissue. [9] 



2 

 

Mesenchymal stem cells (MSC), originating from the embryonic mesoderm layer, are 

stem cells found in the adult and multipotent in their capacity to form at least bone, 

cartilage, tendon, muscle, skin, fat, and nerve tissue cells [10]. These adult stem cells have 

the advantage of autologous tissue transplantation avoiding the risks of graft-versus-host 

disease, while also avoiding the ethical issues related to the use of embryonic stem cells 

(ESC). The adult stem cells have lower treatment and production costs than the stem cells 

produced by the induced stem cell technology. The human adipose stem cells (hASC) are 

highly potential and an abundant source of the MSCs for tissue engineering applications 

and compared to the bone marrow stromal stem cells (BMSCs), the hASCs have the 

advantage of a higher yield of stem cells from a volume of tissue sample, while also the 

clinical procedure poses a smaller risk to the patient than the harvesting of the bone 

marrow. [10; 11; 12] While skeletal tissue engineering with biomaterials and multipotent 

mesenchymal stem cells offers a promising combination for the development of various 

clinical treatments [13], craniomaxillary reconstruction has already been accomplished 

with hASCs in clinical applications [14]. 

In cell culture, prolonged in vitro expansion is time consuming and costly and increases 

the risk of cellular genetic aberrations. In order to produce clinically a relevant size bone 

graft, an efficient and easily accessible cell source is required. Dynamic cell culture with 

bioreactor based process has been proposed to induce faster, more efficient and 

homogeneous cell growth in a three dimensional (3D) supporting biomaterial scaffold 

structure [7], and perfusion flow cell culture has been reported efficient in 3D culture  [15; 

16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32]. The osteogenic potential 

of the hASCs in flow perfusion has demonstrated in recent of studies [33; 34; 35; 36; 37; 

38; 39]. The optimal parameters for hASC osteogenic differentiation in dynamic fluid 

flow cell culture, such as culture duration, flow rate of liquid, or supporting scaffold 

structure have not yet been defined. For the scaffold, enhanced human mesenchymal stem 

cell (hMSC) osteogenesis has been observed with the aid of porous ceramic polymer 

composite biomaterials [40; 41; 42; 43; 44]. 

For the maturation of the cell seeded construct, efficient oxygen and nutrient flow 

together with removal of debris are required, and most often with the added activation 

provided by mechanical stimulation. In this respect, perfusion bioreactors carry the 

benefits of improved mass transport compared to the traditional static cell culture 

environment which is limited by the diffusion of soluble species. The mechanical 

stimulation provided by the fluid flow increases deposition of ECM components such as 

fibrous collagen and other proteins. [8]. However, up to the present, there has not been 

available any easy to use, cost effective, and readily upscalable flow perfusion bioreactor 

for high-throughput aseptic cell culture purposes.  

The aim of this work was, firstly, to test the suitability of the novel flow perfusion 

bioreactor for aseptic in vitro cell culture use. Secondly, the work aimed to analyze the 

potential of hASCs for bone tissue engineering applications by combining hASCs with 
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new supercritical CO2 processed polymer composite scaffolds of poly(L-lactic-co-ε-

caprolactone) (PLCL) with 40 wt-% β-tricalcium phosphate (β-TCP) in dynamic culture 

conditions in the novel flow perfusion bioreactor.  

Chapter 2 establishes the theoretical background with stem cells and hASCs in bone tissue 

engineering and the tissue engineering scaffold requirements for bone tissue engineering 

applications together with the advantages offered by dynamic cell culture, different 

bioreactor types and perfusion flow bioreactors. Chapter 3 introduces the materials and 

methods used in this study, and Chapter 4 presents the results of the bioreactor cell culture 

experiments. Chapter 5 discusses the different aspects of this work and, finally, Chapter 

6 presents the conclusions of this study. 
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2 THEORETICAL BACKGROUND 

2.1 Stem cells and bone tissue engineering 

Stem cells have emerged as a promising alternative to restore or replace damaged tissues. 

Bone tissue engineering has developed over past decades to offer real alternatives for 

critical sized bone grafts.  

2.1.1 Stem cells 

Stem cells can be embryonic, somatic or of germline origin with extensive capacity to 

self-renew in long-term culture together with the potential to differentiate into cells of 

several different tissue types [45; 46]. The differentiation process includes asymmetric 

cell divisions where one daughter cell differentiates and the other one maintains its stem 

cell characteristics. [45]  

Stem cells possess distinct differentiation potentials. The zygote, or the fertilized egg, is 

totipotent with the capacity to produce all the cell types of the organism and to replicate 

indefinitely. The following stage of cellular development, the blastocyst, is composed of 

undifferentiated inner cell mass (ICM), as well as an outer trophoblast layer. The ICM 

cells are pluripotent with the capacity to form all embryonic cell types and an indefinite 

capacity to divide. Generally, it is the ICM that is used as a source of ESCs in research 

[45]. The somatic stem cells are either adult stem cells or induced pluripotent stem (iPS) 

cells. The iPS cells are produced in laboratory with somatic cell nuclear transfer or 

overexpression of pluripotency factors from somatic cells, for example, dermal 

fibroblasts [47]. However, the reprogramming using viral vectors may cause imbalanced 

results in cell behavior resulting in teratomas and a large selection of iPS cell lines from 

multiple sources is needed for balanced results [48].  

2.1.2 Mesenchymal stem cells 

Most adult tissues have a population of undifferentiated progenitor cells. Whereas ESCs 

and iPS cells have excellent proliferation and differentiation capacity, the somatic adult 

tissue stem cells possess limited capacity to divide or to differentiate based on their 

ectodermal, mesodermal or endodermal embryonic germ layer origin [45]. Despite their 

limitations, the MSCs are a more readily available cell source and the use of MSCs 

involves a lower risk of tumorigenicity and helps to avoid the ethical and legal issues 

related to the use of the ESCs. Also, the use of a patient’s own autologous cells bears no 

risk of immunogenic reactions [10; 45; 46]. 

Ectodermal tissues encompass neural, dermal and ocular tissues, whereas mesodermal 

tissues include the bone marrow, adipose, cardiac, bone, cartilage and muscle tissues of 
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the body. Finally, endodermal tissues comprise pulmonary, hepatic, pancreatic and 

ovarian tissues or testicular stem cells [45]. The bone marrow, for example, is mesoderm 

derived tissue that harbors the hematopoietic stem cells producing mature blood cells in 

addition to the MSCs, the non-hematopoietic stromal cells. According to the International 

Society for Cellular Therapy (ISCT) minimal criteria, the MSCs are plastic-adherent in 

standard cell culture conditions and ≥95 % of the cell population should express specific 

surface antigens or cluster of differentiation markers (CD), namely CD73, CD90, and 

CD105 and <2 % express CD11b, CD14, CD19, CD34, CD45, CD79a and human 

leukocyte antigen HLA class II (HLA-DR) [49]. In addition, they must have ability to 

differentiate towards bone, adipose and cartilage tissues [49]. More specifically within 

different types of MSCs, ASCs express CD36 and lack the expression of CD106 as 

opposed to BMSCs [50]. 

2.1.3 Adipose stem cells 

The hASCs were first characterized by Zuk and coworkers (2001) [51] as MSCs with 

multilineage differentiation capacity to differentiate into at least osteogenic, adipogenic 

and chondrogenic lineages, according to the definition of the MSCs [49]. The adipose 

stem cells (ASCs) are characteristically plastic adherent and have a certain cell surface 

marker expression pattern to aid characterize the stem cells [51]. Since then, 

differentiation of the hASCs also towards nerve, tendon, and muscle tissues has been 

published [52; 53]. The subcutaneous adipose tissue comprises besides adipocytes and 

hASCs, also a heterogeneous supportive cell population, all of which combined form the 

stromal vascular fraction. The hASCs have the advantage of abundance and availability 

over other types of adult stem cells. The yield percentage of hASC isolation from 

subcutaneous adipose tissue is considerably higher when compared to hBMSCs, for 

example. In addition, the clinical harvesting procedure poses a smaller risk to the donor 

patient than the harvesting of the bone marrow for hBMSC isolation. _ Figure 1 shows 

the phenotypical spindle-shaped hASC morphology. 

 

Figure 1. Human adipose stem cells (hASCs). Brightfield image on polystyrene cell 

culture plastic (Anna-Maija Honkala, 2012). Magnification ×10, scale bar 1 mm. 
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The hASCs are well-suited for in vitro expansion. [10]. Because hASCs proliferate 

rapidly in culture, populations can readily reach the large cell numbers needed for clinical 

applications. The ease of harvest, large number of cells, and rapid in vitro expansion are 

notable advantages of hASCs over hBMSCs [54]. Furthermore, the hASCs are genetically 

more stable than the hBMSCs in long-term culture [55], which makes them an attractive 

choice for cellular applications. The adult tissue stem cells have the advantage of 

autologous tissue transplantation avoiding the risks of graft-versus-host disease. The use 

of autologous undifferentiated stem cells also helps to avoid immune rejection, which is 

a major advantage when considering clinical applications. [10]  

The hASCs have already been used in clinical applications for critical size bone grafts. 

Several patients suffering from craniomaxillary injuries have already been treated with 

autologous hASCs in combination with calcium phosphate (CaP) based biomaterials [14; 

54; 56].  

2.1.4 Bone tissue 

Bone tissue consists of hydroxyapatite Ca10(PO4)6OH2 mineral phase along with elastic 

collagen fibers and cells. Hydroxyapatite is able to withstand compression loads but risks 

breaking under large shear or tensile loads as a hard and brittle material. On the contrary, 

collagen fibres can easily take on tensile loading but have poor performance in 

compression. [57] Typically, bone tissue has tensile strength of 120–150 MPa, modulus 

of elasticity of 17–20 GPa, and compressive strength of 100–160 MPa. Bone tissue has 

two distinct forms, namely compact and cancellous bone, which have different structures 

in macroscale; compact bone forms a dense and solid tissue, typically located on the thick 

outer layer of the shaft of long bones, whereas cancellous bone forms a network of bone 

spicules which form the ends of long bones, covered by a thin layer of compact bone. [58] 

In the microscale, parallel to the long axis of bone, there are irregular cylindrical osteons 

that have central canals (Figure 2). Around the central canal there is concentric bone tissue 

lamellae that form the Haversian systems that are connected laterally towards bone 

surface via the Volkmann’s canals. In the bony lamellae, there are small lacunae pores 

where osteocytes are located. The osteocyte containing lacunae are connected by narrow 

interconnected channels. 
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Figure 2. Bone tissue organization. A) Compact bone outer layer; B) Osteons with 

lamellae structure, central canal and osteocytes; C) Bone cell membrane surface 

receptors with specific binding sites for bone matrix components including fibrous 

collagen; D) Bone matrix organization with collagen fibers and hydroxyapatite crystals. 

Modified from [59]. 

 

Bone tissue functionality relies on lacunocanalicular fluid flow which transports oxygen 

and soluble nutrients and allows removal of osteocyte waste products. Bone 

lacunocanalicular fluid flow also provides biomechanical stimulation for the cells and 

induces mechanotransduction processes. [60; 61; 62] Physiological load induced fluid 

flow shear stress in bone tissue, estimated at 5 kPa [63], supports bone cell maturation 

and solidifies bone tissue. However, the more precise physiological fluid flow induced 

biomechanical cues or structural features involved remain to be detailed [63; 64]. 

2.1.5 Osteogenic differentiation 

Osteogenic differentiation of hASCs proceeds via activation of biochemical cues in 

sequential phases of initiation and commitment towards matured cells (Table 1). The 

hASCs develop towards bone-like cells by cell growth, gene expression of osteogenic 

marker genes which inititate protein expression of bone ECM components, which consists 

mainly of fibrous collagen. Bone tissue development progresses with mineralization of 
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collagenous ECM when CaP residues accumulate, form mineralization nodules and 

condense into hydroxyapatite, the main structural component of mineralized bone tissue. 

[58; 65; 66] 

Table 1. Osteogenic marker genes in hASC osteogenesis process [67]. 

Commitment Maturation Mineralization 

RUNX2 OSX OC 

DLX5 COL1 DLX5 

ALP ALP OPN 

    BSP 

 

Maturation to bone can proceed either via intramembraneous ossification where MSCs 

condense and differentiate into bone forming cells, or by endochondral ossification where 

MSCs differentiate into chondrogenic cell type before maturing into bone osteoblasts to 

form bone ECM [67]. Cell differentiation and tissue maturation processes proceed with 

the aid of molecular switches involved in cell signaling routes including a number of 

transcription factors, growth factors, cytokines, cell signaling molecules, and cell 

receptors [68]. 

Osteogenic gene expression markers that are activated early in the differentiation process 

include RUNX2, a runt domain-containing transcription factor, which operates upstream 

from zinc finger protein osterix (OSX). [65; 67; 69; 70] A transcription factor DLX5 and 

phosphatase transporting alkaline phosphatase (ALP) protein are also involved in early 

osteogenic differentiation. Late markers of hASC osteogenic differentiation 

differentiation include bone ECM proteins such as collagen type I (COL1), ALP protein, 

osteopontin (OPN), osteonectin (ON), bone sialoprotein (BSP) and osteocalcin (OC). 

[71]. Accumulation of collagenous matrix indicates hASC osteogenic differentiation, 

whereas the accumulation of calcium phosphatase enzyme is signaled by the activity of 

the phosphatase transporting ALP protein on cell membrane before matrix mineralization. 

Calcium binding ECM proteins, such as OPN, help mineralize the bone matrix by 

forming mineral crystals such as hydroxyapatite [70]. Bone matrix CaP complexes which 

in turn form hydroxyapatite can be analyzed by calcium binding staining such as Alizarin 

Red S stain. The fibrillary collagen network of bone ECM is mineralized via calcium 

binding.  

Osteogenic differentiation of hASCs needs to be verified by analysis of osteogenic 

markers of gene and protein expression, cell morphology and also by in vivo tissue sample 

histology. Despite the known biochemical processes of bone ECM formation, it is 

important to bear in mind that the degree of differentiation varies in a stem cell population 

and this might cause variation in results of in vitro analyses in addition to donor dependent 

variation. [69] 

For in vitro experiments, stem cell commitment towards osteogenic lineage has been 

enhanced by various stimuli, including chemical induction by differentiation medium 
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optimized for hASCs containing ascorbate-2-phosphate, β-glycerophosphate and 

dexamethasone [72]. However, the usability of growth factors is limited because of 

superphysiological concentrations required for in vitro culture and the related high costs, 

in addition to risks involved in the use of exogenously produced chemical supplements 

which are undesirable considering possible clinical treatments [73; 74; 75]. Their effect 

might also be questioned since exogenously added growth factors might not after all 

enhance hASC osteogenic differentiation [72]. Electrical stimulation [76], vibration 

loading [77] and surface topographic cues as mechanical stimulation [78; 79] have also 

been applied for osteogenic induction of hASCs. Indeed, the need for added soluble 

factors could be surpassed by mechanical stimulation, for example. The mechanical 

stimulus in the mechanotransduction process activates chemical and electrical signals 

inside the cell, although also osteoblast mechanosensitivity remains largely 

undetermined. [62; 80; 81].  

The scaffold architecture, cell density, and pore size are also important factors for hASC 

osteogenic differentiation [72]. Previously, a pore size of 200–600 μm has been used to 

induce hASC osteogenesis [82] [p. 409]. 

2.2 Scaffolds for bone tissue engineering 

Tissue engineering scaffolds are structures that support the growing cells and 

regenerating tissue at the site of injury. There are a number of important requirements 

that need to be met to assure good cell-material interactions. Composite biomaterials 

allow to combine the desired properties of different materials and can be designed for 

specific applications. A biomaterial that supports bone cell growth is in literature termed 

osteoconductive, a bone inducing biomaterial is referred to as osteoinductive and an 

osteogenic biomaterial triggers bone formation. Certain biomaterials, for example 

PLCL and CaP, are especially well suited for bone tissue engineering applications [83; 

84]. Besides the choice of material, the structure can add important features to the scaffold 

and, for example, a highly porous irregular structure can be fabricated with a 

supercritical CO2 method [85]. 

2.2.1 Tissue engineering scaffold requirements 

The scaffold requirements are tissue specific and depend on the site and severity of the 

injury. Tissue engineering scaffolds provide structural support and function as load 

bearing structures for healing tissue. Mechanically, the scaffold should have properties 

with suitable strength, stiffness, Young’s modulus, toughness, durability and elasticity. 

The scaffold material and architecture should also maintain sufficient mechanical 

properties before tissue regeneration and scaffold biodegradation and resorption. [57] In 

addition, similar scaffold degradation and tissue formation rates would ensure 

functionality of load bearing grafts in bone applications. A biodegradable structure that 

supports cell adhesion, proliferation, ECM deposition and in vivo ingrowth of bone 
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forming cells is preferred [86]. Biodegradable material disappears with tissue 

regeneration, thus avoiding need for second surgery to remove implant. A bioresorbable 

scaffold that degrades into natural metabolism end products reduces risk of harmful pH 

alterations or tissue infection at the implantation site [87]. A highly porous structure 

possesses also less bulk material to be processed by tissue metabolism [88]. Biomaterial 

biocompatibility is an important scaffold requirement to support cell growth without 

inducing cytotoxic, disadvantageous inflammation or adverse immune reaction [89].  

Cell culture in a 3D scaffold provides the cells with a topographic microenvironment 

more similar to native tissue [90]. The cues from the correct microenvironment guide 

stem cells to differentiate and also help differentiated cells to maintain their phenotype 

[91]. The physical scaffold properties include pore size, pore orientation, and their 

interconnectedness contribute to the scaffold function and to the creation of cell 

microenvironment. The scaffold interior architecture should allow cell growth through 

the structure to ensure homogeneous cell distribution and implant quality. To gain 

sufficient cell density for tissue regeneration interior the construct, high scaffold porosity 

with a high surface to volume ratio provides growing cells with interactions with 

biomaterial surface and an adhesion surface. Therefore, high porosity and an 

interconnected pore network are important scaffold requirements in the limits of scaffold 

mechanical strength. [57] An interconnected porous network facilitates transport of gas, 

nutrient and metabolic waste products throughout the structure thus maintaining cell 

viability and proliferation. Also, in the case of vascularized tissues such as living bone 

tissue, selected biomaterial should support angiogenesis of vascularized tissues and also 

structural space must be provided in the scaffold for the formation of vasculature to 

maintain the viability of the developing 3D cellular network. [57; 92] Therefore, open 

and accessible porosity throughout the construct are needed for fluid inflow and bone 

ingrowth into the construct [58] [p. 16]. The interior scaffold architecture should mimic 

natural cell microenvironment to support cell functionality. Tissue specific mechanical 

properties are also important scaffold requirements directing cell fate and to support tissue 

load bearing. [93; 94] 

Scaffold materials utilized for tissue engineering range from decellularized tissue 

matrixes to synthetic and natural biomaterials. Whereas decellularized tissue matrixes 

similarly depend on availability of suitable donors, and while natural biomaterials might 

elicit unwanted immunological side effects or chronic inflammation, or have less 

predictable rate or mechanism of degradation, poor mechanical properties or might suffer 

from patch to patch variation or harmful viral antigens, synthetic biomaterials offer an 

attractive alternative with controlled quality. Synthetic polymers are widely applied 

biomaterials in tissue engineering applications [95] due to their tissue compatibility and 

because they are immunologically inert. It is possible to achieve a tailored degradation 

rate with synthetic polymers and maintain sufficient mechanical properties while native 

tissue has healed [96]. In addition, the synthetic polymer material production process is 

repeatable and allows for large scale production [97]. However, they lack adhesion sites 
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of bioactive molecules to facilitate cell adhesion and growth on biomaterial surface. 

Therefore, synthetic biomaterials might benefit from functionalization. Composite 

scaffolds might also include an inducing factor, such as an osteoconducting or 

osteoinducing component, to direct or regulate tissue growth to induce formation of new 

tissue. [98; 99] The scaffold design should be suitable for target tissue, for example, 

chronOS bone graft is a synthetic β-TCP granule based bone void filler with sodium 

hyaluronate powder which is osteoconductive, bioresorbable, and flexible for remodeling 

at site of injury (Figure 3) [100; 101].  

 
Figure 3. Commercial chronOS bone graft substitute fabricated by DePuy Synthes 

[102].  

 

Suitable surface chemistry and surface topography for favorable cell-material interactions 

that support stem cell differentiation are also important scaffold requirements. Scaffold 

surface topography and material stiffness also provide mechanical cues for the cells. [103]  

2.2.2 Polylactide-co-poly-ε-caprolactone and β-tricalcium phosphate 

scaffolds for bone tissue engineering 

Polylactide 

As a polymer of lactic acid, polylactide (PLA) is readily biocompatible and bioabsorbable 

[104]. PLA is an aliphatic polyester and has been used widely in various tissue 

engineering applications [105], including bone and musculoskeletal tissue engineering 

[106; 107; 108]. Pure homopolymer poly(L-lactide) (PLLA) is a hard, brittle and 

semicrystalline polymer (Figure 4) [105].  

 

Figure 4. Molecular structure of poly(L-lactide) (PLLA). 
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PLLA is degraded hydrolytically in approximately 2 years in the body into L-lactic acid, 

a naturally occurring metabolite that is eventually metabolized in the citric acid cycle into 

water and CO2. The addition of D-lactide yields a copolymer of lower stiffness and faster 

hydrolytic degradation rate. This allows tailoring of copolymer mechanical properties and 

degradation rate. [109] What is more, PLA is not bioactive and requires active 

components for bone regeneration [105; 110].   

Poly-ε-caprolactone 

Poly-ε-caprolactone (PCL) (Figure 5) is an aliphatic biodegradable polyester like PLA, 

highly elastic, and hydrophobic polymer [111]. Due to its semi-crystalline structure and 

hydrophobicity, PCL degrades in 2–3 years in the body by surface degradation [112; 113]. 

PCL has been shown to support osteoblastic cells under perfusion flow [32], and has been 

applied to bone regeneration in perfusion bioreactor culture [114]. In a previously 

published study, PLCL has been shown to support ASC adhesion and osteogenic 

differentiation [84].  

 

Figure 5. Molecular structure of polycaprolactone (PCL). 

The addition of PCL ameliorates the elastic properties of L-lactide in the 

PLCL copolymer structure [113]. PLCL is highly elastic and cytocompatible with hASCs 

[53; 115; 116]. However, PLCL has been reported to cause formation of fibrous tissue, 

indicating surface interaction issues and might benefit from surface functionalization 

[84].  

Bioceramics 

 

Porous ceramic biomaterials have been widely used to induce bone regeneration [117; 

118; 119]. The synthetic bone substitutes have mainly been based on hydroxyapatite, 

coralline hydroxyapatite, TCP, biphasic CaP and various types of bioactive glass (BaG) 

[120]. Bioceramics are osteoconductive materials that support cell adhesion, growth, 

differentiation, and migration. They are hard and brittle materials and therefore 

challenging to process. The properties hydroxyapatite, CaP as well as sulphates, are well 

suited for bone grafts due to their similarities with native bone tissue [84]. In contrast, 

degradable biopolymers are readily tailorable but not osteoconductive and hydrophobic, 

such as PLCL. The ceramic biopolymer composites offer an opportunity to combine the 

osteoconductive and more elastic properties. Mechanical strength of composites is lower 

than that of bioceramics, while the addition of a ceramic component enhances the 

mechanical properties of the structure and the polymer allows more elastic properties to 
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the composite material [121]. An osteoconductive material, such as β-TCP, also promotes 

bone matrix deposition and offers mechanical support while the biodegradable scaffold 

is replaced by newly forming tissue. As an added feature, CaP buffers acidic degradation 

products of PLA [122]. It degrades faster compared to hydroxyapatite and therefore is a 

suitable choice for bone constructs [122; 123]. Moreover, β-TCP has been shown to 

promote cell adhesion, proliferation, and osteogenic differentiation of MSCs and healing 

of bone defects [41; 124; 125; 126]. However, in another study, soluble β-TCP failed to 

promote osteoblastic cell adhesion and spreading due to high phosphate and low calcium 

levels in the cell-material interface [127].  

Poly(lactide-co-ε-caprolactone)-β-tricalcium phosphate 

Medical grade poly-L-D-lactide (P(L/D)LA) 96/4 copolymer with sufficient elasticity 

and mechanical strength was selected for engineered bone construct biomaterial to 

fabricate biodegradable polymer composite scaffolds of PLCL (Figure 6) with 40 wt-% 

β-TCP Ca3(PO4)2 as an osteoconductive ceramic component. The PLCL-β-TCP 

composite scaffolds were fabricated with a supercritical CO2 method with the aim of 

interconnected porous structure and homogeneous porosity [111]. 

 

Figure 6. Molecular structure of poly(L-lactic-co-ε-caprolactone) (PLCL) polymer. 

2.2.3 Supercritical carbon dioxide polymer processing 

CO2 is a noncytotoxic solvent and permits solvent free production of porous materials 

through generation of gas bubbles within a polymer where it functions as a pore 

generating agent or a porogen. Supercritical CO2 processing method is based on the 

concept that CO2 is a fluid above its critical temperature of 304.25 K and pressure of 

72.9 atm or 7.39 MPa [85]. Above critical temperature and pressure limits, supercritical 

CO2 has properties of a gas and fluid as a supercritical fluid, when it expands and fills the 

container as a gas and but with the density of a liquid. In the melt extrusion fabrication 

process moulded polymers can be pressurized with CO2 until polymer is saturated after 

which the release of pressure results in nucleation and growth of air bubbles (Figure 7). 

The low production temperatures would also allow the incorporation of temperature 

sensitive drugs or growth factors as tissue growth supporting soluble species into the 

processed biomaterial. [9; 85; 128; 129] 
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Figure 7. Supercritical CO2 processing of polymers. Modified from [129]. 

2.3 Dynamic cell culture 

Traditionally, static culture has been the standard protocol for in vitro cell culture. 

Generally, the cells are seeded passively by pipetting manually the cell suspension onto 

the surface of scaffolds [130], after which the cells are allowed to spread gradually 

towards the scaffold interior under static culture conditions. However, this might lead to 

limited cell ingrowth, especially in case of a porous structure because cells grow mainly 

on the exterior surface forming a dense layer that prevents diffusion and transport of 

nutrients or gas inside to scaffold interior [20]. The cells are also prone to grow on the 

scaffold periphery where there are more nutrients available from surrounding cell culture 

medium. This typically results into cell necrosis in the center of the scaffold, and 

eventually, nonhomogeneous tissue growth and immature tissue construct. On the other 

hand, dynamic cell culture promotes faster and more homogeneous cell ingrowth and 

ECM production [131] which augments the stiffness and mechanical properties of the 

construct [132].  

The range of passive diffusion limiting size of tissue engineered constructs varies 

according to estimates between 240 m and 3 mm [60; 133]. Dynamic cell culture, for 

example in a perfusion flow bioreactor, improves survival of critical size tissue 

engineering constructs with dimensions in millimeter scale. [57; 134; 135] In comparison, 

in static in vitro culture, osteoblastic cells have been reported to form mineralized matrix 

only to the depth of 240 m on poly(L,D-lactic-co-glycolic acid) (PLGA) scaffolds. 

Typically, the static method requires longer cell culture periods which increases the 

microbial contamination risk associated with additional handling steps [136]. In tissue 

engineering production protocols, the effect of the person conducting the manual work 
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has been exceedingly large. Worker dependent process variability lowers the process 

repeatability and consistency leading to irregular quality. [57; 130] Dynamic culture has 

been shown to stimulate stem cell differentiation [114; 137; 138] and also to induce hASC 

differentiation by mechanical stress [77].  

2.3.1 Bioreactor types for bone tissue engineering 

Bioreactors as 3D culture systems have been used to control and monitor cues to stimulate 

growing and differentiating stem cells towards specific lineage [127]. Different types of 

bioreactors have been tested for bone tissue engineering applications [137]. In a spinner 

flask (Figure 8A), the cell seeded constructs are pinned to long needles attached to the 

flask cap and immersed in the culture medium. At the bottom of the flask, a magnetic 

stirrer mixes the medium constantly [23]. However, the spinner flask is not enough to 

encourage cell penetration deeper into porous constructs and fluid flow shear stress is 

concentrated on the cell seeded scaffold surface. A rotating wall bioreactor (Figure 

8B) consists of two concentric cylinders of which the outer one rotates whereas the inner 

one is stationary and permeable to gas diffusion. The constructs are placed inside the 

cylinder space and maintained in a microgravity-like state by the action of the rotating 

outer layer while stimulated by hydrostatic pressure. [139; 140] 

  

 
Figure 8. Bioreactor designs. A) Spinner flask; B) Rotating wall bioreactor. Modified 

from [137]. 

 

In a rotating wall bioreactor, the shear forces are more moderate than in a spinner flask, 

but the constructs bounce against each other randomly and the direction of the fluid flow 

is not controlled [141]. In a flow perfusion bioreactor, the circulating fluid is pumped 

straight through porous construct for efficient mass transport and mechanical stimulation 

by fluid shear stress. With different flow rates and depending on the porous structure, it 

is possible to adjust the fluid shear stress to stimulate cells. [23] For example, under 

perfusion flow, rat BMSCs were more evenly distributed into porous polymer scaffold 

and showed higher ALP activity, when compared to spinner flask or rotating wall 

bioreactors [142].  
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2.3.2 Perfusion flow bioreactors 

A perfusion bioreactor consists of a pump system with tubing that perfuses media through 

tissue engineering constructs thus providing growing cells with mechanical stimulation. 

The system is composed of a pump, a culture media reservoir, a tubing circuit and a 

reactor chamber to hold the porous scaffolds (Figure 9). [136]  

 
Figure 9. Schematic presentation of a flow perfusion bioreactor. A culture circuit with 

constant unidirectional flow by a peristaltic pump through porous scaffolds in a reactor 

chamber and a medium reservoir. Modified from [143]. 

 

Perfusion flow bioreactors enhance mass transport to the entire 3D scaffold volume by 

perfusing fluid directly through the constructs to overcome the limitations of diffusion 

distance. In addition to minimizing diffusional distances, perfusion exposes the cultured 

cells to controllable hydrodynamic shear forces which can be tailored to direct cell 

behavior. [133; 144; 145] Perfusion flow systems have been demonstrated to effectively 

promote homogeneous cell distribution in the scaffold volume, upregulate osteogenic 

markers, and enhance mineralization [23; 26; 29; 30; 136; 137; 146; 147]. The fluid shear 

stress has increased production of ALP that is an early bone regeneration marker together 

with mature bone ECM components such as COL1 along with mineralization of cellular 

matrix [136; 148]. Higher ALP and cell distribution gained under perfusion compared to 

spinner flask and rotating wall bioreactor culture in PLGA scaffolds [142].  

It has been known that fluid flow stimulates bone cells and secretion of bone markers 

[149; 150; 151; 152; 153; 154; 155]. Moreover, the dynamic fluid flow has been shown 

to enhance osteogenic differentiation of hMSCs [156], and ASCs [33; 34; 36]. In a study 

by Rodrigues et al. (2012) flow perfusion bioreactor was shown to enhance hASC 

proliferation, homogeneous distribution and osteogenic differentiation in silanol 

functionalized corn starch PLCL 30/70 scaffolds under perfusion flow [35]. Some 

relevant perfusion bioreactor in vitro studies are listed in Table 2 for comparison. 
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Table 2. Perfusion flow bioreactors in cell culture studies for osteogenic differentiation.  

Perfusion 

flow 

Flow rate 

[mL/min/

scaffold] Cells Scaffold Medium Time Results Reference 

continuous 

or pulsatile 

steady 

0.3,               

pulsatile 

0.3-0.9 hASCs silk fibroin OM 5 weeks 

OPN+; proteins: COL1+, OPN+, OC+, 

BSP+, mineralization with 2 weeks of 

steady flow + 3 weeks of pulsatile flow 

(2 h pulse flow + 10 h steady flow)  [34] 

continuous  0.1 hASCs BaG foam MM, OM 21 d 

proliferation+, ALP+, OPN+, OC+. 

Weak hASCs differentiation without 

chemical stimulus  [33] 

continuous  0.1 hASCs starch-PLCL-Si MM, OM 21 d 

MM, OM: hASCs spread under 

perfusion, ALP+; OM only: 

mineralization+  [35] 

continuous  0.3 hASCs decellular bone MM, OM 5 weeks OM only: BSP+, OPN+, COL1+   [157] 

continuous + 

compression 

0.3, 0.5, 

2.0 hASCs PLGA-CaP MM 

2 weeks static     

+ 9 d perfusion   

+ compression all: OP+, 2.0 rate: distribution+  [158] 

pulsatile 1.0 

hBMSCs, 

hASCs hydroxyapatite OM 5 d efficient in vivo engraftment  [159] 

pulsatile 3.0 hASCs hydroxyapatite MM 

5 d in vitro          

+ 8 weeks in 

vivo in vivo: HE staining+, BSP+   [160] 

continuous  0.1 hBMSCs silicate-TCP MM 21 d ALP+, OPN+, RUNX2+, BSP+, BMP2+  [15] 
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Perfusion 

flow 

Flow rate 

[mL/min/

scaffold] Cells Scaffold Medium Time Results Reference 

continuous  0.1 hBMSCs porous PET MM 40 d 

14 d: proliferation-, 

ALP+, mineralization+, 40 d: ON+  [18] 

continuous: 

parallel or 

traverse 0.2 hBMSCs porous PET MM, OM 14 d 

7d MM parallel flow + 7d OM traverse 

flow: proteins: COL1+, OC+  [19] 

continuous  

3.0, 6.0, 

9.0 hBMSCs β-TCP OM 28 d 

0.015 Pa fluid flow shear stress and 3 

mL/min flow rate: ALP activity+; 

proteins: OPN+, OC+. Level of shear 

stress determined results.  [161] 

continuous: 

parallel 0.1, 1.5 hBMSCs porous PET MM 20 d 

0.1 ml/min: proliferation+; 1.5 ml/min: 

osteogenic differentiation+   [162] 

continuous  0.2 hBMSCs PLGA  MM, OM 14 d 

MM, OM: proliferation+, OM only: 

ALP+, OPN+, mineralization+  [21] 

pulsatile 0.8 hBMSCs PLCL MM 7 d 

4x 5 min pulse/h: RUNX2+, OPN 

precursor+, COL1+, mineralization+  [163] 

continuous  

0.05, 

0.17, 0.50 rat BMSC Ti mesh OM 16 d 

 

0.05 rate: ALP+ (8 d), OP+ (13 d); 0.17 

rate (16 d): proliferation+, ALP+, 

mineralization+, HE histo+  [164] 

continuous  1.0 rat BMSC 

electrospun 

PCL OM 16 d 

ALP+, mineralization+, bone ECM 

proteins: MMP-2+, PEDF+, COL1+  [165] 
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Perfusion 

flow 

Flow rate 

[mL/min/

scaffold] Cells Scaffold Medium Time Results Reference 

continuous  0.3 rat BMSC starch-PLCL  OM 15 d cell distribution+, mineralization+, ALP-  [25] 

continuous  1.0 rat BMSC starch-PLCL   OM 15 d 

scaffold porosity 75 %: proliferation+, 

ALP+, mineralization+  [26] 

continuous  1.0 rat BMSC Ti mesh MM, OM 16 d OM only: ALP+, OPN+, mineralization+  [27] 

continuous  1.0 rat BMSC 

hydroxyapatite-

β-TCP OM 16 d proliferation+, ALP+  [145] 

continuous  0.6 rat BMSC fibrous PLLA OM 16 d distribution+, ALP+, mineralization+  [29] 

continuous  0.3 rat BMSC Ti mesh OM 16 d 

shear stress (in 6 % dextran) increase 

instead of flow rate for mineralization+  [30] 

pulsatile 0.008 

mouse pre-

osteoblasts PCL OM 28 d ALP+    [166] 

Effects of perfusion flow bioreactor compared to static control: (+), positive effect; (=), no effect; (-), negative effect. Results are reported for gene 

expression and protein expression results are duly indicated. Abbreviations: ALP, alkaline phosphatase activity; BaG, bioactive glass; BMP2, 

bone morphogenetic protein-2; BSP, bone sialoprotein; COL1, collagen type I; hASCs, human adipose stem cells; hBMSCs, human bone marrow 

stem cells; HE stain, hematoxylin and eosin stain; MM, maintenance medium; OC, osteocalcin; OM, osteogenic medium; ON, osteonectin; OPN, 

osteopontin; PCL, polycaprolactone; PET, poly(ethylene terephthalate); PLGA, poly(lactic-co-glycolic acid); PLCL, poly(L-lactic-co-ε-

caprolactone); TCP, tricalcium phosphate.  
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Several perfusion bioreactor systems have been developed and tested for bone tissue 

engineering purposes [23; 159; 167; 168]. TA Instruments is a commercial supplier that 

offers a multispecimen flow perfusion bioreactor system for cell culture with a basically 

adaptable and scalable setup (Figure 10). 

 
Figure 10. TA Instruments 3D CulturePro Bioreactor system for multiple single 

samples [169]. 

 

EBERS Medical has an alternative commercial perfusion bioreactor available. The 

EBERS multiple sample system has individual chambers for cylindrical scaffolds to 

direct perfusion flow through the whole scaffold volume (Figure 11A;B). 



21 

 

 
Figure 11. EBERS Medical P3D flow perfusion bioreactor system A) Individual 

chamber; B) Multichamber assembly [170].  

 

In this study, a custom made flow perfusion bioreactor prototype with reusable and easily 

maintained parts was tested for in vitro cell culture use. The bioreactor assembly is 

presented in more detail in Chapter 3.2 and its functionality is assessed in Chapter 5.5. 

The intrinsic fluid flow in bone tissue provides developing cells with mechanical 

stimulation which is also involved in activating the cell signaling routes. Perfusion flow 

provides mechanical stimulation for cells in the form of fluid shear stress. [81] This 

physical stimulation modifies cell response by mechanotransduction process, where 

mechanical signals are converted into biochemical or electrical signals transmitted via 

focal adhesions leading to changes in the cytoskeleton (Figure 12) [171].   

 
Figure 12. Cell response to fluid flow shear forces. Modified from [134]. 

 

The parameters of dynamic fluid flow influencing cells include fluid viscosity and shear 

stress, in addition to flow parameters such as flow rate and flow direction including 

continuous or oscillating or pulsed flow or a flow profile with rest periods in the 

stimulation cycle [127]. Particularly with perfusion flow bioreactors, scaffold architecture 

must be taken into account, such as the size and interconnectedness of the porous network 

in the scaffold interior [144].  
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3 MATERIALS AND METHODS 

3.1 Scaffold fabrication 

The polymer composite scaffolds were fabricated at the Tampere University of 

Technology Department of Electronics and Communications Engineering with 

commercially available PLCL (PURASORB PLC-7015; Corbion Purac Ltd., 

Amsterdam, the Netherlands). In the melt extrusion fabrication process, 40 wt-% of β-

TCP (Plasma Biotal Ltd.) of 100–300 µm granule size was added to the raw material. The 

inherent viscosity of the polymer composite was 1.6 dl/g and the weight average 

molecular weight 250 000 g/mol. The melt extruded polymer rods were treated with a 

supercritical CO2 method to create a porous structure [111]. The treatment was performed 

in a custom-fitted supercritical CO2 reactor system (Waters Operating Corporation, 

Milford, USA). The samples were manually cut. The cylindrical scaffold dimensions 

measured from dry scaffolds were on average 10 mm of diameter and 3 mm of height, 

and 0.236 cm3 volume (Figure 13). The supercritical CO2 fabricated tissue engineering 

scaffolds possessed complex irregular structure. The PLCL-β-TCP scaffolds had 

approximately 300–500 µm pore size and 58 % porosity which were determined earlier 

by micro-computer tomography (micro-CT) imaging (data not shown). For structure 

comparison experiments, some PLCL-β-TCP scaffolds with 7 channels of 1 mm of 

diameter (Figure 13C) were fabricated, with 1 channel in the middle of the cross-section 

area and 6 channels surrounding it symmetrically.  

 
Figure 13. Supercritical CO2 fabricated PLCL-β-TCP tissue engineering scaffolds. A) 

Regular PLCL-β-TCP scaffold; B) Regular PLCL-β-TCP scaffold halved to show 

porosity; C) Schematic image of PLCL-β-TCP channel scaffold with 7x 1 mm diameter 

channels and scaffold dimensions. poly(L-lactic-co-ε-caprolactone)-β-tricalcium 

phosphate (PLCL-β-TCP). 

 

The tissue engineering scaffolds were gamma irradiated for sterility. A minimum 

irradiation dose of 25 kGy was applied by a commercial service supplier prior to the cell 

culture experiments. [172] 
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3.2 Bioreactor assembly 

All the bioreactor parts must be suitable for aseptic cell culture work to avoid microbial 

contamination. To this end, the flow perfusion bioreactor system used in this study 

consisted of parts made of materials that were autoclavable. Autoclaving is a method to 

sterilize laboratory supplies by 20-min heat treatment at +121 ºC. All the cell culture and 

analyses were performed at the University of Tampere BioMediTech cell culture 

laboratories. 

The flow perfusion bioreactor system (Figure 14) consisted of a polycarbonate culture 

chamber fabricated at the Tampere University of Technology Department of Electronics 

and Communications Engineering with commercially available polycarbonate, cell 

culture medium in a laboratory glass storage bottle, silicone hoses, custom-made stainless 

steel hose adapters, and a peristaltic pump (Heidolph PD 5101 pump drive with a 

peristaltic pump head SP Quick; Heidolph Instruments GmbH & Co. KG, Schwabach, 

Germany). The bottle screw cap was custom modified with 2 holes of 0.8 mm of diameter 

for the incoming and outgoing 0.8-mm silicone hoses as well as a gas-permeable 0.8/0.2 

µm membrane filter for gas exchange (Acrodisc PF 32 mm Syringe Filter with Supor 

Membrane; Pall Life Sciences, Port Washington, WI, USA). 

The bioreactor assembly was performed inside a cell culture laminar hood with sterile 

utensiles to avoid microbial contamination. In the bioreactor assembly (Figure 14), the 

culture chamber was assembled first on a support stand. The large silicone o-ring was 

placed in the large groove of the lower half of the culture chamber. The polycarbonate 

holder plate with 6 or 12 holes was placed in the middle of the chamber. The holder plate 

holes are spaced in a radial pattern. The presoaked and cell seeded cylindrical tissue 

engineering scaffolds measuring 10 mm in diameter and 3 mm in thickness were 

pressfitted to the holder plate holes prior to culture chamber assembly. The upper half of 

the culture chamber was tightened with 4 socket head stainless steel screws and an Allen 

key. The holes for the incoming and outbound hoses in the middle of the culture chamber 

were both fitted with a small silicone o-ring and a custom manufactured stainless steel 

nut with built-in adapter head. 
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Figure 14. The flow perfusion bioreactor assembly. Open bioreactor chamber with cell-

seeded PLCL--TCP scaffolds in holder plates with A) 6 holes used for the flow rate of 

0.50 mL/min/scaffold; B) 12 holes used for the flow rate of 0.25 mL/min/scaffold; C) 

Static controls in 6-holder plate in a Petri dish. 

The silicone pump hoses, 0.8 mm or 1.7 mm in diameter, were fitted with custom 

manufactured small or large, respectively, stainless steel adapters to attach the pump hose 

and the 1.0-mm silicone hose to the medium bottle and to the culture chamber to create a 

closed loop media system. In the medium bottle screw cap, the 1.0-mm silicone hoses 

were inserted through the cap holes for the incoming and outbound medium flow (Figure 

14). The filter was placed on the bottle screw cap. The peristaltic pump drew medium 

from the bottle and perfused it through all scaffolds in bioreator chamber at a set rate. The 

unidirectional continuous fluid flow was directed axially through the porous cylindrical 

scaffolds orthogonally to the seeding surface, from top to bottom, to prevent air bubble 

accumulation under scaffolds that might alter the flow pattern on the surface of the 

scaffold [21]. The pumping speed was adjusted for 3 mL/min (0.50 mL/min/scaffold in 

6-hole holder plate) according to pump manufacturer instructions and flow rates were 

also experimentally verified with or without scaffolds (data not shown).  

To start the bioreactor system function, the culture chamber was filled with 0.3 

ml/min/scaffold pumping speed for approximately 15 min and manually shaken to 

remove all air from inside the chamber. The polycarbonate chamber was semi-transparent 
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to observe filling. The overall flow rate was divided by the number of scaffolds to reach 

the actual flow rate of mL/min/scaffold. The medium reservoir and the reactor chamber 

were placed in a cell culture incubator with a 5 % CO2 containing, +37 °C atmosphere of 

80 % humidity. The total volume of medium in the flow system was 75 mL. The hoses 

passed through the incubator doors to the peristaltic pump (Figure 15). 

 

 
Figure 15. The flow perfusion bioreactor culture circuit with A) Peristaltic pump 

outside incubator; B) Medium reservoir and bioreactor chamber inside incubator. 

 

Fresh medium was supplied by replacing the medium flask after one week of culture. This 

was done to provide hASCs with fresh nutrients and remove circulating debris or detached 

or dead cells from the system. In the tested flow perfusion bioreactor, a continuous steady 

fluid flow is directed through the porous scaffolds (Figure 16). 

 

 
Figure 16. Schematic presentation of the flow perfusion bioreactor system. The culture 

circuit used in the study with a peristaltic pump, continuous unidirectional fluid flow 

through a medium reservoir and a bioreactor chamber with porous scaffolds. Arrows 

indicate direction of pump rotation and fluid flow. 
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The flow rate for the comparison experiment was adjusted by using the holder plates; 6-

hole plate was used for the flow rate of 0.50 mL/min/scaffold and 12-hole plate was used 

for the flow rate of 0.25 mL/min/scaffold. The 6-hole and 12-hole holder plates were 

interchangeable for the culture chamber. In the design of the holder plate, the dimensions 

of the hole and the scaffold had tight tolerance to prevent nonperfusing flow.  

3.3 Cell isolation, expansion and characterization 

3.3.1 Adipose stem cell isolation and expansion 

The hASCs were isolated from subcutaneous adipose tissue samples of 2 healthy female 

donors of 57±3 years of age. The adipose tissue samples were donated from Tampere 

University Hospital Department of Plastic Surgery surgeries with the patients’ written 

informed consent. The hASCs isolation from adipose tissue samples was conducted in 

accordance with the Ethics Committee of Pirkanmaa Hospital District, Tampere, Finland 

(R15161). The hASCs isolation procedure has been described by Zuk and coworkers [51; 

173]. The tissue sample hASC isolation procedure has been developed and optimized 

previously [72; 174]. In the mechanical and enzymatic isolation procedure, the adipose 

tissue were first minced with surgical equipment and digested with 1.5 mg/mL 

collagenase type I (Thermo Fisher Scientific Inc., Waltham, MA, USA) in maintenance 

medium (MM) containing GIBCO Dulbecco’s Modified Eagle Medium/Ham’s Nutrient 

Mixture F-12 (DMEM/F-12 1:1; Thermo Fisher Scientific Inc.), 5 % human serum (HS) 

(PAA Laboratories Gmbh, Pasching, Austria), 1 % L-glutamine (GlutaMAX; Thermo 

Fisher Scientific Inc.), and 1 % antibiotics/antimycotic containing 100 U/mL 

penicillin/100 U/mL streptomycin (P/S) (Thermo Fisher Scientific Inc.). After the 

enzymatic digestion, the obtained stem cells were pelleted by centrifugation at 1 800 rpm 

for 10 min (Heraeus Labrofuge 400R Centrifuge, Thermo Fisher Scientific Inc.) and any 

remaining cellular debris was removed by filtration. The expansion of hASCs was carried 

out in T-75 polystyrene flasks (Nunclon Δ Surface, Sigma-Aldrich, St. Louis, MO) in 

MM and in a 5 % CO2 containing, humidified +37°C atmosphere. The cells were passaged 

at 80 % confluence with TrypLE Select (Thermo Fisher Scientific Inc.). The expanded 

hASCs were cryopreserved in freezing solution of HS (PAA Laboratories Gmbh) 

containing 10 % dimethyl sulfoxide (Hybri-Max; Sigma-Aldrich) in liquid nitrogen and 

thawed for initial expansion for experiments in MM. 

Prior to cell seeding, the polymer scaffolds were pretreated for 48 h in MM. The 

bioreactor parts were washed and autoclaved prior to each experiment. The hASCs were 

plated at a density of 153 000 cells/cm2 in a volume of 50 µL. The cell seeded scaffolds 

were incubated for 3 h after plating at +37 ºC to allow cell attachment. The dynamic cell 

culture was initiated 24 h after plating by starting the continuous unidirectional perfusion 

flow with the peristaltic pump. The control cell cultures in static condition were kept on 

holder plates in a Petri dish, and blank samples in 48-well plate wells (Nunclon), and both 
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were maintained in MM, changed every other day. The experiments were carried out at 

hASC passage 5. 

3.3.2 Cell characterization 

Flow cytometry was used to characterize hASC cell surface markers. Briefly, the hASCs 

of passage 1–2 were analyzed for cell surface markers with fluorescence activated cell 

sorter (FACS) (FACSAria; BD Biosciences, San Jose, CA, USA). 

The mesenchymal origin of hASCs was verified by the expression of cell differentiation 

marker profile with monoclonal antibodies against CD3-PE, CD14-PE-Cy7, CD19-PE-

Cy7, CD45RO-APC, CD54-FITC, CD73-PE, CD90-APC (BD Biosciences), CD11a-

APC, CD80-PE, CD86-PE, CD105-PE (R&D Systems, Inc., Minneapolis, MN, USA), 

CD34-APC and HLA-DR (Immunotools GmbH, Friesoythe, Germany). FACS analysis 

was performed on 10 000 cells per sample, and the positive expression was defined as a 

level of fluorescence 99 % greater than the corresponding unstained cell sample [175]. 

3.4 Cell viability  

The cell viability was analyzed using Live/Dead fluorescence staining (Thermo Fisher 

Scientific Inc.). Briefly, after washing in Dulbecco’s phosphate-buffered saline (DPBS) 

(Thermo Fisher Scientific Inc.), the samples were incubated for 45 min at room 

temperature with a mixture containing 0.5 mM calcein acetoxymethyl ester (Calcein AM) 

(Thermo Fisher Scientific Inc.) to detect viable cells at 488 nm. Solution of 0.25 mM 

ethidium homodimer-1 (EthD-1) (Thermo Fisher Scientific Inc.) was used to detect 

necrotic cells at 560 nm.  

The images of the viable green fluorescent cells and the necrotic red fluorescent cells 

were taken using an epifluorescence microscope (Olympus IX51, Olympus Finland PLC, 

Vantaa, Finland). The image brightness and contrast was adjusted manually (Adobe 

Photoshop CS4, San Jose, CA, USA). 

3.5 Cell number and proliferation 

Cell number was determined with CyQUANT Cell Proliferation Assay Kit (Thermo 

Fisher Scientific Inc.) at 1-, 7-, or 14-day time points. Briefly, the cells were lysed with 

0.1 % Triton X-100 buffer (Sigma-Aldrich) and stored at –80°C. The quantitative alkaline 

phosphatase activity (qALP) was analyzed from the same lysates. 

Upon analysis, working solution for each sample was prepared with CyQUANT GR Dye 

in dimethyl sulfoxide (Thermo Fisher Scientific Inc.) together with Cell Lysis Buffer 

(Thermo Fisher Scientific Inc.). The blue-green fluorescence of 3 parallel samples was 

measured with a microplate reader (Victor 1420 Multilabel Counter; PerkinElmer, 
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Waltham, MA, USA) at 480/520 nm. In the results’ analysis, the background of static 

blank acellular samples was subtracted from the cell experiment sample values. 

3.6 Osteogenic differentiation 

3.6.1 Alkaline phosphatase activity 

The qALP (ALP Kit; Sigma-Aldrich) activity was analyzed at 1, 7, or 14 days. The qALP 

was analyzed from the same cell lysate samples as the cell number in the following 

thawing of samples. The absorbance was measured at 405 nm with microplate reader 

(Victor 1420 Multilabel Counter; PerkinElmer). In the qALP analysis, the hydrolysis of 

p-nitrophenyl phosphate is catalyzed by ALP enzyme in alkaline solution. The hydrolysis 

releases yellow colored p-nitrophenol. The rate of p-nitrophenol formation is proportional 

to the sample’s catalytic concentration of ALP.  

3.6.2 Total collagen 

Total collagen content was analyzed at 7-day time point using a quantitative Sircol 

Soluble Collagen Assay (Biocolor Ltd., Carrickfergus, Northern Ireland). In brief, the 

acid soluble collagen was extracted from scaffolds with 0.1 mg/mL pepsin from porcine 

gastric mucosa (Sigma-Aldrich) in 0.5 M acetic acid (Merck KGaA, Darmstadt, 

Germany).  

Sircol Dye reagent (Biocolor Ltd.), which contains Sirius Red and picric acid, was added 

to the samples and incubated for 30 min to allow the collagen to form a red complex with 

the dye. The collagen-dye pellet was washed to remove any unbound dye and an alkali 

reagent of 0.5 M NaOH solution (Biocolor Ltd.) was added in order to resolubilize the 

collagen. Finally, the intensity of red dye of 2 technical parallel samples was measured 

with a microplate reader at 540 nm (Victor 1420 Multilabel Counter; PerkinElmer). In 

the results’ analysis, the background of static blank samples was subtracted from the 

results. 

3.6.3 Mineralization 

Cellular mineralization was measured with a quantitative Alizarin Red S (Sigma-Aldrich) 

at 14-day time point. Briefly, the cells were rinsed with DPBS, after which cells were 

fixed with 4 % paraformaldehyde (PFA) (Sigma-Aldrich) for 35 min. The PFA fixed 

samples were washed with dH2O. The samples were stained with 2 % Alizarin Red S 

(Sigma-Aldrich) of pH 4.2 and incubated for 10 min. After dH2O and 70 % ethanol 

washes, the dye was extracted with 100 mM cetylpyridinium chloride (Sigma-Aldrich) in 

gentle shaking for 3 h.  

The purple dye intensity of 3 technical parallel samples was determined immediately 

using a microplate reader (Victor 1420 Multilabel Counter; PerkinElmer) at 540 nm. 
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3.7 Experimental design 

This study consisted of a number of preliminary experiments before proceeding to actual 

full length experiments of, firstly, flow rate comparison and, secondly, scaffold structure 

comparison (Table 3). In the flow rate comparison, 2 different flow rates of 0.25 and 0.50 

mL/min/scaffold were compared for hASC stimulation based on literature review (Table 

2). In the scaffold structure comparison, a modified PLCL--TCP scaffold pierced with 

punctured channels was compared to the unmodified regular structure with irregular 

porosity fabricated with the supercritical CO2 method with the selected flow rate. Only 

single experiment repeats were performed for both experiments with hASCs from 2 

different donors (Table 3).  

The number of samples analyzed at each indicated time point is presented for each method 

of analysis. The risk of microbial contamination was monitored with BacT/ALERT 

detection system (bioMérieux, Durham, NC, USA) from cell culture medium samples by 

the Regea Cell and Tissue Center Quality Management services. 
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Table 3. Experimental design.  

 

Experiment hASCs 

Condition 

and time Scaffold 

Flow rate 

[mL/min/ 

scaffold] 

Live/Dead 

viability 

CyQUANT 

cell number qALP  

Total 

collagen 

content 

Alizarin Red S 

mineralization 

Flow rate 

comparison Donor 1 Dynamic 14 d 

Regular               

PLCL-TCP40  0.25 3x 14 d 3x 14 d 3x 14 d 3x 14 d 3x 14 d 

  Static 14 d 

Regular                

PLCL-TCP40  -- 3x 14 d 

                   

3x 1 d,        

3x 14 d 3x 14 d 3x 14 d 3x 14 d 

 Donor 1 Dynamic 14 d 

 

Regular                   

PLCL-TCP40  0.50 2x 14 d 2x 14 d 2x 14 d 2x 14 d -- 

  Static 14 d 

Regular               

PLCL-TCP40  -- 3x 14 d 

                   

2x 1 d,        

3x 14 d 3x 14 d 3x 14 d -- 

Scaffold 

structure 

comparison Donor 2 
Static 7 d 

+Dynamic 7 d 

Channel               

PLCL-TCP40  0.50 2x 14 d 2x 14 d 2x 14 d -- 2x 14 d 

    Static 14 d 

Channel              

PLCL-TCP40  -- -- 

 

1x 7 d,        

1x 14 d 

1x 7 d, 

1x 14 d -- 1x 14 d 

Abbreviations: hASC, human adipose stem cells; PLCL-TCP40, Poly(L-lactic-co-ε-caprolactone) with 40 wt-% of beta-tricalcium phosphate; 

qALP, quantitative alkaline phosphatase activity.
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4 RESULTS 

Different flow rates and scaffold structures were compared to analyze the effect on 

hASC viability, proliferation, and osteogenic differentiation in the new flow perfusion 

bioreactor and in the novel supercritical CO2 fabricated PLCL--TCP scaffolds.  

The isolated hASCs were initially characterized by flow cytometry. Cell viability, 

morphology, and adhesion were observed qualitatively with Live/Dead staining. Cell 

number based on the total amount of DNA was analyzed at different time points to 

determine cell proliferation quantitatively. Osteogenic differentiation of hASCs was 

studied quantitatively by qALP, total collagen content, and mineralization of the formed 

ECM.  

4.1 Cell characterization 

The flow cytometric cell surface marker expression analysis was used for the 

characterization of the hASCs and performed in passage 5 for both donors after expansion 

in MM (Table 4).  

Table 4. Flow cytometric cell surface marker profile of the hASC donors 1 and 2 

compared to International Society for Cellular Therapy (ISCT) established criteria. 

Data is expressed as mean and standard deviation (SD). 

Surface protein Mean SD ISCT criteria 

3 0,3 0,1  
11a 0,4 0,4  
14 0,8 1,0 2 

19 0,5 0,5 2 

34 5,5 4,0 2 

45 1,1 0,4 2 

54 3,1 1,4  
73 74,9 8,0 95 

80 0,5 0,4  
86 0,7 0,6  
90 99,5 0,4 95 

105 90,0 6,8 95 

HLA-DR 0,8 0,8 2 
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No bacterial contaminations were detected during this study according to the 

BacT/ALERT microbial detection system results, measured and reported by the Regea 

Cell and Tissue Center Quality Management services (data not shown). 

4.2 Cell viability  

The hASC viability and adhesion were evaluated using Live/Dead fluorescence staining 

at 14-day time point. In the flow rate comparison experiment dynamic condition, the 

hASCs were perfused continuously with a steady flow rate of either 0.25 or 0.50 

mL/min/scaffold for 14 days (Figure 17A;B), whereas in the scaffold structure 

experiment dynamic condition, the hASCs were precultured in static condition for 7 days 

prior to 7 days of continuous perfusion flow with a flow rate of 0.50 mL/min/scaffold 

(Figure 17C). 

The scaffolds were cut in half to visualize cell viability and distribution interior the porous 

structure (Figure 17). The samples were imaged immediately after staining with an 

epifluorescence microscope. 
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Figure 17. Cell viability. Live/Dead staining at 14 days of viable Calcein AM stained (green fluorescence) and dead EthD-1 stained (red 

fluorescence) hASCs in A) Regular PLCL-β-TCP scaffolds in static and dynamic conditions with flow rate of 0.25 mL/min/scaffold; B) Regular 

PLCL-β-TCP scaffolds in static and dynamic conditions with flow rate of 0.50 mL/min/scaffold; C) In PLCL-β-TCP channel scaffolds in dynamic 

culture with flow rate of 0.50 mL/min/scaffold after 7 d preculture followed by 7 d flow perfusion. Original magnification 40×, scale bar 500 μm.
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4.3 Cell proliferation 

Cell number and proliferation of the hASCs in the dynamic and in static conditions was 

analyzed based on the quantitative measurement of DNA content at 1-, 7-, or 14-day time 

points (Figure 18). All results are relative to the static condition due to the fact that it was 

possible to collect samples only from the static culture during experiment because the 

bioreactor chamber and the cell culture loop had to remain intact until the end of the 

experiment to avoid microbial contamination.  

 
Figure 18. Cell proliferation. Relative DNA content 

 A) In regular PLCL-β-TCP scaffolds in dynamic and in static condition measured at 1- 

and 14-day time points. Flow rate 0.25 mL/min/scaffold. Results are relative to static 

condition at 1-day time point;  

B) In regular PLCL-β-TCP scaffolds in dynamic and in static condition measured at 1- 

and 14-day time points. Flow rate 0.50 mL/min/scaffold. Results are relative to static 

condition at 1-day time point;  

C) In PLCL-β-TCP channel scaffolds in dynamic and in static condition measured at 7- 

and 14-day time points. Flow rate 0.50 mL/min/scaffold. Results are relative to static 

condition at 7-day time point.  

Data is expressed as mean and standard deviation. PLCL-β-TCP, poly(L-lactic-co-ε-

caprolactone)-β-tricalcium phosphate. 

 

In the flow rate comparison for the regular PLCL-β-TCP scaffolds, the hASC 

proliferation results for the dynamic condition with 0.25 mL/min/scaffold flow rate was 

1.6× fold higher compared to the static control and 2.0× fold higher with 0.50 

mL/min/scaffold flow rate. In the structure comparison, the dynamic condition had 2.3× 

fold higher hASC proliferation in the channel PLCL--TCP scaffolds compared to the 
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static control at 14 days (Table 5). The highest hASC proliferation result was measured 

for the channel PLCL--TCP scaffolds after the 7-day preculture and 7-day culture at 

0.50 mL/min/scaffold flow rate compared to the static control at 14 days. 

Table 5. The cell proliferation results for different dynamic conditions compared to the 

static controls at 14 days. 

  

Flow rate 

[mL/min/scaffold] Scaffold 

Higher cell proliferation in   

dynamic condition [%] 

Flow rate 

comparison 0.25 regular  160 

 0.50 regular  200 

Structure 

comparison 0.50 channel  230 

 

4.4 Osteogenic differentiation 

 

To determine hASC osteogenic differentiation, qALP, total collagen content and 

ECM mineralization were measured. The mineralization results were qualitative when the 

scaffolds were imaged by a digital camera, and quantitative when the staining was 

extracted and its absorbance measured, see Subchapter 4.4.3. 

4.4.1 Alkaline phosphatase activity 

The qALP of hASCs in the dynamic and static condition was analyzed at 1-, 7-, or 14-

day time points for the flow rate and structure comparison experiments (Figure 19) from 

the same sample lysates analyzed for DNA content in CyQUANT analysis in Subchapter 

4.3.  
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Figure 19. Absolute quantitative alkaline phosphatase activity (qALP) results.  

 A) In regular PLCL-β-TCP scaffolds in dynamic and in static condition measured at 1- 

and 14-day time points. Flow rate 0.25 mL/min/scaffold. Results are relative to static 

condition at 1-day time point;  

B) In regular PLCL-β-TCP scaffolds in dynamic and in static condition measured at 1- 

and 14-day time points. Flow rate 0.50 mL/min/scaffold. Results are relative to static 

condition at 1-day time point;  

C) In PLCL-β-TCP channel scaffolds in dynamic and in static condition measured at 7- 

and 14-day time points. Flow rate 0.50 mL/min/scaffold. Results are relative to static 

condition at 7-day time point.  

Data is expressed as mean and standard deviation. PLCL-β-TCP, poly(L-lactic-co-ε-

caprolactone)-β-tricalcium phosphate. 

 

Only 1 sample was available for the structure comparison experiment’s static condition 

7-day time point due to shortage of scaffolds. The absorbance results below 0.25 at 405 

nm were overall very low and close to blank values. 

4.4.2 Total collagen 

The total collagen content of the 14-day time point samples was measured using a 

quantitative Sircol Soluble Collagen Assay (Figure 20) and normalized to cell number 

based on the DNA content results, shown in Subchapter 4.3. Due to material shortage of 

channel scaffolds, only regular scaffolds were analyzed for total collagen content. The 

results for both the flow rates and structures in the dynamic condition were equally low 

or lower compared to static control at 14 days. 

 

 



37 

 

 
Figure 20. Normalized total collagen content. 

A) In regular PLCL-β-TCP scaffolds in dynamic and in static condition measured at 14-

day time point. Flow rate 0.25 mL/min/scaffold. Results are relative to static condition; 

B) In regular PLCL-β-TCP scaffolds in dynamic and in static condition measured at 14-

day time point. Flow rate 0.50 mL/min/scaffold. Results are relative to static condition. 

Data is expressed as mean and standard deviation. PLCL-β-TCP, poly(L-lactic-co-ε-

caprolactone)-β-tricalcium phosphate. 

4.4.3 Mineralization 

The calcium deposits of sample cells’ mineralized ECM was quantified at 14-day time 

point with a quantitative Alizarin Red S assay (Figure 21). Due to material shortage of 

channel scaffolds, only 1 static channel scaffold was analyzed for the mineralization 

assay. The qualitative staining results of the mineralization assay prior to quantitative 

stain extraction are shown below (Figure 22).  

 

 
Figure 21. Normalized mineralization. 

A) In regular PLCL-β-TCP scaffolds in dynamic and in static condition measured at 14-

day time point. Flow rate 0.25 mL/min/scaffold. Results are relative to static condition; 

B) In PLCL-β-TCP channel scaffolds in dynamic and in static condition measured at 

14-day time point. Flow rate 0.50 mL/min/scaffold. Results are relative to static 

condition. Data is expressed as mean and standard deviation. PLCL-β-TCP, poly(L-

lactic-co-ε-caprolactone)-β-tricalcium phosphate. 

 

The calcium component of the PLCL--TCP composite caused some background. This 

is seen in the blank sample staining (Figure 22), and its quantitated value was subtracted 

from the measured results. 
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Figure 22. Alizarin Red S staining. Mineralized calcium deposits from hASCs cultured 

in PLCL-β-TCP scaffolds under 0.25 mL/min/scaffold flow and in static condition, and 

blank control analyzed at 14-day time point.  

hASCs, human adipose stem cells; PLCL-β-TCP, poly(L-lactic-co-ε-caprolactone)-β-

tricalcium phosphate.  

 

Additionally, pH of both the dynamic and static condition culture media was measured at 

14-day time point for regular PLCL--TCP scaffolds only for the 0.50 mL/min/scaffold 

flow rate experiment. The measured value of the dynamic condition was pH 8.8 and for 

the static condition it was pH 8.5. 
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5 DISCUSSION 

There were no significant differences between the results in any of the tested experiment 

conditions. The objectives of this study as well as the different factors and also experiment 

validity and reliability that possibly contributed to these results are discussed in the 

following chapters. 

 

5.1 Cell characterization, viability and morphology 

Cell characterization 

 

The hASCs used in the study expressed the surface markers CD73, CD90 and CD105, 

whereas the cell surface markers CD34 and CD54 showed only moderate expression, and 

CD3, CD11a, CD14, CD19, CD45, CD80, CD86 and HLA-DR were not expressed (Table 

4). The analyzed cell surface marker profile included hematopoietic markers CD34 and 

CD45 as negative controls and of which CD34 was somewhat elevated, however, this is 

probably due to the low passage 1–2 of the analyzed hASCs and typically seen when HS 

is included in the cell culture medium. Therefore, the higher CD34 result can be expected 

to decrease with higher passage values [176; 177]. The FACS results showed that the 

hASC CD marker profile was in line with the ISCT established criteria [49] which 

confirmed the mesenchymal origin of the hASCs used in the experiments.  

Cell viability and morphology 

 

The living cells were stained green and dead cells were visible in red after the staining. 

In the flow rate comparison static condition, the hASCs were well viable and spread out 

(Figure 17A;B), eventhough the donor 1 hASCs typically showed tendency to form 

aggregates in all the experiments. The cells adhered well and grew mostly on the scaffold 

periphery in the static condition and there were only some individual cells visible in the 

crosscut image (Figure 17B) in the absence of larger cell aggregates. In the dynamic 

conditions, there were some dead cells which were visible in yellow in the Live/Dead 

images, but there was not any considerable difference in cell viability or morphology 

between the different flow rates tested (Figure 17A;B). There were hASCs growing also 

on the bottom surface of the scaffolds, and therefore it can be concluded that the fluid 

flow had diffused cells through the structure and ensured their viability. However, the 

perfusion flow did not perceivably enhance homogeneous cell distribution in the scaffold 

volume, because there was not any considerable amount of cells stained in scaffold 

crosscut images of the dynamic condition compared to the static control (Figure 17A;B). 

Cell morphology was typically rounded in the dynamic condition, and the perfusion flow 



40 

 

enhanced the formation of densely packed cell aggregates which were tighter in the 

appearance compared to the static control regardless of donor 1 hASC associated 

tendency to form aggregates. This phenomenon was also observed with hASCs from a 

different donor and indicated that the tight cell aggregates and round morphology are 

characteristic effects caused by flow perfusion stimulation. Similarly, Bjerre et al. (2011) 

noted that even a 7-day static preculture could not rescue hBMSC morphology after a 7-

day 0.1 mL/min/scaffold perfusion which resulted in rounded cells without focal 

adhesions. On the contrary, the hASCs formed uniform layers in the static condition, 

where the cells were able to spread out especially onto the top seeding surface. [16]. 

Baumgartner et al. (2015) also reported round hASC morphology under perfusion in 

PLGA-CaP scaffolds but only for higher 2.0 mL/min/scaffold flow rates, whereas at 0.3 

and 0.5 mL/min/scaffold flow rates the hASCs retained an elongated morphology [37]. 

This difference might be partly caused by donor variation or differences in fluid flow 

properties interior the different types of scaffolds.  

In the scaffold structure comparison dynamic condition, the hASCs were mostly viable 

in regular scaffolds eventhough some dead cells were seen in the larger cell aggregates 

(Figure 17C), however, this was expected due to lack of space, oxygen, or nutrients in the 

inner parts of aggregates. Cell morphology was more elongated with the 7-day preculture 

prior to the 7-day perfusion flow compared to the 14-day steady continuous flow (Figure 

17B;C). In the channel scaffolds in the dynamic condition, the hASCs were able to 

migrate through the scaffold interior along the pore walls and distributed homogeneously 

through the entire scaffold cross-section, however, there were no cells seen outside of the 

channels (Figure 17C). This indicates that the perfusion flow was directed through the 

channels and that it did not diffuse through the surrounding irregular pores of the scaffold 

bulk material. In the static condition in the regular scaffolds, there were large cell 

aggregates of mostly viable cells on the scaffold periphery and some individual dead cells 

in the interior of the scaffolds (Figure 17B).  

Generally, one prerequisite of hASC osteogenic differentiation is the cell ability to adhere 

and spread out onto a surface [178]. This was clearly not the case under dynamic 

perfusion flow, where the hASCs remained in tightly rounded morphology. Spread out 

cell morphology could be a key switch to hASC osteogenesis to be tested in future 

experiments, because hASC have been reported to adapt cuboidal osteoblast-like 

morphology upon osteogenic differentiation [33]. On the contrary, rounded cell 

morphology of osteocyte-like cells has been linked to higher mechanosensitivity 

compared to adhered and flattened morphology [179]. Still, these Live/Dead results show 

the good cytocompatibility of the PLCL--TCP scaffolds. 
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5.2 Cell distribution 

 

Generally, in the dynamic flow perfusion condition, the cells were slightly more evenly 

distributed throughout the scaffold volume, whereas in the static condition the cells grew 

as a thick layer mostly on the scaffold periphery. However, the difference in cell 

distribution was not considerable and penetration of hASCs through the depth of the 

regular PLCL--TCP scaffolds was less pronounced than what was hypothesized. The 

dense cell sheet on scaffold surface subsequently blocks diffusion of oxygen and nutrients 

or removal of debris from any cells attempting to grow deeper into the structure. In the 

dynamic condition, there were only some narrow passages visible in each crosscut where 

there were some individual cells across the whole scaffold cross-section which proved 

the scaffold structure porosity and pore interconnectedness at least in some parts of the 

structure. This effect might be due to the irregular structure and varied porosity of the 

PLCL--TCP scaffolds. This result was therefore partly consistent with a previous studies 

demonstrating usefulness of flow perfusion bioreactors for homogenous cell distribution 

of critical size bone constructs. Bjerre et al. (2008) gained homogeneous distribution of 

hBMSCs and cell matrix in silicate-TCP with continuous 0.1 mL/min/scaffold flow rate 

[15], whereas Fröhlich et al. (2010) reported more homogeneous cell distribution and 

bone ECM production of BSP, OP, COL1 after 5 weeks in osteogenic medium (OM) 

perfusion with continuous 0.3 mL/min flow rate in decellularized bone [36]. In similar 

terms to results of the current study, nonhomogeneous cell distribution under perfusion 

has been noted also in other studies [180].  

In the static condition, some of the seeded cells usually drip straight through the scaffold 

structure and adhere to the well bottom of the polystyrene well plate and then gradually 

grow back onto the scaffold upwards from the well bottom. This might result into falsely 

higher cell numbers for the static condition eventhough upon analysis the scaffolds are 

moved individually to new wells. To overcome this bias in these experiments, the static 

condition was plated on a similar holder plate and cultured in a Petri dish to prevent cell 

growth from the bottom of the plate back onto the scaffold. Therefore, the results of the 

static control condition were considered reliable. 

The homogeneity of the cell distribution was somewhat unclear because the cells inside 

the structure were only faintly stained and the sensitive fluorescent signal was easily 

extinguished upon closer inspection and there was only little time to focus the image. In 

addition, the composite material caused some autofluorescence background in the images. 

Indeed, PCL autofluorescence has been reported to interfere with cell viability imaging 

in 3D scaffolds [32]. In the Live/Dead assay, the cells in the inner parts of the scaffolds 

seemed only weakly stained despite the fact that some scaffolds were halved prior to 

staining. The incubation was performed in static condition instead of the usual gentle 

shaking because the rounded cells seemed to detach easily from the scaffolds. 

Compromised scaffold permeability might have affected staining results by partly 
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blocking the inflow of the staining solution. In addition, the PLCL--TCP scaffold 

material was optically dense and due to its opacity, only the few cells present in the 

random crosscut plane were observed. Only single random crosscut of each sample 

scaffold was imaged. What is more, the scaffolds were cut manually with a scalpel blade 

and some cells observed in the plane of the crosscut might have originated from the 

scaffold surface and been transferred along the cutting blade. In the future, a more 

homogeneous cell distribution inside the structure might be achieved with dynamic cell 

seeding. In addition, more sensitive and higher resolution imaging methods are called for 

to visualize cells more clearly inside the porous structures. 

5.3 Cell number and proliferation 

 

In the flow rate comparison, the flow rate of 0.50 mL/min/scaffold increased hASC 

proliferation at 14 days (Figure 18B) and, therefore, it was selected for further flow 

perfusion experiments in the structure comparison. Consistently, an earlier study reported 

that the 0.50 mL/min flow perfusion increased significantly cell proliferation compared 

to the static control in similar porous polymer scaffolds [143]. Perfusion flow has also 

previously been reported to increase cell proliferation [21; 137; 167; 181; 182]. Similarly, 

for hASCs, higher proliferation but weak osteogenic differentiation in MM in BaG foam 

scaffolds was noted by Silva et al. (2014) in continuous 0.1 mL/min/scaffold perfusion 

culture [33]. 

In the scaffold comparison, the hASC proliferation was higher in the dynamic condition 

in the channel scaffolds (Figure 18C). This might be due to the 7-day preculture of the 

hASCs in the channel scaffolds before submitted to perfusion flow and different fluid 

shear stress in the channels. However, only 1 sample was available for analysis in the 

static condition in the scaffold structure comparison to relativise the results and these 

results might need to be verified by further experiment repeats. 

The irregular porous structure seemed at times challenging to handle during the 

incubations and sample collection when some of the liquid might have been retained 

inside the pores or might not have penetrated the pores at all. Despite this, cell 

proliferation was considerably higher in the all dynamic conditions compared to the static 

controls and the trend was clearly recognazible in all the experiments. Based on this, the 

results were repeatable and valid and the analysis method reliable. Therefore, the flow 

perfusion bioreactor can be used as a method to increase cell number and possibly even 

a more homogenous cell distribution in the scaffold volume.  

5.4 Osteogenic differentiation 

Overall, the results for hASC osteogenic differentiation failed to confirm the hypothesis 

that perfusion flow in porous osteoconductive PLCL-β-TCP scaffolds would promote 
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bone ECM formation. In this study, the culture duration of 2 weeks might not have been 

sufficient to evaluate late osteogenic markers or bone-matrix deposition when late 

osteogenic proteins such as OC or RUNX2 which have been previously reported to 

require at least 3 weeks to evolve [136]. The following chapters detail the different 

parameters that contributed to these results and what might be possible solutions to some 

of these issues. 

5.4.1 Alkaline phosphatase activity 

The qALP results normally increase with increasing cell number [183] to reach 

absorbance values typically between 0.5–2.0 at 405 nm for strong osteogenic induction 

[184], but the results for the higher proliferation rate experiment condition of 0.50 

mL/min/scaffold flow rate comparison decreased in time (Figure 19B). The higher cell 

proliferation in the dynamic condition compared to the static control in both the 

experiments might have caused low qALP results because the hASCs might have been in 

the proliferation phase instead of differentiation phase. Nevertheless, both the results 

were close to the blank result with an absolute absorbance value approaching 0.05 at 405 

nm. In addition, the results for 0.25 mL/min/scaffold flow rate were equally low and, 

therefore, the qALP results for the flow rate comparison in regular PLCL-β-TCP scaffolds 

were close to zero results (Figure 19A;B). The only real albeit weak qALP result was 

obtained for the static condition at 14 days at the absolute absorbance value of 0.15 at 405 

nm in the channel PLCL-β-TCP scaffolds. Similarly, Altman et al. (2014) reported that 

qALP was considerably downregulated under perfusion [80]. On the contrary, under 

pulsatile 0.008 mL/min/scaffold perfusion flow in OM in porous PCL scaffolds, qALP 

result of osteoblastic cells increased significantly up to 28 days compared to static control 

[32]. Rodrigues et al. (2012) reported significantly higher qALP results compared to static 

control for hASCs under 0.1 mL/min/scaffold flow at 14 days in MM [35]. In a recent 

study by Kleinhans et al. (2015), hMSC osteogenic induction in PLCL scaffolds was 

produced by 7-day fluid flow stimulus in MM [163]. 

It should also be taken into consideration that qALP might have peaked at a different time 

than the measured timepoints of 1, 7, or 14 days [184], however, it is generally considered 

an early osteogenic marker. Furthermore, a sufficient level of qALP for the mineralization 

to occur has not been determined. In comparison, in previous studies with BMSCs, flow 

perfusion has been shown to significantly increase qALP levels under perfusion 

conditions compared to static control [28; 185]. It is equally worth to note that whereas 

we applied continuous steady flow through the scaffolds, oscillatory flow, in comparison, 

has been reported to increase DNA amount and qALP over unidirectional continuous 

flow [136]. Overall, in our results, there was no indication of early osteogenic 

differentiation at the analyzed time points.   
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5.4.2 Total collagen 

The applied Sircol collagen assay detects collagen types I–V, of which COL1 mostly 

constitutes bone matrix. Usually, collagenous matrix formation is required for the hASC 

osteogenic differentiation [183]. In the flow rate comparison, the total collagen content 

results for the same donor 1 were at a similar level at both flow rates. In the dynamic 

condition, the cell morphology remained tight and rounded and the hASCs formed tight 

aggregates and there was no visible accumulation of collagenous matrix. This may be due 

to harsh flow conditions because in other studies with increased collagenous ECM 

production under perfusion flow, hASCs were subjected to a maximum of 0.1 mL/min 

flow [186]. The addition of OM in combination with the -TCP containing polymer 

composite scaffolds to the dynamic culture might improve the total collagen content. 

Furthermore, according to published research, cells have secreted more collagenous and 

osteogenic ECM after an initial fluid flow stimulation period [159; 160]. Optimal flow 

rates and culture conditions could be optimized further to encourage production of 

collagen rich ECM and subsequently to form a more mature bone-like construct. 

5.4.3 Mineralization 

The mineralization result normalized to cell number was lower for the dynamic condition 

than for the static controls in the regular scaffolds for donor 1 hASCs, and the results for 

the channel PLCL-β-TCP scaffolds with donor 2 hASCs followed the same trend. This 

result failed to confirm the hypothesis that preculture would enhance ECM production 

and subsequently its mineralization. In the experiment with channel scaffolds, the 

samples were precultured for 1 week before starting the bioreactor culture. The hypothesis 

was that this would have allowed initially the collagenous ECM to form and to be 

subsequently mineralized by the stimulus provided by the fluid flow shear stress. It was 

also predicted that the preculture might also dampen the harshness of the dynamic flow 

to the cells but there was no evidence to support this. The mineralization results usually 

follow a similar trend with the cell number [183] but this was not seen in the results, 

where the dynamic condition with a higher cell proliferation was on a par with the static 

condition or lower. This might be because the cells under perfusion flow were in the phase 

of proliferation and had not begun to differentiate or accumulate ECM matrix. In similar 

terms, it was reported that lower mineralization area was observed in bioreactor cultured 

cells which had the highest levels of proliferation [138]. Also, the high 14-day 

mineralization result by Rodrigues et al. (2012) for hASCs at 0.1 mL/min/scaffold flow 

rate demanded OM, whereas in MM there was no difference between dynamic and static 

condition [35]. 

It should also be noted that the mineralization results were obtained at different flow rates 

and with different structures; flow rate of 0.25 mL/min/scaffold with the regular PLCL-

β-TCP scaffolds and 0.50 mL/min/scaffold for the channel scaffolds. Due to shortage of 

scaffolds, the mineralization results were obtained from a limited number of samples; 
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only 1 static sample was available for channel scaffolds. Because of the asymmetric 

experiment design, the results were not fully comparable. 

Mineral deposition of bone tissue is linked to extracellular pH and a slightly alkaline pH 

environment is required for mineralization to proceed [187]. The alkaline pH occurs 

during later bone tissue healing phases with the gradual increase of calcium content in the 

tissue matrix. The measured pH value of the dynamic condition was slightly more 

alkaline at pH 8.8 compared to 8.5 of the static control condition. However, this increase 

was not sufficient to rescue the calcium containing mineral deposition. The cause of the 

raise in the pH value in the flow system remained undetermined. Therefore, it can be 

concluded that no significant mineralized ECM was formed in the flow perfusion culture 

and there were no results showing late osteogenic differentiation of the hASCs in the 

structure comparison.  

Overall cell culture results 

 

The most potential cell culture results were obtained with the channel scaffolds with 1 

week of static culture followed by 1 week of dynamic culture based on the results for cell 

viability and distribution (Figure 17). However, there were no significant results of hASC 

osteogenic differentiation in any of the tested conditions or structures. This was against 

our initial assumption and published results where perfusion flow bioreactor has been 

shown to induce hBMSC and hASC osteogenic differentiation even in MM [15; 16; 18; 

37; 162]. Therefore, some other factors in the experiment design should be discussed, 

such as scaffold material and structure, flow rate, flow profile, fluid shear stress, and 

combined chemical stimulus to fully utilize perfusion flow for hASC osteogenic 

differentiation. 

5.4.4 Scaffold material and structure 

Scaffold material 

 

As biomaterials, PLA and PCL are hydrophobic, whereas bioactive β-TCP increased the 

hydrophilicity of the composite biomaterial, according to the results published by Ahola 

et al. (2012) [87]. In a study by Marino et al. (2010) with β-TCP scaffolds, MM supported 

only weak osteogenic differentiation of hASCs, but in comparison, OM supported a 

higher qALP result [78]. Published data indicates that polymer composite scaffold 

material starts to release -TCP already at 2 weeks compared to the 10-weeks required 

for the polymer component which means that the calcium component has been exposed 

and available to cells [87]. However, the exposure might have been too brief or available 

only in parts of the cell adhesion surface. In addition, hASCs remained rounded with little 

adhesion surface under the flow which might explain the negligeable impact of -TCP. 

Higher percentage of -TCP granules with rougher and more active surface might prove 

beneficial for increased osteogenesis in the composite scaffolds. The granules might have 

been embedded deeper in the material which made it harder to become exposed or 
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available for cells on the scaffold surface. Polymer encapsulated β-TCP granules might 

have been available for cells only in the manually cut surfaces. The partly crushed β-TCP 

might have been exposed in the scaffold top and bottom surfaces in addition to the channel 

structures where the exposed bioactive β-TCP might have attracted hASCs to adhere. 

Scaffold structure 

 

The supercritical CO2 processing method resulted in a highly porous albeit irregular 

scaffold structure and the irregular pore structure might have prevented effective fluid 

flow interior of the scaffold. Also, in some instances, the irregular scaffold structure might 

have compromised even hASC distribution visible in the scaffold crosscut images. For 

comparison, homogenous cell distribution in perfusion culture was achieved for critical 

size bone grafts in a recent study by Kleinhans et al. (2015) [163]. Therefore, higher 

repeatability of the scaffold interior structure might prevent these issues. In order to apply 

efficiently mechanical stimuli with perfusion flow in porous scaffolds, the control of 

scaffold interior geometry with pore size and pore interconnectivity is crucial. The 

combined effects of flow and scaffold architecture have been shown as necessary 

parameters to optimize a perfusion flow system for osteogenic differentiation and signal 

expression. [32; 88; 188]. In this study, the PLCL-β-TCP composite scaffolds had pore 

sizes in the range of 300–500 µm pore size and 58 % porosity, determined previously 

with micro-CT imaging. Similar cell density was used in a study by Boschetti et al. 

(2006), where hASCs were induced towards osteogenic lineage on β-TCP scaffolds of 

similar dimensions with 200–500 m pore size but with 82 % porosity [8]. Comparing 

these, the difference in pore size is small whereas the porosity differs considerably, and 

this might have lead to the different results. 

The CT imaging could offer a more accurate view of the scaffold structure and help 

predict fluid flow behavior [189]. Micro-CT analysis is normally based on isotropic 

slices and random pore size and pore distribution might have hindered accurate analysis 

of heterogeneous scaffold morphology. Therefore, construct porosity might have been 

poorly defined. In addition, micro-CT resolution is approximately 20 m and any pore 

walls thinner than this might have been left undetected. For more repeatable cell culture 

results under flow perfusion, a standardized scaffold architecture fabricated with additive 

manufacture methods, for example, might be an efficient structure to overcome these 

design limitations [190].  

The fluid flow might have been suboptimal for efficient hASC stimulation besides the 

structural irregularity of the PLCL-β-TCP composite scaffolds, also because the porous 

structure might have been squeezed closed to fluid flow when the wetted and expanded 

cell seeded scaffolds were tightly fitted to the holder plate holes. Further permeability 

studies to determine fluid flow through interconnected pores when subjected to pressure 

might help elucidate the issue in more detail [189; 191; 192]. 
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5.4.5 Flow rate 

The flow rate of 0.5 mL/min/scaffold might have been relatively harsh on hASCs, since 

osteoblasts in vivo experience flow rates in the range of 0.008 mL/min [32]. Osteoblastic 

cell viability and osteogenic gene expression of RUNX2, OC and ALP was maintained 

by a flow rate of 0.01 mL/min, whereas a flow rate of 1 mL/min caused massive cell 

necrosis [151].  

Similarly to our results, in a study by Baumgartner et al. (2015), no difference was seen 

in cell distribution when hASCs were cultured under 0.3 or 0.5 mL/min/scaffold perfusion 

flow in MM for 9 days in PLGA-amorphous calcium phosphate scaffolds [37]. Further, 

osteoblasts have been shown to be affected by stepwise alterations of fluid shear stress 

[193]. 

There might be threshold values of flow rates that efficiently trigger cell responses but 

functional flow rates have not been clearly determined, since for hBMSCs flow rates as 

diverse as 0.1 mL/min and 3 mL/min have resulted in cell proliferation and osteogenic 

differentiation [33; 36]. On the contrary, according to other research results, it is rather 

the level of shear stress that determines bone formation, and not the flow rate [20]. 

However, the scaffold material and structure should be considered together with the flow 

rate because their interaction determines the forces experienced by the cells.   

5.4.6 Flow profile 

The applied continuous flow of culture media might be reconsidered. A pulsatile flow 

profile has been reported to improve cell adhesion and osteogenic differentiation [136; 

194], and to induce early osteogenic differentiation of rat BMSCs compared to continuous 

perfusion [195]. In previously published study, dynamically alternating shear stress has 

been shown to induce hASC osteogenesis in pulsatile perfusion with OM [34]. In a study 

by Filipowska et al. (2016), a single short perfusion pulse was found sufficient to 

stimulate ostegenic differentiation of hBMSCs in porous scaffolds [196]. The results by 

Bölgen et al. (2008) also showed the importance of breaks in dynamic stimulation; the 

perfusion and compression regime was applied for 1 h per day and the cells recovered 

and secreted ECM during the rest period [197]. The pulsed flow profile retains the cell 

secreted factors in the microenvironment of the adhered cells. However, in a study by 

Kreke et al. (2008), both steady and pulsed perfusion profiles were found to activate 

mechanotransduction cell signaling pathways, the effect of which was visible only after 

the cells were allowed to differentiate in static culture following perfusion flow. [198]  

The flow profile might prove to be crucial, because Correia et al. (2013) applied 

succesfully a flow perfusion bioreactor to stimulate strong hASC mineral deposition in 

OM with an alternating flow profile for initial 2 weeks of steady flow followed by 3 weeks 

of pulsatile flow. The results showed hASC gene expression of OPN increased, and strong 

immunostaining result of osteogenic proteins COL1, OPN, OC and BSP as well as micro-
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CT verified strong mineralization of ECM. [34] These results indicated that while steady 

flow and chemical stimulus of OM sensitized hASCs to pulsatile flow, it was in fact the 

pulsatile pattern that enhanced mineralization because cell mechanosensitivity becomes 

saturated under continuous loading. In bone tissue, resting periods between mechanical 

stimulation periods allow desensitized bone cells to regain mechanosensitivity [132; 199]. 

Indeed, intermittent fluid flow enhances greater cell stimulation with respect to 

continuous low flow rate and, subsequently, the alternation of short term exposure 

combined with long term exposure upregulated osteogenic differentiation with respect to 

static culture [151; 200; 201]. The duration of the resting period has been suggested as a 

minimum of 8 h, and for hASCs, a 4-h stimulation followed by a 20-h rest has been tested 

for osteogenic differentiation [202; 203]. Still, hASCs needed OM to become sensitive to 

mechanical stimulation [77]. Short perfusion of very high flow of 2.5 mL/min promoted 

hBMSC osteogenesis of cells already committed to osteogenic lineage in a recent study 

by Filipowska et al. (2016) [196]. This indicates that stem cells need to be committed to 

osteogenic lineage before subjected to perfusion stimulation.   

5.4.7 Fluid shear stress 

An added pressure sensor would help determine the nature of mechanical stress that the 

cells endure in the bioreactor. The nature of applied pressure might prove a key concept 

to direct hASC differentiation towards osteogenic path. Research results have reported 

osteoblasts subjected to shear stresses in the region of 0.8–3.0 Pa in vivo. [204].  

Interestingly, fluid shear might not regulate vibration induced proliferation and 

mineralization, and instead, cytoskeletal remodeling activity may play a more significant 

role in MSC mechanosensitivity. According to the reported results [81; 205], greatly 

different levels of acceleration, frequency, and fluid shear can result in similar MSC 

responses, perhaps suggesting that yet to be identified mechanism by which cells sense 

oscillations is only indirectly related to the mechanical cues considered here. 

The modelling of fluid dynamics would help to evaluate the distribution of shear stress 

of fluid perfusion for the cells growing inside and on the periphery porous scaffold [60; 

206]. Acosta et al. (2013) used a similar porous PLLA structure under perfusion flow and 

according to their model, there was higher fluid pressure and shear stress on the scaffold 

top surface [189]. However, computational modelling has its limits and additional 

experimental testing is required because it is nearly impossible to measure shear stress 

distribution inside microstructures. 

5.4.8 Chemical stimulus 

The perfusion flow bioreactor with the supercritical CO2 fabricated PLCL-β-TCP 

scaffolds did not support hASC osteogenic differentiation with the selected parameters in 

the absence of added chemical factors. On this topic, Tirkkonen et al. (2011) showed that 

the hASCs require chemical induction to become sensitive to mechanical stimulus and to 



49 

 

be able to initiate osteogenic differentiation under vibration loading [77]. Similarly, 

Correia et al. (2013) reported that they perceived no significant differences in 

proliferation under perfusion flow and the hASCs needed initial chemical osteogenic 

induction to become sensitized to flow conditions [34]. This was confirmed by Ferroni et 

al. (2016) who reported that ASCs require OM for osteogenic initiation with mechanical 

stimulation [207]. The hASCs have been reported to require the combination of chemical 

and mechanical induction to differentiate also in other studies [53; 208]. 

According to a similar trend, Du et al. (2012) confirmed that combined chemical and 

mechanical stimulation upregulated hASC osteogenic differentiation further compared to 

chemical stimulation alone [208]. Also, the studies by Silva et al. (2014) and Fröhlich et 

al. (2010) demonstrated that hASCs showed only weak osteogenic differentiation in 

perfusion culture without chemical induction by OM [33; 36]. Furthermore, Prè et al. 

(2011) reported that while soluble factors are not essential, they nevertheless effectively 

enhance hASC osteogenic processes with low amplitude, high frequency vibration [209]. 

5.5 Flow perfusion bioreactor usability 

The perfusion flow was partly inefficient in the cell culture experiments. The bioreactor 

chamber was only half filled with circulating media due to air accumulation into the 

system, possibly because of the mechanism of action of the peristaltic pump. The 

bioreactor system usability might benefit from the installation of a vent to help remove 

any accumulated gas inside the reactor chamber. The reactor circuit was assembled in a 

manner that might have caused underpressure in the upper chamber and the fluid was 

sucked through the scaffolds rather than perfused directly through the structure from the 

top towards bottom. An alternative assembling order that has been used in other studies 

(Figure 9) present the culture circuit assembled in a manner that placed the bioreactor 

chamber immediately after the peristaltic pump in the direction of the fluid flow, and 

where the medium reservoir is placed after the reactor chamber. This culture circuit 

assembling order pumps circulating fluid directly through the constructs. On the contrary, 

in this study, the medium reservoir was placed before the bioreactor chamber (Figure 

15;16) to prevent disadvantageous cooling of media before reaching the cells in the 

reactor chamber. 

The amount of cell culture medium circulating in the culture circuit was a moderate 75 

mL compared to other reported volumes ranging between 100–210 mL, for a similar 

number of constructs [25; 35], and thus cost efficient, since the cell culture reagents 

constitute a considerable part of the running expenses. The cell culture medium turned 

opaque after a week of bioreactor culture, possibly due to protein residues precipitating 

under shear stress with the action of the peristaltic pump. However, this is a known issue 

with bioreactor cell culture and remains to be solved. Importantly, there were no microbial 

contaminations detected during these experiments. This was contrary to previously 

reported high contamination risk associated with bioreactor cell culture [124]. This proves 
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that the novel bioreactor system was able to retain aseptic conditions inside the closed 

culture circuit.  

Initially, during the preliminary cell culture experiments, leakage of culture media was 

an issue with the smaller 0.8-mm diameter silicone pump hose due to the high 45 rpm 

pumping speed that wore the pump hose during 2-week experiments. This is a known 

issue with peristaltic pump bioreactor systems and the pump hose is a wearable part. The 

leakage issue was solved by swithing to a larger 1.7-mm diameter silicone pump hose 

that produced the same flow rate with a considerably lower pumping speed. 

The bioreactor materials and parts endured multiple cycles of use, and only the silicone 

hoses were used once. The parts of the reactor chamber were washed and autoclaved at 

least 9 times during the experiments. Contrary to single-use bioreactor accessories, the 

novel bioreactor creates less waste because the parts are reusable. The design is 

streamlined and durable because there are no complicated electronics in the culture 

circuit. The custom-designed perfusion bioreactor is a modular system, offering high 

throughput scale-up opportunities and efficiency for treatment of a large number of 

scaffolds at a single loading.  

The system is quick to assemble or disassemble, thus simplifying time consuming cell 

culture processes. It is portable, compact and lightweight for added usability. The multi-

hole property of the holder plates makes the bioreactor system versatile and efficient with 

the expandable loading capacity of several scaffolds at a single loading. Compared to, for 

example, currently available commercial single specimen bioreactor chambers and their 

less practical multichamber assembly (Figure 10;11), the proposed new flow perfusion 

bioreactor prototype is more simple to operate.  

5.6 Future perspectives 

The more specific mechanical stimuli conditions that support hASC commitment towards 

osteogenic lineage could be researched further. Better characterization of the flow 

patterns and fluid dynamics within the flow perfusion bioreactor is needed to better 

understand the relationship between fluid shear and stem cell differentiation [144]. 

Application of defined flow rates can produce greatly different shear stresses acting on 

the cells depending on the scaffold microarchitecture. However, the complex non-regular 

structure of the supercritical CO2 fabricated scaffolds might not allow accurate evaluation 

or even distribution of fluid in a repeatable manner, and the modelling results might be 

valid only for that specific specimen. The lack of a reproducible scaffold architecture 

might render it difficult to predict results of any experimental study. An optimized and 

highly porous structure with interconnected pores could intensify the effect of the fluid 

flow interior the construct for improved hASC stimulation.  
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Identifying the different cellular mechanotransduction events might shed more light to 

the molecular switches and cell signaling events involved in cellular mechanical sensing 

[57; 132]. Physical sensors would provide a noninvasive tool to monitor, control and 

collect data from the bioreactor environment [210]. For future applications of the 

perfusion flow bioreactor, the system design and especially fluid parameters need careful 

re-evaluation in order to optimize the functionality of the system for hASC osteogenic 

differentiation. 
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6 CONCLUSIONS 

The main objective of this work was to test the applicability of the new flow perfusion 

bioreactor prototype for aseptic in vitro cell culture. In addition, another objective was to 

establish new osteogenic differentiation protocol for the hASCs with perfusion flow in 

the novel osteoconductive supercritical CO2 processed PLCL-β-TCP scaffolds without 

added chemical stimulus.  

The hASC viability, adhesion, distribution, and osteogenic differentiation in the PLCL-

β-TCP polymer composite scaffolds at 2 different perfusion flow rates and 2 different 

scaffold structures was studied. Overall, in all the dynamic conditions, the hASCs showed 

a tendency to form dense cell aggregates and adapted a tightly rounded morphology, and 

loosely adhered to surface. According to the results, the perfusion flow maintained 

sufficiently cell viability in supercritical CO2 processed PLCL-β-TCP scaffolds, although 

there were few necrotic cells visible in the scaffold crosscut plane which indicated 

insufficient fluid flow and mass transport due to irregularity of structure or fluid flow 

malfunction due to air accumulation. Overall, PLCL-β-TCP scaffolds supported hASC 

survival and the dynamic condition promoted round hASC morphology. 

Most importantly, a greater cell number was gained in all dynamic conditions compared 

to the static controls. However, the results were not significantly higher and there was 

considerably less ECM accumulation in the form of total collagen content or ECM 

mineralization detected in the samples cultured under continuous perfusion flow 

compared to the static controls in all the experiments.  

These results indicated that osteogenic soluble factors might be needed to support the 

hASC commitment towards osteogenic lineage as the structure or the fluid flow alone 

was not sufficient to promote hASC osteogenesis. Therefore, the optimal perfusion 

stimulation parameters to support hASC osteogenic differentiation in the novel 

supercritical CO2 processed PLCL-β-TCP scaffolds remain to be defined (Table 6). In 

summary, the perfusion flow bioreactor prototype was nevertheless suitable for aseptic 

cell culture, easy to operate, possessed simple design and efficient loading capacity for 

multiple samples and, therefore, potential for further development. 
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Table 6. Suggestions for future improvements of the flow perfusion bioreactor system to 

support human adipose stem cell (hASC) osteogenic differentiation. 

 

Issue Solutions 

Round hASC morphology Optimized flow rate and profile that allows elongated 

hASC morphology 

 

Unhomogeneous cell density 

under flow perfusion 

More repeatable and functional scaffold structure 

needed 

Lack of hASC osteogenic 

markers 

More cell matrix growth with rest periods 

 
Initial chemical induction needed to sensitize hASCs 

for mechanical stimulus 

  Effects of system parameters on cell proliferation and 

differentiation need further research 
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