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ABSTRACT 
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One difficulty in the design of load bearing components of mobile machines is the tran-

sient and non-linear nature of loads acting on them. In addition to the dynamic charac-

teristics of the machine, the magnitude of these loads also depends on the properties of 

the ground the machine is operating in. A common method for tracking these loads is to 

use strain gauges and force transducers on a physical test machine. 

An alternative method for determining the transient loads by means of a mathematical 

model that intends to describe the response of John Deere 1010E forwarder as it crosses 

a test track is utilized in this thesis. The model is based on finite element method and it 

is solved using explicit time integration and LS-DYNA® software. The most challeng-

ing aspect of the simulation turned out to be the modeling of the tires, specifically the 

control of their high frequency vibrations. 

The evaluation of the machine response using a mathematical model, at its best, is fast-

er, cheaper and more versatile compared to physical testing. The model will be validat-

ed by comparing simulation results to measured results. 

As a result of this thesis a model capable of replicating the real world with a reasonable 

accuracy was obtained. The forces acting on tires, which can be considered the most 

important results of this work, can be used as boundary conditions in consequent anal-

yses, such as fatigue simulation. It was found out that the global stress state in the load 

space is dominated, at least at high loads, by the forces exerting from the cargo and not 

much affected by the tire forces. Tire forces do, however, affect the stress state of the 

welded frame itself. 

In the future, this model can be used early in the design phase as a basis for a model that 

helps in determining the response of different machine configurations at different ter-

rains and loading conditions. 
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Liikkuvien työkoneiden kuormaa kantavien osien mitoituksessa yhtenä ongelmana on 

usein rakenteeseen kohdistuvien kuormitusten ajasta riippuva ja epälineaarinen luonne, 

joiden suuruus riippuu koneen dynaamisten ominaisuuksien lisäksi myös maastosta, 

jossa se työskentelee. Yleisin menetelmä saada kuormitukset selville on anturoida testi-

kone venymäliuskoin sekä voima-anturein. 

Tässä työssä tarkastellaan kuormitusten selvittämiseksi vaihtoehtoista menetelmää ra-

kentamalla matemaattinen malli, jolla pyritään kuvaamaan John Deere 1010E kuorma-

koneen takarunkoon välittyviä voimia, kun sillä ajetaan testiradan yli. Malli perustuu 

elementtimenetelmään ja se ratkaistaan käyttäen eksplisiittistä aikaintegrointia ja LS-

DYNA® -ohjelmistoa. Simuloinnin haastavimmaksi osioksi osoittautui renkaiden mal-

linnus, erityisesti niiden korkeataajuisten värähtelyjen hallinnan osalta. 

Matemaattisella mallilla kuormitusten arviointi on parhaimmillaan nopeampaa, halvem-

paa ja monipuolisempaa kuin fyysisellä mittauksella. Laskentamalli validoidaan ver-

taamalla laskennallisia tuloksia fyysisestä mallista mitattuihin arvoihin. 

Tuloksena työstä saatiin kohtuullisella tarkkuudella reaalimaailmaa kuvaava malli. 

Renkaisiin kohdistuvia voimia, joita voidaan pitää työn tärkeimpinä tuloksina, voidaan 

käyttää reunaehtoina seuraavissa analyyseissä, kuten väsymissimuloinneissa. Työssä 

saatiin selville, että kuormatilan jännityskenttään vaikuttaa, ainakin suurilla kuormilla, 

enimmäkseen vain kuorman painosta aiheutuvat voimat eivätkä niinkään renkaista joh-

tuvat voimat. Rengasvoimat kuitenkin vaikuttavat hitsatun takarungon jännitystilaan. 

Tulevaisuudessa mallia voidaan käyttää pohjana aikaisen suunnitteluvaiheen aputyöka-

luna määrittämään erilaisten rakenteiden vastetta erilaisissa kuormitusympäristöissä. 
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1. INTRODUCTION 

The purpose of this work is to build a simulation model that is capable of replicating the 

reaction forces measured from physical field test of John Deere 1010E forwarder 

(Figure 1.1) during June 2015. If results are consistent, the resulting simulation model 

can be used as basis for simulating the response of larger forwarder models. Simulating 

the entire product family would reduce the need for physical testing which in turn 

would speed up the design process and possibly reduce the cost machine development 

and the time spent on the design phase. 

 

Figure 1.1. John Deere 1010E forwarder, 6 wheel configuration [33]. 

1.1 Motivation for analysis 

As forestry machines are driven in rough, constantly altering forest terrains, the forces 

acting on them are difficult to predict without physical testing. These forces depend on 

stiffness properties of both the machine and the terrain, velocity of the machine, total 

mass of the machine and the geometry of the terrain. Comprehensive physical tests are 

expensive and they are unsuitable for testing new models early in the design phase. By 

using a simulation model that is capable of determining the forces exerted from the ter-

rain to the machine and computing the response to these forces in desired operation 
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conditions, new designs and effects of geometry modifications in them can be easily 

studied. 

The frames of forestry machines consist of welded sheet metal parts. Weld seams ex-

posed to high stresses are prone to fatigue damage. By using finite element method and 

the right loading conditions, the optimum design can be found. When the machine is as 

light as possible while still maintaining the required stiffness and fatigue life, the mass 

of the cargo is maximized and the cost for manufacturing is minimized. 

1.2 John Deere Forestry Oy 

The manufacturing of John Deere cut-to-length forestry machines in Finland began in 

1972. At that time the factory was called Rauma-Repola Forest Machine Group. The 

company had different names (Lokomo Forest, FMG (Forest Machine Group) Lokomo 

Forest, FMG Timberjack and Timberjack) before Deere & Company acquired the busi-

ness in the year 2000. The company name was changed from Timberjack Oy to John 

Deere Forestry Oy and product labels from Timberjack to John Deere in 2005. [34] 

John Deere Forestry Oy is a part of a subdivision (Construction & Forestry) of Deere & 

Company, which was founded in 1837 by blacksmith John Deere in Illinois, USA. The 

company’s first product was a polished plow made from broken steel sawmill blade. At 

that time plowing was constantly interrupted by soil sticking to the plow which needed 

to be cleaned in order to continue working. John Deere’s new innovation removed this 

problem. [21] 

Today Deere & Company has approximately 60 000 employees (end of 2014) globally 

with net sales and revenues of $36.1 billion. In addition to Construction & Forestry, 

Deere & Company has Agriculture, Turf, Power Systems and Financial divisions. The 

managing director of Deere & Company is currently Samuel R. Allen. [20] 

1.3 Cut to length forestry equipment 

Mechanized methods for tree harvesting can be divided into cut-to-length (CTL), tree-

length and whole-tree methods. In the whole-tree method the entire tree is felled and 

transported from the forest. The tree-length method is similar to the whole-tree method 

with the exception of delimbing the tree after felling. Cut-to-length method further re-

fines these methods by cutting the delimbed tree into prescribed lengths right after 

felling. [52] 

The advantages of CTL method compared to the other two are lower damage to forest 

floor and trees, versatility in working with all silvicultural activities (thinning, clearcut-

ting and individual tree selection operations) and better sorting and storage of felled 

trees. [52] 



3 

The forwarder studied in this thesis is the machine used for transporting logs processed 

by CTL harvester from the forest to the roadside. 

1.4 Structure of the report 

The methods for solving the problem introduced in the previous sections are presented 

in Chapter 2, in which theory of the utilized numerical integration schemes and discreti-

zation are discussed. 

Chapter 3 introduces the general arrangement and measured quantities of the physical 

field test, the replication of which will be attempted in the simulation. 

The discretized mathematical model constructed to simulate the forwarder is described 

in Chapter 4. Generated grids and the material models used will be presented. The ef-

fects of idealizations made in the mathematical model compared to the real structure 

will also be estimated (i.e. model verification will be made). 

The results obtained from the model will be presented and discussed in Chapter 5. The 

model will be validated by comparing the simulated results to the measured data. 

Suggestions for further development of the model and further cases to simulate are pre-

sented in Chapter 6. 
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2. COMPUTATIONAL METHOD 

As will be further discussed in Section 2.4, an analytical solution for the studied prob-

lem cannot be found. The numerical methods addressed to solve the case are considered 

in this chapter. 

The simulation can be divided to three sections; pre-processing, solving and post-

processing. 

Pre-processing includes the initial geometry modifications, discretization (mesh genera-

tion), material settings, boundary and initial conditions. All of these are presented in 

Chapter 4. 

General principles of solution methods are discussed in Sections 2.3-2.8. 

Evaluation of calculated results and processing them in order to establish a readable and 

an understandable form is performed during post-processing. See Chapter 5 for results. 

2.1 Software 

ANSYS Workbench 16.1-17.0 and ANSYS SpaceClaim 16.1-17.0 were used for pre-

processing, LS-DYNA® R7.1.1/R8.0.0 revision 88541/95309 for solving and ANSYS 

Workbench 16.2 / LS-DYNA® PrePost 4.3 for post-processing. 

2.1.1 ANSYS® 

The history of ANSYS Inc., as the company is known today, dates back to 1970 when it 

was founded by John A. Swanson in Pittsburgh, United States of America. Swanson 

worked with structural analyses in the 1960s, when some of the finite element calcula-

tions in the nuclear industry were still calculated by hand. As the computing power be-

gan to increase in the 1970s, Swanson started developing a computer program called 

SASI (Swanson Analysis System Inc.) for solving static and dynamic structural problems 

and heat transfer. [8] 

The company continued to grow 10-20 % annually parallel with the growth of compu-

ting power. In 1994 SASI was sold. The new name for the company was ANSYS Inc. 

and the program was now called ANSYS®. Today ANSYS Inc. is one of the world’s 

leading engineering simulation software providers and it focuses on providing a fully 

integrated set of tools for solving multiphysical problems. [8] 
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ANSYS® was chosen as pre- and post-processing tool due its versatility and ability to 

directly write (with limitations) input files for LS-DYNA® to solve. 

2.1.2 LS-DYNA® 

The development of LS-DYNA® started in 1974 at the Lawrence Livermore National 

Laboratory. At that time the program was called DYNA3D. For the next decades the 

code was improved and new features were constantly added. [46 p. 21] 

The main solution methodology today is still explicit time integration even though im-

plicit time integration with limited capabilities is also included in the modern versions 

of the program. [46 p. 19] 

LS-DYNA® was chosen as the solving software due to its capabilities in structural 

analyses employing explicit time integration scheme. 

2.2 Validation and verification 

Validation and verification are separate processes that are used when evaluating the 

ability of the simulation model to predict the behavior of the studied subject. 

Verification is defined as a means for ensuring that the computer program and its im-

plementation are both correct [57]. Points to be considered in the verification of a finite 

element simulation model are [16]: 

 The effect of idealizations in studied geometry. Imperfections are always incor-

porated in real life structures. 

 Material models. Materials often exhibit very complex non-linear behavior and 

not all necessary data are available to create an accurate model. 

 Discretization. A finite element solution should always approach the continuum 

solution as the mesh element size is reduced [69, p. 1], and therefore the feasible 

mesh size depends on the desired level of accuracy and other limitations. 

 Boundary conditions. These include the effect of initial conditions and applied 

supports. 

These verification steps are considered in Chapter 4. 

The validation process ensures that the simulation model output accuracy is satisfactory 

for the purpose it is intended for [16, 57]. The following points should be covered for 

validation [16]: 

 Test results. Comparison of the simulation and the test results is significant if 

comprehensive test data are available. 
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 Analytical solutions. Comparison of the simulation model or a part of it to a 

closed form solution. 

 Comparison to similar models. 

These validation steps are considered in Chapters 4 and 5. 

2.3 Finite element method 

The Finite Element Method (FEM), in general, is a numerical method used for solving 

partial differential equations by discretizing the studied geometry using finite amount of 

different types of elements (see Section 2.7) [69 p. 2]. FEM is used for complex geome-

tries in situations where analytical solutions cannot be found. Procedures for obtaining a 

solution in transient structural finite element analysis are presented in Section 2.4. 

2.4 Time integration 

The method used in this simulation uses explicit time integration. Some differences of 

implicit and explicit time integrations in a structural mechanics solution are discussed 

in the following sections. Implicit method is not used in this simulation; it is only brief-

ly introduced to highlight the differences between the two integration methods. 

The equation to be solved in transient structural mechanics is 

[𝑀]𝒙̈ = 𝑭(𝑡), (1) 

where the load vector is denoted with 𝑭(𝑡), nodal acceleration vector (second time de-

rivative of nodal displacement 𝒙) with 𝒙̈ and mass matrix with [𝑀]. The load vector 

includes internal, external, damping and hourglass forces, thus 𝑭 = 𝑭(𝒇, 𝒙̇, 𝒙, 𝑡). Equa-

tion (1) represents the equilibrium equation for d'Alembert’s principle, which states that 

external forces 𝒇(𝑡) acting on the domain must be equal to the sum of inertial ([𝑀]𝒙̈), 

damping ([𝐶]𝒙̇), and internal forces due to stiffness of the structure (see Section 2.7). 

Hourglass forces included in the load vector are unphysical and therefore the accumu-

lated energy generated by these forces should be as low as possible as the solution pro-

ceeds (see Section 2.8). Due to the displacement dependency of internal force vector, 

Equation (1) becomes a non-linear ordinary differential equation, for which analytical 

solutions cannot be found and numerical methods must be used instead. [46 pp. 611-

612] 

2.4.1 Implicit method 

In the implicit method the solution for Equation (1) is obtained by using either the 

Newmark (Equations (2) and (3)) or HHT (Hilber-Hughes-Taylor) time integration with 
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a series of linear approximations (Newton-Raphson iterations). In order for solving 

nodal velocity 

𝒙̇𝑡+∆𝑡 = 𝒙̇𝑡 + ∆𝑡[(1 − 𝛾)𝒙̈𝑡 + 𝛾𝒙̈𝑡+∆𝑡] (2) 

at time step 𝑡 + ∆𝑡, nodal acceleration 𝒙̈ at 𝑡 + ∆𝑡 is required. This acceleration is 

solved from equation of the nodal displacement 

𝒙𝑡+∆𝑡 = 𝒙𝑡 + ∆𝑡𝒙̇𝑡 + ∆𝑡2[(1 2⁄ − 𝛽)𝒙̈𝑡 + 𝛽𝒙̈𝑡+∆𝑡] (3) 

as 

𝒙̈𝑡+∆𝑡 =
1

𝛽∆𝑡2
𝒙𝑡+∆𝑡 −

1

𝛽∆𝑡2
𝒙𝑡 −

1

𝛽∆𝑡
𝒙̇𝑡 − (

1

2𝛽
− 1) 𝒙̈𝑡 

(4) 

in which 𝛾 and 𝛽 are Newmark parameters. Equation (4) is then substituted back to 

equation (1) from which displacement 𝒙𝑡+∆𝑡 is obtained. Velocity 𝒙̇𝑡+∆𝑡 and accelera-

tion 𝒙̈𝑡+∆𝑡 can now be solved from Equations (2) and (4), respectively. Since the above 

variables cannot be solved directly from Equations (2) and (3) in terms of known quan-

tities (i.e. equations are coupled), the method is called implicit. [5, 35] 

Since the solving method is implicit, convergence problems may arise on highly non-

linear problems. The equations of implicit formulation are coupled, and therefore need 

to be solved using global matrices. As the nonlinear dynamic effective stiffness matrix 

is a function of displacement, the matrix factorization has to be done in each time step
A
. 

This is computationally expensive, but to compensate this, relatively large time steps 

can be used. [5] 

2.4.2 Explicit method 

The solution process for the explicit method can be illustrated by using a flowchart 

shown in Figure 2.1. 

                                                 
A
 In case of modified Newton Raphson method. For full Newton-Raphson method factorization has to be 

done in each iteration. 
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Figure 2.1. Calculation process of a single cycle (time step) in explicit analysis [46 p. 

620]. The starting point for the algorithm does not necessarily have to be in the position 

shown by this figure; it can be changed based on type of initial conditions used [58 p. 

21]. 

Initial conditions 𝒙̈0, 𝒙̇0 and 𝒙0 are assumed to be known. Accelerations can be solved 

from Equation (1) as 

𝒙̈𝑡 = [𝑀]−1𝑭(𝑡). (5) 

Now that accelerations at time 𝑡 are known, the velocities at time 𝑡 + ∆𝑡 2⁄  can be cal-

culated as 

𝒙̇𝑡+∆𝑡 2⁄ = 𝒙̇𝑡−∆𝑡 2⁄ + 𝒙̈𝑡Δ𝑡𝑡+∆𝑡 2⁄ . (6) 

And furthermore the nodal displacements 𝒙 at time 𝑡 + ∆𝑡 can be calculated using the 

central difference method employed in explicit time integration as 

𝒙𝑡+∆𝑡 = 𝒙𝑡 + 𝒙̇𝑡+∆𝑡 2⁄ Δ𝑡𝑡+Δt 2⁄ . (7) 

This process is repeated until the desired time 𝑡 is reached. Equations (5)-(7) can be 

solved directly without iteration, hence the term explicit. 

The above equations are uncoupled (due to the use of lumped mass matrix) as opposed 

to the equations of implicit dynamics, and therefore the solution time for a single time 

step is smaller in explicit dynamics than it is in implicit
B
. The inversion of a lumped 

(diagonal) matrix reduces to a simple division by a scalar in Equation (5), which is 

cheap to compute compared to the factorization of a consistent matrix [58 p. 24; 69 p. 

                                                 
B
 Explicit method parallelizes to multiple processors better than the implicit method due to uncoupled 

equations. 
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648]. However, due to the conditional stability of the explicit method (considered in the 

next section), the time step to be used is usually much smaller compared to the time step 

used in the implicit method (see Section 2.4.3). 

[5, 32, 35, 46, 58] 

2.4.3 Time step controls 

As was stated in the previous section, the equations of the explicit time integration 

method are uncoupled, meaning that the results for each element are calculated sepa-

rately. Therefore during one time step, the information from one side of the element can 

only travel to the other side of the element to keep the solution stable. The physical in-

terpretation for this is the wave propagation in the structure (or highest natural frequen-

cy of the structure). The maximum time step ∆𝑡 that can be used in the analysis to en-

sure a stable solution is limited by Courant-Friedrichs-Lewy (CFL) condition as 

∆𝑡 ≤ 𝑓 [
ℎ

𝑐
]
𝑚𝑖𝑛

, (8) 

where 𝑐 is the speed of sound in the material, 𝑓 is the time step safety factor used in the 

analysis to increase stability (defaults to 0.9) and ℎ is the characteristic element dimen-

sion. The CFL condition restricts the wave from traveling more than the dimension ℎ in 

one time step. [5, 17, 32] The element that minimizes condition (8) dictates the time 

step to be used. Characteristic dimensions for different element types are calculated 

using equations shown in Table 2.1. 

Speed of sound also depends on stress state and damping properties of the material, but 

crude evaluation of the time step can be made even by neglecting their effect. 
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Table 2.1. Calculation of characteristic dimensions for low order elements with 

equal edge lengths [5; 46 pp. 599-601]. 

Element type Geometry Characteristic dimension ℎ 

Hexahedral 

solid 

 

The volume of the element divided by the 

area of the largest face. 

ℎ = 𝑥 

Tetrahedral 

solid 

 

Minimum distance from node to opposing 

surface. 

ℎ = √
2

3
𝑥 

Quad shell 

 

Square root of the area of the element. 

ℎ = 𝑥 

Tri shell 

 

Two times the area of the element divided 

by the length of the longest side. 

ℎ =
√3

2
𝑥 

Beam 

    

Length of the element 

ℎ = 𝑥 

 

Hexahedral/quad mesh is preferred over tetrahedral/triangular mesh to prevent the time 

step from getting too small while retaining solution accuracy. Smallest geometry details 

are de-featured and simplified to achieve reasonable computation times. 

If the mesh contains only few small elements, automatic mass scaling can be used to 

prevent the time step from becoming too small. The speed of sound (elastic speed wave) 

in material is calculated as
C
 (for beam element) [46 p. 600] 

                                                 
C
 Speed of sound also depends on stress state and damping properties of the material, but crude evaluation 

of the time step (and hence the element size) can be made even by neglecting their effect. 
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𝑐 = √
𝐸

𝜌
= √

𝐸𝑉

𝑚
. (9) 

By substituting (9) to (8), ∆𝑡 results as 

∆𝑡 ≤ 𝑓 ∗ [√
𝑚

𝐸𝑉
ℎ]

𝑚𝑖𝑛

. (10) 

As can be seen, the minimum time step is directly proportional to the square root of the 

mass of the element. By scaling the mass of a single element the error in the total mass 

of the structure is small but the benefits from a greater time step might be significant. 

Mass scaling is used in this analysis. Increased mass due to scaling is reported in Sec-

tion 5.4.3. 

2.5 Contact algorithms 

In many dynamic simulation cases studying the interactions between impacting or slid-

ing bodies is important [46 p. 633]. Contact algorithms are developed in order to ad-

dress these problems. 

Penalty based contact methods are commonly used in FEM. They all are based on the 

idea of adding a spring between the slave node (red nodes in Figure 2.2) and the master 

surface (blue surface in Figure 2.2). Stiffness 𝑘𝑛 of this spring is denoted as contact 

stiffness and displacement 𝑥𝑝 as penetration caused by contact force 

𝐹𝑛 = 𝑘𝑛𝑥𝑝. (11) 

In addition to normal stiffness, contacts with friction also exhibit tangential stiffness and 

tangential forces. [4] Tangential frictional forces 𝐹𝑓 are calculated based on friction co-

efficient 𝜇 and normal force 𝐹𝑛 as 

𝐹𝑓 = 𝜇𝐹𝑛. (12) 

The friction coefficient is a function of relative speed between the contact surfaces as 

𝜇 = 𝜇𝑑 + (𝜇𝑠 − 𝜇𝑑)𝑒−𝑑|𝒖𝑓|, (13) 

where 𝜇𝑠 and 𝜇𝑑 are the static and dynamic coefficients of friction, respectively, 𝑑 is a 

decay constant defining the rate of transformation from static to dynamic friction coeffi-

cient and 𝒖𝑓 is the relative velocity between contacting surfaces. [46 p. 652] As it can 

be seen from Equation (13), 𝜇 = 𝜇𝑠 when there is no sliding (𝒖𝑓 = 0) between surfaces 

and lim𝒖𝑓→∞ 𝜇 = 𝜇𝑑. 
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Figure 2.2. Principle of penalty based contact formulation [4]. 

Suitable value for contact stiffness depends on the allowed penetration which in turn 

depends on the required accuracy of contact pressure. Increasing contact stiffness to 

infinity would result as zero penetration but this would result as numerical problems. 

Too low contact stiffness results in excessive penetration and too high stiffness in oscil-

latory contact behavior (latter is likely to cause divergence in implicit analyses). [4; 58 

pp. 289-304] 

Penalty stiffness affects the contact time step. Stiffness is automatically calculated based 

on nodal masses at contact and global time step [44 p. 591]. 

2.6 Dynamic relaxation 

Tires (and other flexible parts) deform due to gravitational loads and other applied loads 

(such as tire pressure). If all of these effects are stepped on at the beginning of transient 

simulation, they will result as oscillatory behavior. To allow for the oscillatory behavior 

to diminish, the simulation must be run for several times longer than the duration of 

lowest natural frequency of the oscillation. This damping phase would be computation-

ally very expensive due to its long duration compared to the time required to capture the 

dynamic behavior of interest. 

Dynamic relaxation is a method of obtaining a solution for the quasi-static phase of the 

simulation. The quasi-static phase includes the effects of gravity and tire pressurization. 

During this phase, system damping is kept artificially high until kinetic energy drops to 

zero (or below a predefined tolerance). In other words, transient oscillations diminish 

and the solution approaches static equilibrium. [2; 46 p. 719] The effect of low, or real-

istic, and high damping (used in the relaxation phase) for tire vertical displacement un-

der stepped compression load is shown in Chart 2.1. After reaching static equilibrium 

with high damping, system damping is decreased to a realistic level and the transient 

phase of the simulation is started. 
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Chart 2.1. Using a high damping value the static equilibrium is found significantly 

faster compared to a low damping value. 

2.7 Elements 

Displacements 𝒖 within the volume (or area for 2D elements and length for 1D ele-

ments) of the element are interpolated from nodal degrees of freedom 𝒙 as 

𝒖 = [𝑁]𝒙. (14) 

The shape function matrix (or interpolation function matrix) [𝑁] is defined separately 

for each element type (see Sections 2.7.1 and 2.7.2). It links the nodal values to spatial 

values within the element. 

Strain is the rate of deformation in space, i.e. it is a spatial derivative of displacement as 

𝜀𝑖𝑖 =
𝜕𝑢𝑖

𝜕𝑥𝑖
 (15) 

and 

𝛾𝑖𝑗 =
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
. (16) 

The strain-displacement matrix [𝐵], that is a spatial derivative of the shape function 

matrix [𝑁], is used for calculating strains based on the nodal displacements as 

𝜺 = [𝐵]𝒙. (17) 



14 

The strain-displacement matrix is also element-type dependent and a corresponding 

matrix for each element type is presented in the following sections. 

 

Figure 2.3. Stress components in 3D case [3]. 

Furthermore the stresses (components shown in Figure 2.3) within the element are cal-

culated from strains by using an elasticity matrix (or material stiffness matrix) [𝐷] as 

𝝈 = [𝐷](𝜺 − 𝜺0) + 𝝈0, (18) 

where 𝜺0 and 𝝈0 are the possible initial strains and stresses (caused by shrinkage, tem-

perature change etc.). The compiling of matrix [𝐷] depends on the implemented materi-

al model and element type. The simplest case is an isotropic linear elastic material that 

obeys Hooke’s law for which (in 3D case) [49 pp. 15-16] 

[𝐷] =

[
 
 
 
 
 
𝜆 + 2𝜇 𝜆 𝜆 0 0 0

𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇]

 
 
 
 
 

, (19) 

where 𝜆 and 𝜇 are the Lamé constants, which are expressed via elasticity modulus 𝐸 and 

Poisson’s ratio 𝜈 as 

𝜆 =
𝜈𝐸

(1 + 𝜈)(1 − 2𝜈)
 (20) 

and 

𝜇 =
𝐸

2(1 + 𝜈)
. (21) 
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Finally, the nodal force vector 𝑭 is calculated using external, body, internal, contact, 

hourglass and damping forces (𝒇, 𝒃, 𝑭𝑐𝑜𝑛𝑡, 𝑭ℎ𝑔, 𝑭𝑑𝑎𝑚𝑝, respectively) as given by 

𝑭 = 𝒇 − 𝒃 − 𝑭𝑖𝑛𝑡 − 𝑭𝑐𝑜𝑛𝑡 − 𝑭ℎ𝑔 − 𝑭𝑑𝑎𝑚𝑝 . (22) 

The internal force vector is, as is elasticity matrix, reliant on the material model and 

element type being used. Internal force vector represents the correlation between nodal 

forces and displacements. 

Equations (14)-(22) represent the calculation of all necessary results within the element 

(i.e. in local coordinates 𝜉, 𝜂, 𝜁 ). To transform results to global coordinates (𝑥, 𝑦, 𝑧), the 

chain rule of partial differentiation is utilized as 

𝜕

𝜕𝜉
=

𝜕

𝜕𝑥

𝜕𝑥

𝜕𝜉
+

𝜕

𝜕𝑦

𝜕𝑦

𝜕𝜉
+

𝜕

𝜕𝑧

𝜕𝑧

𝜕𝜉
, (23) 

𝜕

𝜕𝜂
=

𝜕

𝜕𝑥

𝜕𝑥

𝜕𝜂
+

𝜕

𝜕𝑦

𝜕𝑦

𝜕𝜂
+

𝜕

𝜕𝑧

𝜕𝑧

𝜕𝜂
 (24) 

and 

𝜕

𝜕𝜁
=

𝜕

𝜕𝑥

𝜕𝑥

𝜕𝜁
+

𝜕

𝜕𝑦

𝜕𝑦

𝜕𝜁
+

𝜕

𝜕𝑧

𝜕𝑧

𝜕𝜁
. (25) 

Equations (23)-(25) can be rewritten in matrix form as 

[
 
 
 
 
 
 
𝜕

𝜕𝜉
𝜕

𝜕𝜂
𝜕

𝜕𝜁]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉

𝜕𝑧

𝜕𝜉
𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂

𝜕𝑧

𝜕𝜂
𝜕𝑥

𝜕𝜁

𝜕𝑦

𝜕𝜁

𝜕𝑧

𝜕𝜁]
 
 
 
 
 
 

[
 
 
 
 
 
 
𝜕

𝜕𝑥
𝜕

𝜕𝑦
𝜕

𝜕𝑧]
 
 
 
 
 
 

= [𝐽]

[
 
 
 
 
 
 
𝜕

𝜕𝑥
𝜕

𝜕𝑦
𝜕

𝜕𝑧]
 
 
 
 
 
 

, (26) 

where the matrix [𝐽] is called the Jacobian matrix. By inverting it, transforming the de-

sired terms from local to global coordinates can be calculated 

[
 
 
 
 
 
 
𝜕

𝜕𝑥
𝜕

𝜕𝑦
𝜕

𝜕𝑧]
 
 
 
 
 
 

= [𝐽]−1

[
 
 
 
 
 
 
𝜕

𝜕𝜉
𝜕

𝜕𝜂
𝜕

𝜕𝜁]
 
 
 
 
 
 

. (27) 

The most important features and formulation of elemental matrices for element types 

used in the analysis are presented in the following sections. 
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[46 pp. 45-53; 69 pp. 18-24] 

2.7.1 Solid 

Solid elements are used in this simulation only for logs (see Section 4.6). The logs are 

meshed with pure hexahedral structured grid. The element used in meshing is shown in 

Figure 2.4.  

 

Figure 2.4. Local coordinate parameters (𝜉, 𝜂 and 𝜁) and geometry of eight node sol-

id hexahedral DYNA3D element [46 p. 52]. Each node has three translational degrees 

of freedom (DOFs) which results as a total of 24 DOFs for a single element. 

Tri-linear shape functions for the element are in the form 

𝑁𝑗 =
1

8
(1 + 𝜉𝜉𝑗)(1 + 𝜂𝜂𝑗)(1 + 𝜁𝜁𝑗), (28) 

where 𝑗 is the corresponding node number (1…8) and 𝜉𝑗, 𝜂𝑗, 𝜁𝑗  take on the value at node 

𝑗 as listed in Figure 2.4. The shape function matrix is assembled from the shape func-

tions of each node as 

[𝑁] = [

𝑁1 0 0 𝑁2 0 ⋯ 0 0
0 𝑁1 0 0 𝑁2 ⋯ 𝑁8 0
0 0 𝑁1 0 0 ⋯ 0 𝑁8

]. (29) 

As was stated in page 13, [𝐵] is a spatial derivative of the shape function matrix 
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[𝐵] =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝜕

𝜕𝑥
0 0

0
𝜕

𝜕𝑦
0

0 0
𝜕

𝜕𝑧
𝜕

𝜕𝑦

𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑧

𝜕

𝜕𝑦
𝜕

𝜕𝑧
0

𝜕

𝜕𝑥]
 
 
 
 
 
 
 
 
 
 
 
 

[𝑁]. (30) 

Stiffness matrix [𝐾]𝑒 for the isoparametric element in a non-linear case is integrated 

over the volume 𝑉 of the element as (Updated Lagrangian Formulation) 

[𝐾]𝑒 = ∫ ([𝐵]𝑇[𝐷][𝐵] + [𝐺]𝑇[𝑆][𝐺]) 𝑑𝑉
𝑉

= ∭ ([𝐵]𝑇[𝐷][𝐵] + [𝐺]𝑇[𝑆][𝐺])
𝑉

𝑑𝑥𝑑𝑦𝑑𝑧

= ∭ ([𝐵]𝑇[𝐷][𝐵] + [𝐺]𝑇[𝑆][𝐺])
𝑉

|𝐽|𝑑𝜉𝑑𝜂𝑑𝜁, 

(31) 

where [𝑆] is the 2
nd

 Piola-Kirchhoff Stress Tensor and [𝐺] the Non-Linear Strain-

Displacement Transformation Matrix
D
. The integral is transformed from local to global 

coordinates by using the determinant of the Jacobian matrix |𝐽| in conjunction with lo-

cal coordinates. As the integral cannot be solved in a closed form, numerical integration 

must be used instead. By using numerical integration (Gaussian quadrature rule) the 

integral (31) can be expressed as 

[𝐾]𝑒 = ∑∑ ∑([𝐵]𝑇[𝐷][𝐵] + [𝐺]𝑇[𝑆][𝐺])|𝐽(𝜉𝑖, 𝜂𝑗 , 𝜁𝑘)|𝑤𝑖𝑤𝑗𝑤𝑘

𝑛

𝑘=1

𝑛

𝑗=1

𝑛

𝑖=1

, (32) 

where weight factors 𝑤𝑖 = 𝑤𝑗 = 𝑤𝑘 = 2 and number of integration points 𝑛 = 1 for 

one-point (reduced integration) Gaussian quadrature used by this element [46 pp. 45-

53]. The determinant of the Jacobian matrix |𝐽(𝜉𝑖 , 𝜂𝑗 , 𝜁𝑘)| is calculated at the integration 

point located in the middle of the element (at 𝜉 = 𝜂 = 𝜁 = 0). Therefore Equation (32) 

simplifies to 

[𝐾]𝑒 = 8([𝐵]𝑇[𝐷][𝐵] + [𝐺]𝑇[𝑆][𝐺])|𝐽(0,0,0)|, (33) 

                                                 
D
 See [12; 18 pp. 139-151] for more information on these two matrices and the derivation of the stiffness 

matrix. 
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where 8|𝐽(0,0,0)| approximates the volume of the element. The mass and damping ma-

trices are constructed in a similar fashion as the stiffness matrix as 

[𝑀]𝑒 = 8[𝑁]𝑇𝜌[𝑁]|𝐽(0,0,0)| (34) 

and 

[𝐶]𝑒 = 8[𝑁]𝑇𝜑[𝑁]|𝐽(0,0,0)|, (35) 

where 𝜌 and 𝜑 are the elemental density and damping, respectively.  

When compared to elements having higher order shape functions and integration, the 

advantages of DYNA3D are significant reductions in necessary mathematical opera-

tions and the absence of the volumetric locking phenomenon
E
. On the other hand, ele-

ments with quadrilateral geometry and one point integration suffer from hourglass 

modes which are discussed in Section 2.8. This phenomenon is not found in higher or-

der hexahedral elements or in tetrahedral elements regardless of the number of integra-

tion points. 

[12; 18 pp. 139-151; 46 pp. 45-53; 49 pp. 28-31; 55; 69 pp. 18-24] 

2.7.2 Shell 

Shell elements are suitable for modeling structures that have one dimension (thickness 

𝑡) small compared to the other two (𝐿), i.e. 𝑡 𝐿⁄ ≪ 1. Shells (plates) are classified as 

very thin if 𝐿 𝑡⁄ > 100, moderately thin if 20 < 𝐿 𝑡⁄ < 100, thick if 3 < 𝐿 𝑡⁄ < 20 and 

very thick if 𝐿 𝑡⁄ < 3. Shell elements based on the classical Kirchhoff-Love plate theory, 

which can be thought to be a two dimensional extension of the Euler-Bernoulli beam 

theory, are applicable for the thin and moderately thin regions whereas the enhanced 

Mindlin-Reissner theory (extension of Timoshenko beam theory) expands the applicabil-

ity range to thick shells. Very thick shells should be modeled using solid elements [15, 

62, 68]. Solid elements are not suitable for modeling thin structures, especially in ex-

plicit analyses, due to the fact that using one linear solid element in the thickness direc-

tion leads to erroneous bending behavior
F
 whereas using multiple solids through the 

thickness leads to small time step through the CFL condition and increased number of 

DOFs in the model [46]. 

                                                 
E
 Found in higher order integration elements with incompressible material. 

F
 Erroneous stiffness 

 Excessive stiffness in case full integration 

o shear locking; linear shape functions cannot reproduce the required parabolic shear dis-

tribution through the thickness 

o volumetric locking; even higher order elements with full integration lock if Poisson’s 

ratio approaches 0.5 

 Too low stiffness in case of reduced integration 

o zero energy hourglass modes. 
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The derivation of general equations for shell theory starts by recognizing the displace-

ments from Figure 2.5 in 𝑥-direction as [62 p. 12] 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢𝑚(𝑥, 𝑦) + 𝑧
𝜕𝑤𝑚

𝜕𝑥
(𝑥, 𝑦) = 𝑢𝑚(𝑥, 𝑦) + 𝑧𝜙𝑦(𝑥, 𝑦), (36) 

where subscript 𝑚 denotes the deformations at mid-surface (𝑧 = 0) of the plate. Simi-

larly in 𝑦-direction as (See [37 pp. 205-207] for details for the different sign of mid-

plane rotation) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣𝑚(𝑥, 𝑦) − 𝑧𝜙𝑥(𝑥, 𝑦) (37) 

and in 𝑧-direction as 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤𝑚(𝑥, 𝑦). (38) 

 

Figure 2.5. Displacements and force resultants in a shell with supports and loads in-

dependent of y-coordinate, adapted from [68 p. 326]. 

Next, the in-plane membrane force 𝑃𝑥, shear force 𝑆𝑧𝑥 and bending moment 𝑀𝑦 result-

ants are obtained by integrating the stresses of 3D element faces (see Figure 2.3) in the 

thickness direction (the membrane is located at the mid-plane of the body, at 𝑡 = 0, 

hence the integration limits in the following equations). The stresses to be integrated are 

acquired by substituting for displacements in strain Equations (15) and (16) using Equa-

tions (36) and (38) and by employing a constitutive relation of elastic and isotropic ma-

terial. Thus the resultants (for XZ-plane in Figure 2.5) are for membrane forces [62 p. 

13; 66 p. 34] 

𝑏𝑧 z 

∅𝑦 

𝑀𝑦 

𝑆𝑧𝑥 

𝑃𝑥 
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𝑃𝑥 = ∫ 𝜎𝑥𝑑𝑧

𝑡/2

−𝑡/2

=
𝐸𝑡

1 − 𝜈2
(
𝜕𝑢𝑚

𝜕𝑥
+ 𝜈

𝜕𝑣𝑚

𝜕𝑦
), (39) 

for shear force 

𝑆𝑧𝑥 = ∫ 𝜏𝑧𝑥𝑑𝑧

𝑡/2

−𝑡/2

= 𝜅
𝐸𝑡

2(1 + 𝜈)
(
𝜕𝑤𝑚

𝜕𝑥
+ 𝜙𝑦), (40) 

for bending moment 

𝑀𝑦 = ∫ 𝜎𝑥𝑧𝑑𝑧

𝑡/2

−𝑡/2

=
𝐸𝑡3

12(1 − 𝜈2)
(
𝜕𝜙𝑦

𝜕𝑥
+ 𝜈

𝜕𝜙𝑥

𝜕𝑦
) (41) 

and for twisting moment 

𝑀𝑥𝑦 = ∫ 𝜏𝑥𝑦𝑧𝑑𝑧

𝑡/2

−𝑡/2

=
𝐸𝑡3

24(1 + 𝜈)
(
𝜕𝜙𝑦

𝜕𝑦
−

𝜕𝜙𝑥

𝜕𝑥
). (42) 

For rectangular and homogeneous section the correction factor 𝜅 = 5 6⁄ G. [62 pp. 14-

15] 

Finally the equilibrium equations for a differential element are for forces in 𝑥-direction 

𝜕𝑃𝑥

𝜕𝑥
+

𝜕𝑆𝑦𝑥

𝜕𝑦
+ 𝑏𝑥 = 0, (43) 

in 𝑧-direction 

𝜕𝑆𝑧𝑥

𝜕𝑥
+

𝜕𝑆𝑧𝑦

𝜕𝑦
+ 𝑏𝑧 = 0 (44) 

and for moments 

𝜕𝑀𝑦

𝜕𝑥
+

𝜕𝑀𝑦𝑥

𝜕𝑦
− 𝑆𝑧𝑥 + 𝑚𝑥 = 0, (45) 

where 𝑚𝑥 is the inertial force. All of the equations above are expanded to 𝑦-direction in 

a similar fashion to obtain equations for a general 3D case. 

[68 pp. 325-327] 

                                                 
G
 κ is added for the theory to correctly predict the amount of internal energy [62 p. 14]. 
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Kirchhoff-Love theory poses the following restrictions and assumptions [31 p. 87; 56 

pp. 125-136; 62 pp. 14-15]: 

1. Plate mid-surface is planar prior to loading 

2. Stresses in z-direction are insignificant compared to stresses in x- and y-

directions 

3. Shear distortion is equal to zero 

a. This property limits the applicability range to thin plates; displacements 

resulting from shear distortion become increasingly dominant when 

compared to deformations resulting from bending as 𝐿 𝑡⁄  decreases [15, 

p. 15]. 

Further restrictions for the used shell elements are: 

4. Displacements are small 

a. Displacement in z-direction equaling to half of the plate thickness is the 

upper limit for “small” 

b. Errors in displacements larger than this limit become significant 

5. Normal displacement 𝑤 is constant through the thickness 

a. i.e. no compression or tension in thickness direction is considered 

6. Displacements 𝑢 and 𝑣 vary linearly through the thickness 

a. i.e. normals remain straight 

7. Membrane and bending effects are uncoupled. 

Shell elements based on Mindlin-Reissner theory remove restriction number 3 from the 

above list and are therefore applicable for thicker plates. Higher order theories that re-

move restrictions 5 and 6 also exist but they will not be covered here. [62] 

Shell elements are not suitable for large rotations in implicit static analyses due to the 

fact that they do not possess any stiffness at in-plane (drilling) rotational degree of free-

dom 𝜙𝑧 as can be seen from Equations (39)-(42). By expanding these equations to 𝑦-

direction, a total of three translational and two rotational degrees of freedom 

(𝑢, 𝑣, 𝑤, 𝜙𝑥, 𝜙𝑦) can be connected to the bending, twisting, shear and membrane modes 

for each node. However, when transforming to global coordinates, there are three trans-

lational and three rotational DOFs (𝑢, 𝑣, 𝑤, 𝜙𝑥, 𝜙𝑦, 𝜙𝑧). This results as singular global 

stiffness matrix if all shell elements in the mesh are coplanar (flat topology). Singular 

matrices cannot be inverted and therefore an implicit solution cannot be found in case 

there are large rotations in shell elements and the solution is static. This problem is usu-

ally addressed by adding a torsional spring to obtain drill stiffness larger than zero. 

However the additive stiffness is artificial and therefore causes unrealistic strains if rota-

tions are large. In transient solution the singularity of the stiffness matrix is not as prob-

lematic; the inclusion of mass matrix leads to non-singular matrix to be inverted and 
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thus no need for torsional springs exists. Some issues regarding accuracy and robustness 

might still arise from this phenomenon even in transient analyses. [25] 

All of the shell elements used in this simulation are based on the Belytschko-Lin-Tsay 

formulation (with the exception of tires, see Section 4.9) which is the default choice for 

LS-DYNA® (element type 2). The element is based on the Mindlin-Reissner plate theo-

ry. The Belytschko-Lin-Tsay shell is based on the combined formulation of a corota-

tional (CR) coordinate system and a velocity-strain formulation. By using the combined 

representation some numerical and efficiency issues can be avoided [68 p. 480]. CR 

coordinate system rotates with the element and can be therefore be used in separating 

rigid body motion from deformation which in turn improves accuracy of stress calcula-

tion because shell element restriction number 4, small displacements (see page 21), does 

not restrict the magnitude of rigid body rotations [46 pp. 144-145]. The construction of 

the CR coordinate system shown in Figure 2.6 starts by calculating a unit vector normal 

to the main diagonal of the element as 

𝒆̂3 =
𝒔3

‖𝒔3‖
, (46) 

where 𝒔3 is the vector cross product of vectors 𝒓31 and 𝒓42 which in turn are defined by 

the locations of nodes and ‖𝒔3‖ is the length of vector 𝒔3. The superscript ∙ ̂ is used to 

denote local (element) coordinate system. The two remaining unit vectors in defining 

the coordinate system are expressed as 

𝒆̂1 =
𝒓21 − (𝒓31 ⋅ 𝒆̂3)𝒆̂3

‖𝒔1‖
=

𝒔1

‖𝒔1‖
 (47) 

and 

𝒆̂2 = 𝒆̂3 × 𝒆̂1. (48) 

 

Figure 2.6. Construction of the embedded element coordinate system [46 p. 144]. 
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The transformation from the local CR to global coordinates is defined by transformation 

matrix [𝑇] as 

𝑨 = [𝒆1 𝒆2 𝒆3]𝑨̂ = [𝑇]𝑨̂, (49) 

where 𝒆1, 𝒆2, 𝒆3 are the CR coordinate system unit vectors expressed in global coordi-

nates and 𝑨, 𝑨̂ are vectors defined in global and local CR coordinates, respectively. 

The velocity-strain relation formulations of the element are similar to the general plate 

theory Equations (36)-(41) with the exception of using first time derivatives of dis-

placements, strains and stresses. These relations are evaluated at the quadrature points 

within the element (at the center of the element, 𝜉 = 𝜂 = 0, for the Belytschko-Lin-

Tsay element with one point Gaussian quadrature). Velocity 𝒙̇, angular velocity 𝝓̇ and 

coordinates 𝒙 are needed for the aforementioned relations and they are evaluated at the 

mid-surface (𝑧 = 0, superscript 𝑚) using the isoparametric representation as  

𝒙̇𝑚 = 𝑁𝐼𝒙̇𝐼 , (50) 

𝝓̇𝑚 = 𝑁𝐼𝝓̇𝐼 (51) 

and 

𝒙𝑚 = 𝑁𝐼𝒙𝐼 , (52) 

where subscript 𝐼 is summed over all nodes (1…4). The bi-linear shape functions 𝑁 for 

the isoparametric formulations of the element are 

𝑁𝑗 =
1

4
(1 + 𝜉𝜉𝑗)(1 + 𝜂𝜂𝑗), (53) 

where 𝑗 is the corresponding node number (1…4) and 𝜉𝑗, 𝜂𝑗 take on the value at node 𝑗 

as listed in Figure 2.7. 

   

Figure 2.7. Local coordinate system node numbering for 4-noded shell element. 

4     3 

 

 

 

1     2 

𝜉 

𝜂 
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The isoparametric representations of the velocity-strains at the center of the element are 

obtained by substituting the above equations (calculated at mid-surface) to the velocity-

strain relations as [46 pp. 146-147] 

𝜺̂̇ =

[
 
 
 
 
 
𝜀̇̂𝑥
𝜀̇̂𝑦

𝛾̂̇𝑥𝑦

𝛾̂̇𝑥𝑧

𝛾̂̇𝑦𝑧]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 𝑥̂̇𝑥𝐼 + 𝑧̂𝜙̂̇𝑦𝐼 0 0

0 𝑥̂̇𝑦𝐼 − 𝑧̂𝜙̂̇𝑥𝐼 0

𝑥̂̇𝑦𝐼 − 𝑧̂𝜙̂̇𝑥𝐼

2

𝑥̂̇𝑥𝐼 + 𝑧̂𝜙̂̇𝑦𝐼

2
0

𝑥̂̇𝑧𝐼

2
0

𝜙̂̇𝑦𝐼

2

0
𝑥̂̇𝑧𝐼

2
−

𝜙̂̇𝑥𝐼

2 ]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
𝜕𝑁𝐼

𝜕𝑥̂
𝜕𝑁𝐼

𝜕𝑦̂
𝑁𝐼 ]

 
 
 
 

. (54) 

Finally, after stresses are obtained from strains using a suitable constitutive law, the 

nodal “forces” are calculated based on resultants (39)- (42) as [46 p. 147] 

𝒇̂ =

[
 
 
 
 
 
 
𝑓𝑥𝐼

𝑓𝑦𝐼

𝑓𝑧𝐼

𝑚̂𝑥𝐼

𝑚̂𝑦𝐼

𝑚̂𝑧𝐼]
 
 
 
 
 
 

= 𝐴

[
 
 
 
 
 
 

𝑃𝑥 𝑆𝑦𝑥 0

𝑆𝑥𝑦 𝑃𝑦 0

𝜅𝑆𝑧𝑥 𝜅𝑆𝑧𝑦 0

𝑀𝑥𝑦 𝑀𝑦 −𝑆𝑧𝑦

−𝑀𝑥 −𝑀𝑥𝑦 𝑆𝑧𝑥

0 0 0 ]
 
 
 
 
 
 

[
 
 
 
 
 
𝜕𝑁𝐼

𝜕𝑥̂
𝜕𝑁𝐼

𝜕𝑦̂
𝜅

4 ]
 
 
 
 
 

, (55) 

where 𝐴 is the area of the element. As it can be noted from the above “force” vector, 

𝑚̂𝑧𝐼 corresponding to the 𝜙𝑧 DOF is equal to zero as there is no drill stiffness in the 

element. 

In conclusion, the downsides of the Belytschko-Lin-Tsay shell are hourglass modes due 

to under-integration, invalid results in patch test and collapsing stiffness under warping. 

The positive aspect favoring the use of this element type in shell-like structures of ex-

plicit analysis is the extreme computational efficiency due to the combined CR and iso-

parametric formulations and under-integration. 

[1; 13; 25; 46 pp. 143-153; 58 pp. 24, 60-70; 68 pp. 431-446, 480-491] 

2.8 Energy conservation 

The realization of the conservation laws is observed in explicit solution (Section 2.4.2) 

as opposed to the residuals monitored in an implicit solve (Section 2.4.1). The conserva-

tion of mass [5; 67 pp. 34-39]  

𝜌𝑉 = 𝜌0𝑉0 (56) 
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is automatically enforced in an analysis using Lagrangian mesh and therefore it is not 

necessary to track it in the post-processing phase. Rate of strain energy 

𝐸̇𝑖𝑛𝑡 =
1

𝜌
(𝜎𝑖𝑖𝛾̇𝑖𝑖 + 𝜎𝑗𝑗𝛾̇𝑗𝑗 + 𝜎𝑘𝑘𝛾̇𝑘𝑘 + 2(𝜎𝑖𝑗𝜀𝑖̇𝑗 + 𝜎𝑗𝑘𝜀𝑗̇𝑘 + 𝜎𝑖𝑘𝜀𝑖̇𝑘)) (57) 

is calculated for each element based on the input values of the previous time step. The 

total energy of the system consists of strain (integrated results of Equation (57)), kinetic, 

hourglass and dissipated energies, which must be equal to work introduced to the do-

main (and initial configuration energies) as 

𝐸𝑖𝑛𝑡 + 𝐸𝑘𝑖𝑛 + 𝐸𝑐𝑜𝑛𝑡 + 𝐸𝑑𝑎𝑚𝑝 + 𝐸ℎ𝑔 = 𝐸𝑘𝑖𝑛
0 + 𝐸𝑖𝑛𝑡

0 + 𝐸𝑤. (58) 

This must hold true for every time step for the solution to be accurate. [23] In addition 

to tracking the solution accuracy, conservation laws are used for modeling materials that 

use Equations of State (EOS), such as ideal gas law. In general, EOS links material 

quantities that cannot be calculated using constitutive laws introduced earlier in Sec-

tions 2.7.1-2.7.2. [5, 46] 

The hourglass mode is a non-physical zero-energy mode caused by reduced integration 

of the element as shown in Figure 2.8. As low order elements are used, hourglass modes 

are possible in the model (tetrahedral elements do not experience hourglass modes). The 

forces generated to restrict this mode can be seen as an error in the energy conservation 

of the model. The results are considered acceptable if the hourglass energy is lower than 

5 % of the internal energy of the model (acceptable value is 10 % based on the AN-

SYS® manual [2] and 5 % based on the ABAQUS manual [19]). 

 

Figure 2.8. The hourglass effect of a reduced integration element subjected to pure 

bending [19]. The length of both dotted lines (lines drawn from integration point) re-

main unchanged, thus resulting as zero stresses. 

To control the hourglass modes, Flanagan-Belytschko viscous hourglass control (LS-

DYNA® type 2) is used with a coefficient of 0.05 (tires use different formulation, see 

page 53 on Section 4.9.5). Hourglass control operates as an energy dissipation mecha-

nism, similar to damping, and therefore most of the parts do not require the use of sepa-

rate damping models. 
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3. FIELD TEST 

In addition to the test track, the field test was performed in real working conditions in a 

forest. Forest conditions are hard to reproduce in the simulation model (or in consecu-

tive physical tests), however, and therefore the test track presented in Section 3.2 is 

simulated instead. 

The experiments took place in June 2015. Ambient temperature was recorded to be 

+15…+20 ˚C. Therefore the material properties at room temperature can be used (see 

Chapter 4). 

3.1 Test machine 

John Deere 1010E forwarder is used as the test machine. The rear frame and compo-

nents attached to it are the regions of interest in this test. 

1010E places in the mid-range of John Deere forwarder family in terms of physical size 

and load bearing capacity [33]. 

3.2 Test track 

The test track is located at the John Deere Forestry Tampere facility. The simulated part 

of the test track consists of semicircular bumps that are arranged as shown in Figures 

3.1-3.3. Bumps are constructed of steel plates with a thickness of 12 mm. 
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Figure 3.1. Bump track general view. Driving direction shown by red arrow. Bumps 

are numbered to be referenced later in the results. 

 

Figure 3.2. Detailed view of the bump. 
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Figure 3.3. Bump track dimensions. 

3.3 Test loads 

The test track is driven with different amounts of logs in the load space. As a reference 

case, the track is driven with an empty load space. Other studied loads were 6, 9 and 12 

tons. 

3.4 Measured quantities 

The machine rear frame is fitted with several strain gauges and force transducers. The 

most interesting quantities to be compared to the simulation results are the forces meas-

ured from the rear frame wheel hubs since the forces straining the frame are transmitted 

through the tires. The sample rate for all measured quantities is 204.8 Hz. 

Strain gauge measurements cannot be directly compared to the simulation model results 

since the rear frame is modeled using shell elements with a relatively coarse mesh size 

(see Section 4.8). The model is therefore incapable of capturing local, non-linear, stress 

peaks (i.e. locations in which the strain gauges are fitted). However, there is a worka-

round for this and it is discussed in Section 6.3. 

3.5 Test results 

The machine is fitted with customized wheel hubs that include force transducers. The 

radial force reactions measured in each rear frame tire during the drive around the test 

track with a 12 ton load are shown in Chart 3.1. The machine crosses the studied portion 

of the test during the first 35 seconds (Chart 3.2 shows the same results as Chart 3.1, but 
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with horizontal axis limited). Another bump track with a different bump arrangement is 

crossed at a time period ranging from approximately 45 to 75 seconds. 

 

Chart 3.1. Rear frame wheel radial reaction forces measured at the test track with 12 

ton load. 

The right front (RF, see Figure 3.4) tire of the rear frame is the first one to hit the bump 

(no. 1 in Figure 3.1). This is shown as a peak in the reaction force (approximately 83 

kN). The second high peak is the result of left front tire (LF) hitting bump no. 2 (ap-

proximately 89 kN). It can be seen that the forces acting on the rear tires (RR and LR) 

are lower than those acting on the front tires. 

 

Figure 3.4. Notation of tires. 

RR 

RF 

LF 

LR 
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Chart 3.2. Results zoomed to crossing of the first bump track. 

Results for other load cases are shown in Chapter 5, alongside with simulated results. 

RF to bump 1. 

LF to bump 2. 

LF to bump 4. 

RF to bump 3. 
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4. MODEL 

The details of modeling for all components in the calculation model are presented in the 

following sections. The justifications for the chosen element types, simplifications 

compared to the physical real life machine and for the material models are also given. 

Since this is a dynamic analysis, it is important that the mass in each component is close 

to the mass of the real life component it represents in order to achieve correct inertial 

behavior. The densities of the simulation model components are modified to match 

weights to measured values shown in Table 4.1. Mesh and component positions at ini-

tial configuration are shown in Figure 4.1. 

Table 4.1. Measured weights of test machine components [65]. 

Part Bogie Boom Front frame Load space Rear frame Tire assembly 

Weight [kg] 1880 2573 8810 1224 1276 356 

 

The time step is set to 2 microseconds. The minimum allowed element dimension 𝑥 (see 

Table 2.1) for each element type using this time step size is calculated based on the ma-

terial properties using Equation (9). Some elements in the vicinity of complex geometry 

details are smaller than the allowed minimum sizes
H
 presented in Table 4.2. Mass scal-

ing will be used in these elements
I
. 

Table 4.2. Minimum allowed element dimensions to reach a time step of 2 µs, based 

on Table 2.1 and Equation (9).  

 E ν ρ  c  Hexahedral 

solid 

Tetrahedral 

solid 

Quad 

shell 

Tri 

shell 

 [GPa] - [kg/m
3
] [m/s] Minimum allowable element size [mm] 

Steel 200 0.3 7850 5856 13 16 13 15 

Rubber 0.03 0.49 1000 717 2 2 2 2 

Wood 1.08 0.4 596 1971 4 5 4 5 

 

The input files for the solver can be found from appendices. The inputs only include 

general controls and manually generated inputs since the full input file has over half a 

million rows and therefore would require too much space to be viewed in this report. 

                                                 
H
 Based on defined CFL time step. 

I
 These elements are mostly triangular “filler” shell elements in areas where the mesher has failed to pro-

duce a fully hexahedral mesh. 
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Figure 4.1. Mesh for the entire simulation model has approximately 151 thousand 

elements. The initial position of the machine is shown. 

4.1 Bogie 

The bogie is a complex cast part. It would require a fine solid mesh to capture all of its 

geometrical details. This would greatly affect the time step size or alternatively result as 

excessive mass scaling (see Section 2.4.3). Therefore the geometry is simplified to ob-

tain smooth surfaces of uniform thickness to be meshed using shell elements. No inner 

structures (gears, shafts, oil) are considered in the mesh. Material density is increased to 

match the mass of the model and the real part. It is estimated that the bogie is signifi-

cantly stiffer than the tires, thus a rigid representation is used (rigid parts are required 

for modeling joints). Validity of this assumption cannot be studied, however. A coarse 

mesh generated for bogie is shown in Figure 4.2. 

 

Figure 4.2. Mesh for bogie. 

Logs 

Boom 

Front frame 

Bogie Test track Tires 

Load space 

Mid-joint 

Rear frame 
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A constant rotational velocity is applied to revolute joints between bogie hubs and 

wheels. This is a simplified method that leads to some errors in accuracy of the results. 

See Section 6.5 for more information on this subject. 

4.2 Boom 

The results of the boom are not interesting in this case. During testing the grapple was 

resting on top of the logs. Forces and moments at the base of the boom were measured 

and some significant reaction moments due to boom inertia were recorded during the 

drive over the bump track (Section 4.3). Based on these facts, the boom model can be 

very simplified as long as inertial properties are included. The boom and the grapple 

will be constructed using rigid shell elements. The grapple is modeled only to produce a 

contact surface for interaction with logs. Positions for the boom at different loads are 

shown in Figure 4.3 and the simplified representation in Figure 4.4. 

  

a) 12 ton b) 9 ton 

  

c) 6 ton d) unloaded 

Figure 4.3. Approximate boom positions with different loads. 
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Figure 4.4. Simplified boom model (position according to 12 ton configuration shown 

in Figure 4.3 a)) and joint types used in it. 

4.3 Bump track 

Belytschko-Lin-Tsay shell elements are used for modeling the bump track. The con-

structed mesh is shown in Figure 4.5 and boundary conditions in Figure 4.6. Boundary 

conditions are rigid which might lead to overly stiff ground response, but studying the 

stiffness of the ground was beyond the scope of this work. 

Mass damping (LS-DYNA® keyword *DAMPING_PART_MASS [44]) with a magni-

tude resulting as 3 %
J
 of the critical damping of the lowest natural frequency of the 

bump track is used in the analysis (see Appendix C).  

                                                 
J
 The value is based on author’s estimate. 

Revolute joint to allow grapple 

vertical movement 

Fixed joint 

Fixed joint 

Spherical joint to al-

low for the grapple to 

settle on top of logs 
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Figure 4.5. Mesh for bump track. 

 

Figure 4.6. All DOFs are fixed at the highlighted edges (blue) of bump track. The 

structure has RHS tubes as reinforcement at these edges even though they are not visi-

ble in Figure 3.1. 

4.4 Front frame 

The front frame is only included in the model to obtain correct boundary conditions 

transmitting from the front axle to the rear frame through the middle joint (see Section 

4.7). The front bogie is the same as the one used in the rear. A rigid joint is defined be-

tween front bogie mounting points and middle joint bearing (LS-DYNA® keyword 

*CONSTRAINED_JOINT_REVOLUTE [44]). All DOFs except for the rotation of this 

bearing are fixed. The mass and moments of inertia for the front frame are modeled as 
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point mass (LS-DYNA® keyword *ELEMENT_INERTIA) acting on Center of Gravity 

(CoG). 

4.5 Load space 

The load space is modeled using Belytschko-Lin-Tsay shell elements. The mesh is 

shown in Figure 4.7. The load space is connected to the frame using bonded contacts. 

 

Figure 4.7. Mesh for load space. 

4.6 Logs 

The mechanical properties of wood vary with respect to fiber orientation, i.e. the mate-

rial behavior is orthotropic (or orthogonally anisotropic). The material model used for 

wood is simplified to isotropic behavior since the only expected load acting on logs is 

radial compression. Axial (parallel to fiber direction) modulus of elasticity for pine (Pi-

nus Sylvestris) is approximately 10.8 GPa and it is a function of density (and therefore a 

function of moisture level). Radial modulus of elasticity is in the order of one tenth of 

the value in axial direction. [28] Therefore a value of 1.08 GPa for elastic modulus will 

be used. The density of wood used in the simulation is 595 kg/m
3
 to obtain a mass of 

300 kg for each log (this mass helps in loading the desired test loads introduced in Sec-

tion 3.3). 

Logs used in the test runs are shown in Figure 4.8. An average log is estimated to have a 

diameter ranging from 400 mm to 300 mm as shown in Figure 4.9. A structured mesh 
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shown in Figure 4.10 is constructed using hexahedral solid elements (Section 2.7.1). 

Beam elements could also have been used in meshing the logs but the contact condi-

tions were assumed to be more realistic by using solid elements. 

 

Figure 4.8. Pine logs used in test runs have diameters ranging from 200 mm at top to 

500 mm at base. Length for all logs is approximately 5200 mm. 

 

Figure 4.9. Log dimensions in simulation. 

 

Figure 4.10. Mesh used in modeling logs. One section is removed to view mesh inside 

the log. 

The frictional forces in the contact (LS-DYNA® keyword 

*CONTACT_AUTOMATIC_SINGLE_SURFACE [44]) between the load space, grap-

ple and logs (and for log to log contact) are calculated using Equation (13) as 
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𝜇 = 0.2 + (0.5 − 0.2)𝑒−0.5|𝒖𝑓|. (59) 

4.7 Middle joint 

The middle joint is, as is the bogie, a cast iron part with complex geometric details. It is 

simplified to be modeled using shell elements and a rigid material model. The main 

function of the middle joint is to operate as a hinge for articulated steering and to allow 

for front frame to rotate with respect to the rear frame longitudal axis. In this simulation 

the steering cylinders (see Figure 4.12) are at a fixed length to keep the machine moving 

straight. The mesh for middle joint is shown in Figure 4.11. 

 

Figure 4.11. Mesh for middle joint. 

 

Figure 4.12. Joints in middle joint. Steering cylinders are modeled using spherical 

joints (rotational DOFs free, translational DOFs fixed). 

Revolute joints 

Steering cylinders 
Revolute joint 

to front frame 
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4.8 Rear frame 

As the rear frame consists of moderately thin (definition introduced in Section 2.7.2) 

sheet metal plates assembled by welding it is suitable to be modeled using shell ele-

ments. Some thick plates in the vicinity of the rear axle violate the applicability range of 

the Mindlin-Reissner plate theory, which might lead to errors in the results for these 

parts although no excessive deformation is expected in them. By using shell elements in 

all parts they can be directly joined together in the nodal level. If solid and shell parts 

are joined in the nodal level, shell rotations are left undetermined since a node of solid 

element has only translational degrees of freedom. To “weld” (to constrain all necessary 

DOFs) shell and solid parts together requires the use of some other constraint method 

than nodal connections (e.g. contacts). Consequently, to keep the model as simple as 

possible while still retaining an acceptable level of accuracy, all parts of the rear frame 

are meshed using the Belytschko-Lin-Tsay shell elements. Since all connecting parts are 

joined via shared nodes, possible reduced stiffness caused by welds with cross-sectional 

area smaller than of the plate’s is ignored, i.e. the welds are assumed to have a stiffness 

equal to the base material. 

It is assumed that the heat from welding does not cause warpage to the plates or any 

residual stresses. No misalignment of the plates during assembly is considered. That is, 

the geometry is assumed to be ideal; as designed. This is expected to have a very small 

influence to the dynamic behavior of the structure. Residuals or imperfections are not 

usually accounted for in these types of analyses [41, 63]. Initial imperfections (wave-

like deformations in plate fields and plate misalignments) affect the buckling resistance 

of the structure, but the loads used in this simulation are assumed to be much lower than 

those resulting as buckling (global loss of load bearing capacity). 

The size of the mesh elements is a compromise between accuracy, required CFL time 

step, and computation time. As it was stated in Section 2.2, results should approach the 

continuum solution, and therefore mesh independency, as the element size approaches 

zero. However by decreasing element size, the CFL time step also decreases and the 

total number of DOFs for the model increases, both of which increase the total compu-

tation time. Sufficient element size was studied using undamped modal analysis (using 

explicit analysis to study mesh dependency is evaluated to be computationally too ex-

pensive). 

Modal analysis solves eigenvalues for linearized form of Equation (1) when damping 

and external force terms equal to zero. These eigenvalues represent the modal frequen-

cies (or eigenfrequencies, natural frequencies) of the structure. Modal shape vectors can 

be calculated based on modal frequencies [56]. Modal shape vectors describe the shape 

in which the structure sinusoidally oscillates around its equilibrium position. The solver 

used in calculating the modal solution is ANSYS® Mechanical PCG (Preconditioned 

Conjugate Gradient) Lanczos Eigensolver for which the Belytschko-Lin-Tsay shell el-
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ement is not supported. The SHELL181 element with reduced integration is used instead 

since it is closest to Belytschko-Lin-Tsay within elements supported by PCG Lanczos 

Eigensolver [1]. Modal analysis is conducted with different element sizes to obtain ei-

genfrequencies as a function of element density. The results shown in Chart 4.1 are con-

sidered to be mesh independent if eigenfrequencies do not change (within a tolerance) 

with further mesh refinement. If this tolerance is chosen to be 3 %, sufficient global 

element size is 25 mm, resulting as 21 710 elements in the model of the rear frame 

when studying first three non-rigid eigenmodes shown in Figure 4.14. The chosen ele-

ment size is highlighted with red in Charts 4.1 and 4.2. The extremes of mesh densities 

used in the convergence study are shown in Figure 4.13. 

 

a) Coarse mesh, 60 mm element size b) Fine mesh, 2.5 mm element size 

Figure 4.13. Coarse and fine meshes.  

 

 

a) Torsion mode b) 1
st
 bending mode c) 2

nd
 bending mode 

Figure 4.14. First three non-rigid eigenmodes of rear frame. 
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Chart 4.1. Converging behavior of natural modes shown in Figure 4.14. 

 

Chart 4.2. Resulting number of elements for each studied global element size. 
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4.9 Tires 

The correct modeling of tire stiffness behavior is critical in this analysis since the for-

warder does not have a separate suspension system. Tires are therefore a major con-

tributor in the total dynamic behavior of the machine. Tire models used in some heavy 

machine simulations [41, 63] have been coarse since the stiffness behavior of the ma-

chine has been dominated by the suspension system (springs and shock absorbers). 

Before the adoption of FEM for modeling tires, different types of empirical (such as 

Magic Formula, Fiala) and analytical (FTire, Sharp) models were used in studying 

phenomena related to tires. All of these models are designed for specific purposes and 

therefore are not suitable for a general case. The accuracy and level of detail in the 

modeling of tires using FEM has increased dramatically in the 21
st
 century due to the 

growth of computational power. [14] 

Accurate modeling of a tire poses several challenges: 

1. Unknown material properties 

o Tire properties are altered by the manufacturers by using different types 

of rubber compounds 

o Tire manufacturers are not willing to hand out tire mechanical properties 

since they are wanted to keep as a trade secret 

o Properties of single ply (rubber matrix, belts or beads) are hard to test 

separately from a complete tire 

o Non-linear and hysteretic behavior of rubber 

o See Sections 4.9.2 and 4.9.3 

2. Internal pressure increases as tire is compressed 

o See Section 4.9.4 

3. Layered (composite) cross-section structure comprising of rubber matrix materi-

al with isotropic properties and of reinforcement belts and beads with ortho-

tropic behavior 

o See Section 4.9.5 
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Figure 4.15. Studied tire, 710/40-24.5/20 Nokian Forest King F2 SF TT [50]. 

The tire model used in the simulation of the entire machine is the one that is evaluated 

to have the best accuracy to computational efficiency ratio. This ratio is evaluated by 

simulating a single tire and varying critical parameters. Sections 4.9.1-4.9.5 show the 

results of these model verification steps. The model is then validated in Section 4.9.6 by 

comparing the results of the optimum model to the results of static testing. 

4.9.1 Mesh density 

The mesh dependency of the results was studied by compressing the tire against a rigid 

wall using different element densities in the model. The extremities of element densities 

used are shown in Figure 4.16. The results in Table 4.3 show that the deflection is mesh 

dependent even when using the finest studied mesh (even though a converging trend can 

be observed). The computation time for the fine mesh model is more than ten times 

longer due to the higher number of elements and smaller CFL time step compared to 

coarse mesh model. Therefore the use of high mesh density is not practical. Since the 

tire cross-section layup details (Section 4.9.5) are unknown, they have to be modified to 

iteratively find the correct stiffness for the tire compared to experimental results (Sec-

tion 4.9.6). This allows the use of relative coarse mesh since the artificial stiffness in-

troduced by it can be compensated through altering cross-section properties. 
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Figure 4.16. Coarse mesh on left, fine mesh on right. 

Table 4.3. Results of mesh convergence study. 

Elements in the tire Normalized deflection Change in deflection 

2150 1.00 - 

3780 1.26 26.4 % 

6210 1.42 12.3 % 

8910 1.54 8.5 % 

4.9.2 Material properties 

Rubber is used as a matrix material in the composite layup (Figure 4.23) and in solid 

treads (Figure 4.19). It is assumed to possess isotropic material properties. Since the 

material behaves in a non-linear manner (in the elastic region), simple constitutive rela-

tions (e.g. Hooke’s Law) cannot represent the stress-strain relation correctly. In addition 

to this, Hooke’s law is numerically incapable of modeling incompressible (𝜈 = 0.5) 

materials like rubber (Lamé constant lim𝜈→0.5 𝜆 = ∞ in Equation (20)). Rubber stiffness 

properties also exhibit strong relation to temperature and strain rate which further com-

plicate the implementation of universally correctly behaving material model [9, 29]. 

Despite these non-linearities, studies by Li et al. [41] and Szurgott et al. [63] have used 

a linear material model for rubber due to the fact that hyperelasticity is not supported for 

shell elements with layered composite properties (material properties for linear rubber 

are shown in Table 4.2). In this study the tire cross sections are modeled using shell 

elements and therefore hyperelastic relations can only be used for treads modeled with 

solid elements (see Figure 4.19). The stiffness behavior of the composite layup is domi-

nated by the reinforcements and therefore the error caused by the use of linear model for 

rubber should not be excessive.  
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Constitutive relations of hyperelastic materials are commonly presented via strain ener-

gy function 𝑊 which is obtained by integrating stresses with respect to strain [29, 58]. 

In LS-DYNA® this integral for the Mooney-Rivlin [48, 54] constitutive relation, which 

is used in some of the previous studies [30, 47, 60], is expressed as 

𝑊 = 𝐶10(𝐽1 − 3) + 𝐶01(𝐽2 − 3) + (0.5𝐶10 + 𝐶01)(𝐽2
−2 − 1)

+
𝐶10(5𝜈 − 2) + 𝐶01(11𝜈 − 5)

2(1 − 2𝜈)
(𝐽3 − 1)2, 

(60) 

where 𝐶10 and 𝐶01 are material parameters that need to be defined based on material 

tests. 𝐽1, 𝐽2 and 𝐽3 are the first, second and third strain invariants, respectively (see [30 p. 

12; 43 pp. 233-235; 58 pp. 200-202; 67 pp. 514-516] for further information). For in-

compressible materials the last term 

𝐶10(5𝜈 − 2) + 𝐶01(11𝜈 − 5)

2(1 − 2𝜈)
(𝐽3 − 1)2 (61) 

is left out of the equation (otherwise would lead to division by zero). In addition, 

2(𝐶10 + 𝐶01) equals to shear modulus of linear elasticity. [43 pp. 233-235, 46 pp. 374-

380] For some reason the Mooney-Rivlin material model (LS-DYNA® material 

*MAT_027 [43]) has shown excessive shear distortion compared to hyperviscoelastic 

model (LS-DYNA® material *MAT_077 [43]) in treads modeled with solid elements 

[30 pp. 13, 39]. Equation (60) is incapable of modeling the hysteretic behavior of rubber 

which would operate as an important energy dissipation (i.e. damping) mechanism. De-

spite these shortcomings the Mooney-Rivlin material model is used in this simulation 

for solid treads since material constants 𝐶10 and 𝐶01 for a similar tire are available [47 

pp. 1126-1127]. 

Due to material symmetry, only two material constants are needed for isotropic materi-

als (see Equations (20) and (21)). For orthotropic material, however, there exist fewer 

symmetry planes, and a total of nine independent material constants need to be defined 

[36 p. 85]. The reinforcement layer in the tire is modeled using an orthotropic linear 

material model. The stiffness of the reinforcement layer (see Section 4.9.5) in fiber di-

rection is assumed to be dominated by steel wires, and therefore the elastic modulus is 

chosen as (see Table 4.2) 

𝐸1 = 200 𝐺𝑃𝑎. (62) 

In direction perpendicular to the fiber, the stiffness is dominated by rubber matrix as 

(the stiffness is set two magnitudes larger in comparison to rubber properties in Table 

4.2 to avoid tire stability issues encountered using lower stiffness) 

𝐸2 = 300 𝑀𝑃𝑎. (63) 



46 

As this is a 3D analysis, stiffness in direction normal to the laminate surface must also 

be defined. It is assumed to have a negligible influence to results and is chosen as 

𝐸3 = 𝐸1. (64) 

In addition to the elastic moduli, shear moduli must also be defined for three main di-

rections as there is no similar connection as for isotropic material (see Equation (21)). 

The shear moduli for both directions orthogonal to the fiber are assumed to be dominat-

ed by steel properties and therefore the values to be used are adopted from isotropic 

steel (solved from Equation (21)) as 

𝐺23 = 𝐺31 ≈ 77 𝐺𝑃𝑎. (65) 

The shear modulus in the fiber direction is estimated to be dominated by isotropic rub-

ber properties. It was observed, however, that setting the modulus equal to the shear 

modulus calculated for linear rubber resulted as excessive shear deformations and tire 

instability. Therefore, instead of choosing the value for rubber, a value of steel was also 

set for the fiber direction as 

𝐺12 = 𝐺23 = 𝐺31. (66) 

Six Poisson’s ratios for the orthotropic layer need to be defined. The major ratios in this 

case are 𝜈12, 𝜈13 and 𝜈32 and they are estimated to be 

𝜈12 = 𝜈13 = 𝜈32 = 0.3. (67) 

The minor ratios 𝜈21, 𝜈31 and 𝜈23 can be calculated based on major ratios as [36 p. 95] 

𝜈𝑗𝑖 =
𝐸𝑗

𝐸𝑖
𝜈𝑖𝑗 . (68) 

The most dominant value of this layer is 𝐸1. Other values should not crucially influence 

the results (other than tire stability). The above material properties are summarized in 

Table 4.4. 

Table 4.4. Rubber orthotropic properties (𝐸 and 𝐺 in GPa). 

𝐸1 𝐸2 𝐸3 𝐺12 𝐺23 𝐺31 𝜈12 𝜈13 𝜈32 

200 0.3 200 77 77 77 0.3 0.3 0.3 

 

Based on these values the material stiffness matrix is assembled for orthotropic material 

as (compare to (19)) [36 p. 96] 
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[𝐷] =

[
 
 
 
 
 
 
 
 
 

1 − 𝜈23𝜈32

𝐸2𝐸3Δ

𝜈21 + 𝜈23𝜈31

𝐸2𝐸3Δ

𝜈31 + 𝜈21𝜈32

𝐸2𝐸3Δ
0 0 0

𝜈21 + 𝜈23𝜈31

𝐸2𝐸3Δ

1 − 𝜈13𝜈31

𝐸1𝐸3Δ

𝜈32 + 𝜈12𝜈31

𝐸1𝐸3Δ
0 0 0

𝜈31 + 𝜈21𝜈32

𝐸2𝐸3Δ

𝜈32 + 𝜈12𝜈31

𝐸1𝐸3Δ

1 − 𝜈12𝜈21

𝐸1𝐸2Δ
0 0 0

0 0 0 𝐺23 0 0
0 0 0 0 𝐺31 0
0 0 0 0 0 𝐺12]

 
 
 
 
 
 
 
 
 

, (69) 

where 

Δ =
1 − 𝜈12𝜈21 − 𝜈23𝜈32 − 𝜈13𝜈31 − 2𝜈21𝜈32𝜈13

𝐸1𝐸2𝐸3
. (70) 

4.9.3 Damping 

Because none of the material models discussed above are able to simulate hysteretic 

energy dissipation, some other form of damping must be included to prevent excessive 

non-physical vibrations. Relative damping (LS-DYNA® keyword 

*DAMPING_RELATIVE [44]) is used for this purpose due to its ability in only damp-

ing vibrations relative to rigid body motions (see Appendix B). By using this method 

the rigid motions themselves are not damped which is a necessary property in simulat-

ing a rolling tire. This method for damping is used in recent analyses by Reid et al. [53] 

and Shiraishi et al. [59]. The rigid body for which the damping will be relative to in 

each tire is the rim. 

A correct damping magnitude for rubber is evaluated to be 5 % of critical damping
K
. 

Relative damping requires two different inputs; the frequency to be damped (FREQ) 

and the fraction of critical damping (CDAMP). The selected frequency is recommended 

to be close to the lowest eigenfrequency [44 p. 1027]. If these parameters are chosen, a 

high frequency eigenmode shown in Figure 4.17 is excited. This leads to sidewall insta-

bilities and eventually to element failure as shown in Figure 4.18. The reason for the 

failure is insufficient damping at high frequencies since the frequencies above FREQ 

are damped less than the value of CDAMP whereas frequencies below FREQ are 

damped more [44 p. 1027]. Due to these reasons, it is necessary to either choose a high 

value for FREQ to damp high frequency modes (this would lead to excessive damping 

of low frequency modes) or use an alternative method. It was found somewhat helpful 

to switch the relative damping to *DAMPING_FREQUENCY_RANGE_DEFORM 

after damping phase at the beginning of the simulation. This method provides constant 

damping over a specified frequency range without affecting the rigid body motions [44 

                                                 
K
 The value is based on author’s estimate. 
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p. 1018]. Other measures for improving the tire stability are presented in Section 4.9.5, 

page 53. 

 

Figure 4.17. Tire sidewall eigenmode leading to instabilities. 

 

Figure 4.18. Tire instability (all front tires) leading to rupture (RF tire) can be seen as 

sidewall mesh distortion. 

The instability problem was not entirely solved. Tires start to vibrate (with small ampli-

tudes) after rigid body rotation of 180 degrees (roughly at 2.5 second after starting the 

simulation). These vibrations start to accumulate and eventually lead to ruptures after 4 

seconds. 

4.9.4 Inflation 

There are different options for inflating the tire. The simplest way would be to assign a 

constant pressure to inner surfaces of the tire. However this method does not account for 

the pressure change caused by the tire compressing under loading. 

Instability 

Rupture 



49 

To include the effect of pressure change during compression, LS-DYNA® 

*AIRBAG_SIMPLE_PRESSURE_VOLUME (this feature is called airbag for histori-

cal reasons; it was initially developed for automotive industry to model airbags) model 

can be used. This model computes the volume change of the enclosed “airbag” (in this 

case the volume of the tire) which is inversely proportional to the applied pressure [44 

p. 142]. It was found that there are very little differences between results and computa-

tion times between constant pressure and airbag-model. 

The third, and presumably the most accurate, option would be to model the air volume 

as an ALE (Arbitrary Lagrangian Eulerian) mesh and to use contact interactions be-

tween it and the Lagrangian tire. This method is computationally expensive when com-

pared to the other two. Lagrangian reference frame is most commonly used in structural 

finite element calculations due to its accuracy and efficiency in representing solid struc-

tures (the entire structure in this simulation uses this frame.) [5]. ALE is a frame of ref-

erence similar to Eulerian, which is stationary in space. Unlike pure Eulerian mesh, 

ALE mesh can move in space (as updated Lagrangian mesh) following the material de-

formation. [22] Because of the small differences between results of constant pressure 

and simple airbag modeling techniques, ALE technique was not implemented. 

Based on the above justification, the chosen pressurization technique is 

*AIRBAG_SIMPLE_PRESSURE_VOLUME. 

4.9.5 Cross-section layup 

It is not clear whether the treads should be modeled separately with solid elements or 

could they be ignored. This would make it possible to use shell elements (alone) to rep-

resent the tire geometry. Studies by Hall et al. [30] and Reid et al. [53] for truck tires 

have used a layer of solid elements in modeling the treads while studies by Barsotti 

[11], Li et al. [41] and Szurgott et al. [63] only use shell elements. The studied tire has 

relatively high tread profiles which are not axisymmetric as treads of truck tires are, but 

rather have cyclic symmetry as can be seen from Figure 4.15. Therefore the use of a tire 

model constructed purely with shell elements (and axisymmetric properties) might lead 

to erroneous results. However, a study by Mohsenimanesh et al. [47] shows that agri-

cultural tractor tire (which also has high tread profiles with cyclic symmetry) behavior 

can be predicted reasonably well without explicitly modeling the treads. Due to these 

uncertainties the tire was modeled purely with shell elements, and, for comparison, with 

solid treads. Results for differences in pressure distribution, computing time and deflec-

tion are shown in Figures 4.20 and 4.21 and Table 4.5. The difference in deflection be-

tween modeling approaches is relatively small (5 %). This difference is caused by solid 

treads compressing at the beginning of loading. At higher loading the load-deflection 

curves have approximately the same slope regardless of modeling approach of treads. 

Since the results are consistent in both modeling approaches and solid treads increase 
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the computing time significantly, a tire model with pure shell mesh is chosen to be used 

in the simulation. 

 

Figure 4.19. Mesh of tire model with solid treads. Nodes of solid and shell tire compo-

nents are merged. 

 

with solid treads without solid treads 

Figure 4.20. Comparison of contact pressures of different tread modeling techniques 

(100 kN compressing load). Pressure is higher with solid treads since the contacting 

area is smaller. 
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Table 4.5. Comparison of normalized computing times and deflections between tread 

modeling styles. 

Tread modeling Computing time Maximum deflection 

Shell 1.00 1.00 

Solid 2.38 1.05 

 

 

with solid treads without solid treads 

Figure 4.21. Comparison of deflected states on different tread modeling techniques 

(from two perpendicular cross sections). 

The layup of shell elements in the tire cross section consists of a layer of isotropic linear 

elastic
L
 and homogeneous rubber with reinforcement layers (see Section 4.9.2 for mate-

rial properties) in different orientations as shown in Figure 4.23 and Table 4.6. The rein-

forcement layers are thought to be comprised of steel wires surrounded by rubber ma-

trix. It must be emphasized that the displayed layup is not necessarily similar to the 

layup of the real tire; it is rather the result of iterative process described in Section 4.9.6. 

                                                 
L
 As was stated in Page 44, shell elements with layered properties do not support using non-linear consti-

tutive relations. 
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Figure 4.22. Default fiber orientation is tangential to the red line. 

 

Figure 4.23. Layers of tire laminate (layer thicknesses are out of scale for better visual-

ization). 

Table 4.6. Properties of tire layers. Fiber orientations shown with respect to default 

orientation (Figure 4.22). 

Layer Material Fiber orientation [˚] Layer thickness [mm] 

A Linear rubber (see page 44) - 15 

B Orthotropic reinforcement (see page 45) 90 0.22 

C Orthotropic reinforcement 0 1.1 

D Orthotropic reinforcement 0 0.22 

 

Layer A 

Layer B 

Layer C 

Layer D 

Layer A 
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It was found through preliminary analyses that the under-integrated Belytschko-Lin-

Tsay shell was unstable in modeling the tire, and therefore it cannot be used. A more 

robust fully integrated shell element (LS-DYNA® type 16 [46 pp. 169-173]) is used 

instead. This element is also reported to be used in studies by Barsotti [11] and Shokou-

hfar et al. [60]. Due to full integration, hourglass modes will not be present in the tire 

with the exception of transverse shear modes
M

 that will be damped using hourglass con-

trol type 8
N
 with a coefficient of 0.1 [24; 44 p. 1506]. This method of hourglass damp-

ing was also used by Barsotti [11]. To further improve stability of rotating components, 

second order objective stress update (based on Jaumann’s stress rate) is activated 

(*CONTROL_ACCURACY keyword flag OSU=1 (Objective Stress Updates)) as was 

also done by Barsotti [11] and Reid et al. [53]. See Section 4.9.3 for more efforts on 

improving tire stability. 

4.9.6 Static testing 

A series of static radii results for different compressive forces and inflation pressures 

were obtained from Nokian Tyres [64]. The uncompressed static radius was however 

not provided; it was read from a CAD (Computer Aided Design)-model to be 615 mm. 

Vertical tire deflections shown in Chart 4.3 with polynomial trend lines are calculated 

based on these static radii. 

To obtain correct cross section properties, an iterative process of comparing the simula-

tion results to the measurements [64] and then modifying the cross-section properties 

was conducted. The final results (with optimized layer thicknesses shown in Table 4.6) 

are shown in Chart 4.4. The cross section properties are adjusted to obtain good agree-

ment with nominal pressure (500 kPa) and moderate loads. The results show overly soft 

behavior with underinflated tire (400 kPa) when compared to the measured results. This 

might be caused by severe bending moments experienced by tire (support from internal 

pressure is lower) elements connected to the rim (see Section 6.7 for description of the 

problem). 

                                                 
M

 Reduced integration is used in this direction, which makes the element SRI (selective reduced integrat-

ed). 
N
 Full projection warping stiffness. 
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Chart 4.3. Measured static radii and trend lines crossing at origin. 

 

Chart 4.4. Comparison of simulation results to measured data show satisfactory 

agreement. 
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Although comparing simulation model results to a dynamic test results (such as the 

cleat test) would have also been important, no data were available for this. The damping 

properties of the tire would have been acquired from dynamic test results. 

4.9.7 Friction 

The friction coefficients in the contact between tires and the test track (LS-DYNA® 

keyword *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE [44]) vary with 

respect to moisture level and other ambient conditions. Therefore the coefficients are 

only estimates. The friction is calculated for tire-track contact using Equation (13) as 

𝜇 = 0.4 + (0.6 − 0.4)𝑒−0.5|𝒖𝑓|. (71) 

Friction affects the results and therefore a sensitivity study regarding tire to test track 

friction is performed in Section 5.4.4. 

4.10 Analysis sequence 

At the beginning of the simulation, tire pressure (Section 4.9.4) and earth gravity are 

stepped on. During the first 500 milliseconds of the simulation, damping on the model 

(Sections 2.6 and 4.9.2) is kept artificially high, approximately at critical damping, to 

diminish transient oscillations caused by stepped loads (dynamic relaxation). The tires 

compress and logs and boom find their correct positions during this damping phase 

(tires need at least 100 ms to compress due to their natural frequency). After 500 milli-

seconds the damping is lowered to a normal level. 

Translational initial velocity is applied to the machine after 300 ms of simulation. At the 

same time, rotational velocity is applied to all tires (Section 4.1). This rotation will be 

doing work to the domain and thus keep the forwarder moving. Initial kinetic energy 

(introduced by initial velocity) of the machine is not sufficient to keep the machine 

moving throughout the simulation. 

The analysis sequence is visualized in Figure 4.24. 
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Figure 4.24. Analysis sequence. Zero time is set to the phase when velocities are ap-

plied (this is done only for convenience since the results of the damping phase prior to 

setting initial velocities are not interesting). 

-0.3 s 

• Start simulation 

• Set earth gravity 

• Set damping artificially high 

• Inflate tires 

0 s 

• Apply initial translational velocity 

• Apply constant rotational velocity to tires 

0.2 s 
• Reduce damping to a realistic level 

~0.5 s 
• RF tire hitting bump no. 1 

~4 s 
• LF tire hitting bump no. 2 

~5 s 
• End simulation 
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5. RESULTS 

All results from the simulation are recorded at intervals matching to the sample rate of 

measured quantities (see Section 3.4). Therefore the phenomena that have a timescale 

shorter than this are not captured. The horizontal time axes of the measured results are 

moved to match the sequence presented in Figure 4.24. 

The rear frame tire forces (Section 5.1) are displayed for all studied load cases whereas 

other results (Sections 5.2-5.4) are only shown for the 12 ton load since the forces act-

ing on this load case are the largest (and therefore also deformations, stresses and 

amount of mass scaling are most significant). 

The machine position at different stages of the simulation is shown in Appendix F. 

5.1 Tire forces 

The forces acting on the tires have the highest values in the 12 ton load case. Therefore 

the reporting of forces for this load case will be more thorough than for the others. 

Each of the following sections contain radial tire force results for each rear frame tire 

(see Figure 3.4) as a function of time. The simulated (Chapter 4) and measured (Chapter 

3) results are plotted to same graphs to be compared for validation (Section 2.2). For the 

12 ton load case, the radial forces of right hand side tires are also decomposed in verti-

cal (normal to ground) and horizontal (parallel to driving direction) components to bet-

ter understand the radial results. 

Measured radial tire forces for RF tire in different load cases are shown in Chart 5.1 for 

comparison. Force peaks in 9 and 12 ton load cases are surprisingly similar, 9 ton load 

case peaks are locally even higher than in 12 ton load case. The measured rear frame 

tire forces at unloaded load case
O
 are lower than anticipated based on machine weight 

(see “RF Radial, Measured, 0 ton” at 0 ≤ 𝑡 ≤ 0.5 𝑠 in Chart 5.1). 

Similar to measured values in Chart 5.1, Chart 5.2 shows the simulated values in com-

parison. A 6 ton load case was also simulated, but the measured results for it were unus-

                                                 
O
 The mass of the rear frame should be evenly distributed to all rear frame tires when the machine is mov-

ing in planar surface. The horizontal tire forces are negligible at this phase (0 ≤ 𝑡 ≤ 0.5 𝑠) and therefore 

the average value of the tire force resultant should correspond to the weighed [65] static values. For un-

loaded load case in Chart 5.1 this measured resultant force is approximately 3 kN when the correct value 

would be approximately 18 kN [65]. 
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able (the results for studied part of the test track was missing). Therefore the only re-

sults for 6 ton load case are the ones presented in Chart 5.2. 

 

Chart 5.1. Measured radial reaction forces of RF tire compared for different load 

cases. 

 

Chart 5.2. Simulated radial reaction forces of RF tire compared for different load 

cases. 
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5.1.1 12 ton 

Immediately it can be seen that the simulated results are more “restless” on high fre-

quencies (small short duration oscillations) compared to measured results. This suggests 

that the damping values used on high frequencies should be higher on the simulation 

model (Section 4.9.3). 

As can be noted from Chart 5.3, the horizontal force peaks on right hand side tires (also 

holds true for left hand side tires) are opposite in sign, meaning that the resultant hori-

zontal force of the tire pair, shown in Chart 5.4 (sum of RF and RR forces), does not 

have oscillations as high as individual tires do. The first horizontal peak at RF tire oc-

curs at 𝑡 ≈ 0.7 𝑠. This is, as was stated in Section 3.5, caused by the tire hitting bump 

no. 1. An opposite reaction for this peak with a smaller magnitude can be seen in RR 

tire. 

The second force peak occurs at 𝑡 ≈ 2.7 𝑠, when both right-side tires are at bump no. 1 

(see Figure 5.1 and Appendix F). These peaks are larger in simulation model than they 

are in reality. It is estimated that this is caused by the constant rotational velocity ap-

plied on the rims (see Section 4.1). In the physical machine the tires are not forced to 

rotate at exactly same velocity at all times. The use of a differential and a torque limiter, 

presented in Section 6.5, might improve results in this area. The friction between the 

test track and tires (Sections 4.9.7 and 5.4.4) also plays an important role in the horizon-

tal forces; differences can be explained to some level by a possibly different tire grip on 

field test and simulation. One more possible explanation for the second force peak is the 

stiffness of the fixed boundary condition used for the test track (see Figure 4.6); in reali-

ty the ground response might be softer, resulting as lower force peak. 

With the exception of difference between second force peak results, the simulated hori-

zontal forces correlate well with the measured values. 
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Chart 5.3. The horizontal forces of the right-side tires of the rear-frame. 
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Figure 5.1. The right-side tires of the rear frame crossing bump no. 1 at 𝑡 ≈ 2.7 𝑠. 

 

Chart 5.4. Sum of horizontal forces of right hand side tires (RF and RR in Figure 

3.4). 

Vertical forces shown in Chart 5.5 also experience a peak force when RF tire collides to 

bump no. 1. The machine rear frame tilts around its longitudal axis as right hand side 

tires cross the bump (1 𝑠 < 𝑡 < 2 𝑠). This tilting causes the rear frame CoG to shift to-

wards the left hand side tires. This can be seen as reduced vertical reactions on the right 

hand side. Similarly the reactions increase on the left hand side. A high peak is observed 
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at 𝑡 ≈ 2.7 𝑠. It is estimated to be caused by same reasons as the horizontal peak (see 

page 59). 

 

Chart 5.5. The vertical forces of the right-side tires of the rear-frame. 

Charts 5.6-5.9 show the radial reaction forces acting on the tires. Radial force is the re-

sultant of horizontal and vertical force vectors. The correlation is reasonable with the 

exception of the force peaks discussed earlier. Some temporal deviation between simu-

lated and measured force peaks are observed at 𝑡 > 3 𝑠. This can be interpreted as the 

physical machine slowing down since the measured peaks occur later than the simulated 

one. The simulated peak of LF tire hitting bump no. 2 is higher than the measured value. 
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Chart 5.6. RF tire radial reactions. Simulated radial peak force of RF tire hitting 

bump no. 1 is 5 % larger than the measured one. 

 

Chart 5.7. LF tire radial reactions. Simulated radial peak force of LF tire hitting 

bump no. 2 is 27 % larger than the measured one. 
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Chart 5.8. LR tire radial reactions. 

 

Chart 5.9. RR tire radial reactions. 

5.1.2 9 ton 

The observations for radial tire forces shown in Charts 5.10-5.13 are similar to the ones 

that are already discussed in the previous section. However, the difference between 

force peaks at 𝑡 ≈ 2.7 𝑠 is smaller in this load case than it was for 12 ton load case. The 
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magnitude of the force peak caused by LF tire hitting bump no. 2 is underestimated by 

the simulation model (see Chart 5.11). It is interesting to note that this peak was overes-

timated for 12 ton load case (Chart 5.7). This might imply that there is some deviation 

in the measurement process. 

 

Chart 5.10. RF tire radial reactions, 9 ton load. 

 

Chart 5.11. LF tire radial reactions, 9 ton load. 
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Chart 5.12. LR tire radial reactions, 9 ton load. 

 

Chart 5.13. RR tire radial reactions, 9 ton load. 

5.1.3 Unloaded 

As was already noted in page 57 (see footnote) and Chart 5.1, the measured radial forc-

es are smaller than expected at times before and after impacts (see Charts 5.14-5.17). 
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The simulation results show restless oscillatory behavior, which can be interpreted as 

bouncing of the rear frame because there is no cargo to damp these motions. 

 

Chart 5.14. RF tire radial reactions, unloaded case. 

 

Chart 5.15. LF tire radial reactions, unloaded case. 
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Chart 5.16. RR tire radial reactions, unloaded case. 

 

Chart 5.17. LR tire radial reactions, unloaded case. 
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5.2 Global stress state 

Global stress levels are viewed for the load space and rear frame (12 ton load case). As 

both of these parts are modeled using shell elements, the resulting stresses do not ac-

count for local stress concentrations in connections of joint plates. 

Chart 5.18 shows the time history of maximum von Mises stresses for the rear frame. It 

can be seen that most of the highest stresses are caused by forces due to weight of the 

cargo. Stress peak is reached just before applying initial velocity (𝑡 ≈ −0.05 𝑠, see Fig-

ure 4.24). The high damping at this phase however dissipates some of the energy and 

the maximum stress decreases to a “quasi-static” state (0.15 𝑠 < 𝑡 < 0.45 𝑠) as the ma-

chine rear frame is moving on a flat surface. Just before the first impact (rear frame RF 

tire to bump 1, see Chart 3.2 and Figure 3.1) the stress level plunges
P
 and rises again at 

impact (𝑡 ≈ 0.7 𝑠). The stress states of these two points (illustrated in Chart 5.18) are 

shown in Figure 5.2. The most critical areas are the load space mounting points and the 

vicinity of the rear axle. 

 

Chart 5.18. Maximum von Mises stress time history of the rear frame. 

                                                 
P
 This might be due to forces exerted from the front frame; RF tire of front frame hits bump no. 3 at ap-

proximately 𝑡 ≈ 0.5 𝑠 
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Figure 5.2. Von Mises stresses of the rear frame before first impact and at the impact 

(see Chart 5.18 for notation). 

The load space is stressed most by the cargo as can be seen from Chart 5.19. Stress level 

rapidly increases after applying gravity. After peaking at 𝑡 ≈ −0.1 𝑠 (see Figure 5.3), 

damping forces slowly decrease the stress level. The forces exerted to the load space 

during the drive across the test track merely induce some minor oscillations to the stress 

field caused by the cargo (𝑡 > 0.7 𝑠). Based on this, it can be inferred that (at least at 

high loads) the stresses at load space are dominated by the cargo and not much affected 

by the dynamic tire forces. The stresses are highest at the rearmost posts. This is likely 

to be caused by the location of the grapple (grapple weight is ~500 kg, see Figure 4.3) 

and more robust structure of the components located at the front section of the load 

space. 

 

Chart 5.19. Von Mises stress time history of the load space. 
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Figure 5.3. Von Mises stresses due to log-load space interactions after applying 

gravity. See Section 5.3 for more information on forces acting on load space. 

5.3 Deformations 

The deformation results are not very interesting in this simulation. The only reported 

results are the load space lateral (Figures 5.4 and 5.5) and vertical (Figure 5.6) deflec-

tions produced by cargo.  

 

Figure 5.4. The rearmost posts bend approximately 55 mm (laterally) due to forces 

generated by the logs and the grapple. 
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Figure 5.5. Deformations viewed from another angle. Initial state (see Chart 5.19 for 

notation) shown on left and deformed state, after applying gravity, shown on right. 

 

Figure 5.6. Vertical deflections at t=0 s. Rear frame vertical movement is higher as 

the mass of the rear frame is higher than that of the front frame. 
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5.4 Solution accuracy 

Major aspects affecting the accuracy of the solution are presented in the following sec-

tions. 

5.4.1 Energy conservation 

The accuracy of the solution based on energy balance of Equation (58) is evaluated in 

this section. Chart 5.20 shows energies as a percentage of system total energy (sum of 

terms in the left side of the equation). When interpreting the chart, it must be noted that 

the total energy varies with time. 

The external work at 𝑡 < 0 𝑠 is caused by tire pressurization. After velocity initializa-

tion the torque rotating the tires becomes the main source of external work. As tire in-

stabilities (Section 4.9.3) progress, the tire internal pressure once again starts to play a 

role in the magnitude of the external work. As the tires of the rear frame climb over the 

bumps, the rear frame CoG rises to higher gravity potential; this is shown as a rise in 

external work. 

Some kinetic energy is present at the beginning of the simulation (damping phase, 

−0.3 𝑠 < 𝑡 < −0.1 𝑠). This is caused by vertical deflections (see Figure 5.6). Kinetic 

energy then increases due to applied velocities and plunges when RF tire hits bump 

no. 1. Kinetic energy seems to slowly decrease during the simulation, but this is not the 

case since the total energy of the system rises as simulation progresses (therefore the 

absolute value of kinetic energy remains nearly constant even though its fraction of total 

energy decreases). 

Prior to applying initial velocities (at 𝑡 = 0 𝑠), the major contributor in the total energy 

of the system is the tire internal energy caused by pressurization. Internal energies due 

to strains at other parts also contribute to this. Internal energy increases as the machine 

hits bump no. 1. As all parts behave in an elastic manner, internal energies are released 

after the collision. 

The hourglass energy remains at approximately 5 % of total energy throughout the sim-

ulation, which is an acceptable value as was stated in page 25, Section 2.8. 

Damping energies (Sections 2.6, 4.3 and 4.9.3) are small throughout the simulation 

compared to system total energy. 
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Chart 5.20. Different forms of energies as fractions of total energy throughout the 

simulation. 

The energy ratio is obtained by dividing the left side of Equation (58) with the right 

side. This ratio, shown in Chart 5.21, should be close to unity ensure solution accuracy. 

LS-DYNA does not, by default, include hourglass energy to this ratio as it is artificial 

[23]. Most of the deviation from unity is explained by neglected hourglass energies in 

calculating the ratio. After the tire instabilities start to take control, the energy ratio 

starts to rise at a very fast pace. 

 

Chart 5.21. Energy ratio. 
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5.4.2 Floating point number accuracy 

LS-DYNA® can solve the model using either single or double precision accuracy in 

handling floating numbers. It is not always known beforehand which precision should 

be used. Double precision is suggested for analyses with long duration (=large number 

of time steps) where single precision might lead to cumulative error [42]. It was found 

that the use of double precision resulted as a 25 % longer solution time compared to 

single precision. As the resulting difference between these methods is small (see Chart 

5.22), single precision will be used. 

 

Chart 5.22. Comparative results of horizontal force on the right front tire of rear 

frame for single and double precision solutions. Note that these results are from a mod-

el used early in the simulation process. The results of this chart therefore differ from 

results presented in Section 5.1. 

5.4.3 Mass scaling 

The global amount of mass scaling (see Section 2.4.3) needed to satisfy the require-

ments of the desired CFL step (see Equation (8) and Table 4.2) is shown in Chart 5.23. 

Mass scaling remains low at 𝑡 < 3.5 𝑠, but starts to rapidly grow after this due to mass 

scaling required in tire sidewalls (increasing tension caused by instabilities in sidewalls 

decreases the CFL time step, see Section 4.9.3). 
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Chart 5.23. Added mass as a percentage of total mass. 

The scaled elements are shown in Figure 5.7. Scaling is highest in triangular “filler” 

elements and in ill shaped quadrilateral elements.  

 

Figure 5.7. Elements with mass scaling (zero in blue elements and maximum in red 

elements). 
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5.4.4 Tire friction 

As was stated earlier in Sections 4.9.7 and 5.1, the magnitudes of the friction coeffi-

cients acting in the contact between tire and ground affect the results. Therefore a sensi-

tivity study is conducted using different friction coefficients (see Equations (13) and 

(71)) as shown in Table 5.1. 

Table 5.1. Studied friction coefficient combinations and resulting force peaks (12 ton 

load case) in kN. Combination 6-4 is used in the simulation model. 

Combination 𝜇𝑠 𝜇𝑑 RF to bump 

no. 1 

Compared to 

measured value 

LF to bump 

no. 2 

Compared to 

measured value 

8-5 0.8 0.5 84.7 +2 % 103.6 +16 % 

6-4  0.6 0.4 86.9 +5 % 113.2 +27 % 

4-3 0.4 0.3 94.2 +14 % 114.6 +29 % 

2-2 0.2 0.2 105.2 +27 % 115.9 +30 % 

 

The effects of the friction coefficients to RF tire radial forces (in 12 ton load case) are 

shown in Chart 5.24 (Curve marked “6-4” corresponds to simulated values of Chart 

5.6). Similarly, results for LF tire are shown in Chart 5.25. The force peaks of RF and 

LF tire hitting bumps no. 1 and 2, respectively, are also listed in Table 5.1 with compar-

ison to measured values (measured values from Charts 5.6 and 5.7). 

The force peaks seem to increase in magnitude as coefficients of friction get smaller. 

This is likely to be caused by the decrease in “braking” (friction) forces of other tires as 

the tire hits the bump. The tires have (as discussed earlier in Section 4.9) coarse treads 

which might, in conjunction with the “grip plates” (L-beams welded to bumps, shown in 

figures of Sections 3.2 and 4.3) dramatically increase the grip force of the tire as it 

crosses the bump. The tire model used in the simulation does not have treads modeled, 

which might partly explain the overshoots of simulated force peaks. 

Force peaks (after bump no. 1) are also “delayed” in smaller friction values. This is 

caused by slipping tires; the friction forces are not large enough to allow for the tire 

contacts to have a relative velocity equal to zero (thus 𝒖𝑓 ≠ 0 in Equation (71)). 
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Chart 5.24. Comparison of effect of different friction coefficient combinations of Table 

5.1 to RF radial tire forces. 

 

Chart 5.25. Comparison of effect of different friction coefficient combinations of Table 

5.1 to LF radial tire forces. 
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5.5 Computing time 

The computing time required to simulate the 12 ton load case (duration 5 seconds) was 

approximately 10 hours using MPP (Massively Parallel Processing) LS-DYNA with 20 

processor cores at 2.8 GHz. Other load cases were cheaper to compute. 
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6. SUGGESTED FURTHER WORK 

Some ideas for further development and use for the model introduced in this work are 

presented in the following sections. 

6.1 Cargo loading 

The forces caused by loading of the logs (e.g. log drop to load space or collision to load 

space posts) can be analyzed using a model similar to the one presented in this report. 

6.2 Collision simulation 

Some issues with the durability of underframe hatches and shields have been observed 

in the past [26]. Results from simulating these hatches/shields with a model similar to 

the one used in this report can be used for optimizing the design of them. Realistic con-

ditions can be simulated by colliding the entire machine with an obstacle hitting the 

shield, e.g. a stone or a tree stump (the modeling of rocks with Discrete Element Meth-

od (DEM)/FEM has been studied by Larsson [38]). A material model capable of simu-

lating plasticity (such as multilinear isotropic hardening or multilinear kinematic hard-

ening for cyclic plasticity) must be used in the frame and hatches in this kind of simula-

tion since stresses above the yield limit are expected. In addition to hatches/shields, this 

type of simulation can also be used for determining dozer blade or bumper loads in col-

lision (or when turning the machine against an obstacle). 

6.3 Implicit dynamic fatigue model 

The reaction force/moment history from the explicit dynamic simulation results can be 

used as input for a mode superposition linear implicit dynamics model. The reactions 

transmitting from the bogie, the middle joint and the load space must be included in 

order to study the rear frame using this method. The implicit model can also be modeled 

using shell elements. Due to mode superposition and linearity this model is computa-

tionally relatively inexpensive (when compared to implicit transient non-linear solution 

with full method). [7] 

It is important to calculate this model using a dynamic solver rather than a static solver. 

For impulse loadings (step load or square impulse) with a duration much shorter than 

the eigenfrequency of interest the resulting stress state will be lower than that of the 

static solution, i.e. the results of static analysis are over-conservative. Systems with 
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damping lower than critical damping and long duration impulse loadings (duration 

equal to or longer when compared to the duration of eigenfrequency) will respond with 

a stress state that is higher than the static solution, i.e. the static solution becomes un-

conservative. 

The results of the static analysis are erroneous due to the neglected inertial effects (in 

static analysis Equation (1) is in a form that does not include time derivatives of dis-

placement vector, only internal and external force vectors). A static solver should only 

be used if the loading is applied slowly enough (ramped loading with ramp time equal 

to or higher than the eigenfrequency duration), i.e. when the solution becomes quasi-

static (inertial effects are negligible even though the loading is transient). 

After solving the implicit model, the deformations (deformation based sub-modeling, 

“cut-boundary displacement method”, is implemented in ANSYS® [6], but some other 

codes use force based sub-modeling) of the region of interest can be interpolated to 

boundaries of an effective notch stress method [27] sub-model constructed with solid 

elements. Inertial effects on the localized sub-model should be negligible and therefore 

the use of a static solver should be acceptable (this needs to be verified). 

6.4 Other machines 

One of the goals of this work was to study the ability of the simulation model to predict 

forces acting on the machine. As results are reasonable, the construction of computa-

tional models for larger forwarders (and possibly harvesters) would be profitable. The 

modeling effort required for simulating other machines is greatly reduced when com-

pared to the machine simulated in this report since suitable methods have now been de-

veloped. 

6.5 Power train 

A more sophisticated (compared to method described in Section 4.1) method for trans-

mitting torque to wheels, explained in following sections, was also tested. Due to accu-

racy, stability and software issues these features were not however implemented in the 

final simulation model. By fine tuning these methods, they might be used in future 

models. 

6.5.1 Differential 

The movement of the forwarder during the simulation is done by adding a constant rota-

tional velocity to each joint between the rims and the bogie hubs (see Section 4.1). This 

can be interpreted as a 100 % locking differential which is not exactly the case in the 

physical machine, as the bogie does not have a locking differential and therefore the 

tires on the left can rotate at a different speed compared to the right side. Both tires on 
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one side (LF and LR tires have equal velocity, RF and RR tires have equal velocity) of 

the bogie are forced to rotate at an equal speed since they are mechanically connected 

via gears. The forwarder has a central differential lock that fixes the relative speed of 

the front and rear frame bogie power intakes. The tires going over the test track bump 

(see figures in Section 3.2) travel a distance 16 % longer compared to the tires on the 

other side that travel on a planar surface. A traditional differential gear allowing a dif-

ference in the rotational velocity provides an equal torque to each wheel pair (left and 

right) [51]. A differential gear shown in Figure 6.1 is modeled to achieve these proper-

ties. 

The ring gear is connected to the planet gear via gear joint (LS-DYNA® keyword 

*CONSTRAINED_JOINT_GEARS [44]), as are both sun gears to planet gear. Both of 

the sun gears transmit the rotation to rear axle wheels through pulley joints (LS-

DYNA® keyword *CONSTRAINED_JOINT_PULLEY [44]). Input file for the differ-

ential can be found from Appendix D. 

 

Figure 6.1.  Components of differential gear. 

It was observed that some numerical instability emerged when using multiple joint defi-

nitions for a single rigid body. Therefore a flexible body (see Figure 6.1) was added 

between each connecting rigid body. It was also found that the default joint formulation 

(LS-DYNA® card *CONTROL_RIGID variable LMF=0, explicit penalty formulation 

[44]) was incapable of modeling the joints of differential gear (non-physical behavior 

observed during simulation). To fix this, LMF=1 (Implicit formulation with Lagrange 

multipliers) was used instead [10]. 

Flexible 

Rigid 

Left sun gear 

Right sun gear 

Planet gear 

Ring gear 
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This method was not used since the gears would start traveling out of their intended 

paths after experiencing a certain level of rigid rotation. It is estimated that this is a nu-

merical accuracy issue. 

6.5.2 Torque limiter 

As the machine is driven in altering terrain and a constant rotational velocity, ω, is de-

fined for the differential, the required torque varies with respect to time. 

It was found that the torque required for keeping up ω includes some peaks higher than 

the maximum torque output of the machine. If the torque is exceeded more than it was 

in this analysis, it might result as unrealistic force peaks monitored on the tires. To ad-

dress this problem, a torque limiter could be added to the differential using *SENSOR 

keywords [44]. A visual flowchart of this ideal sequence is shown in Figure 6.2. 

First, the torque input to the differential by ω (see Section 6.5.1) would be monitored 

via *SENSOR_DEFINE_FORCE. If the torque exceeds the limit defined by 

*SENSOR_SWITCH, *SENSOR_CONTROL disables ω. After disabling ω, another 

*SENSOR_CONTROL would turn on the constant torque and the resulting ω would be 

monitored (possibly via *SENSOR_DEFINE_NODE). When ω exceeds the originally 

defined constant value, control is again switched from constant torque to constant ω. 

This sequence would keep both ω and torque within the limits set. [45] 

The ideal sequence described above could not be used since *SENSOR keywords do 

not support using the keyword *LOAD_RIGID_BODY, which would be used in defin-

ing the constant torque for the differential. Instead, a draft for torque limiter (tested in 

R7.1.1) shutting down ω for a defined time (TIMWIN) after torque is exceeded is pre-

sented in Appendix E 

The reason for not using the limiter (neither of the forms described above) was a soft-

ware bug found on LS-DYNA® version R8.0.0 that results as an error when attempting 

to use *SENSOR keywords in conjunction with *CONSTRAINED_JOINT keywords 

[39]. LS-DYNA® version R7.1.1 could not be used since it does not support NREP 

(NREP enables looping of the specified sensor) within keyword 

*SENSOR_CONTROL. 
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Figure 6.2. Flowchart clarifying the ideal torque limiter. 

6.6 Special terrains 

Softer terrains, such as snow, mud or forest floor can be modeled using DEM. Tire and 

soft soil interactions using DEM have been studied earlier, for example by Li [40] and 

Smith et al. [61]. The machine can then be driven in these soft terrains and, for example, 

in steep hills to simulate machine rollovers. Rollover (ROPS) and falling object (FOPS) 

test are required for forestry machine cabins. The properties of these protective systems 

can be computed in different scenarios using explicit dynamics model (element failure 

is easier to model in explicit dynamics than it is in implicit dynamics). The laboratory 

tests required by corresponding ISO standards can also be simulated. 
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6.7 Tire model improvement 

In the future, when computing power further increases, the tire model could be made 

more accurate by using denser mesh (for mesh-independent results) and possibly solid 

elements (this might remove tire stability issues; the fact that tire instabilities emerged 

after a rigid rotation of 180 degrees, despite all of the stabilization mechanisms used, 

suggests that the problem might be in shell element formulation). Tire might even be 

simplified to be modeled without composite structure (using isotropic material and layer 

properties) without significantly affecting the accuracy (or at least by using an isotropic 

transverse reinforcement, layer B in Figure 4.23). 

The tire was attached to the rim using a bonded contact as shown in Figure 6.3. The 

contacting elements in the tire were found to deform abnormally when the tire was pres-

surized. This was probably due to high bending moments experienced by these elements 

(bonded contact ties rotational DOFs in addition to translational DOFs). This defor-

mation might be avoided by modeling the rim lip (the area in which the tire and the rim 

connect) with higher accuracy and using a frictional contact between the parts. This 

would also require modeling the reinforcement beads to the tire. The distorted elements 

connected to the rim via bonded contact are shown in Figure 6.4. 

 

Figure 6.3. Mesh at tire cross section. 

 

Figure 6.4. Highly distorted elements at cross section of a tire inflated to 400 kPa and 

compressed using a force of 100 kN. 

Bonded 

contact 
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7. SUMMARY 

The goal of creating a simulation model capable of replicating the forces measured from 

the physical test was achieved with reasonable accuracy. The simulated tire forces cor-

related well with measured values with only one major deviance at ~2.7 seconds (see 

Section 5.1 for explanation, especially Charts 5.3 and 5.5). The correct evaluation of the 

largest force peaks is important since they contribute most to the fatigue life of the ma-

chine components. The measured and simulated force peak results and their comparison 

is shown in Table 7.1. For example, the difference between simulated and measured 

values of RF tire (see Figure 3.4) hitting bump no. 1 (see Figure 3.1) in 12 ton load case 

is approximately 5 % (shown in Chart 5.6). The RF tire forces are also evaluated with 

good accuracy
Q
 in 9 ton load case but are underestimated in unloaded case. The forces 

on LF tire, when hitting bump no. 2, are overestimated in 12 ton load case, but underes-

timated in 9 ton and unloaded cases. This might imply that there is some deviation in 

the measurement process since the differences are not consistent between load cases. 

The underestimation of both force peaks in unloaded case is most likely due to oscilla-

tory behavior shown in results (Section 5.1.3), which in turn is estimated to be caused 

by coarse modeling of the boom and its contact to the load space
R
. 

Table 7.1. Comparison of measured and simulated radial force peaks [kN]. 

Load case Force peak Measured Simulated Difference 

12 ton 
RF to bump no. 1 83 87 +5 % 

LF to bump no. 2 89 113 +27 % 

9 ton 
RF to bump no. 1 76 77 +1 % 

LF to bump no. 2 91 84 -7 % 

Unloaded 
RF to bump no. 1 44 37 -16 % 

LF to bump no. 2 47 37 -20 % 

 

The stiffness properties of the tires were found to be a dominant factor in the dynamic 

behavior of the entire machine
S
. Test results for tire dynamic properties were unavaila-

ble and therefore the validity of the used tire model in terms of dynamic properties 

could not be evaluated. In addition to tire stiffness, the precision of modeling the torque 

                                                 
Q
 The simulated force peak of RF tire hitting bump no. 1 is, however, narrower than the measured one, 

thus containing less energy. 
R
 The exact position of the grapple in the load space during measurement is also unknown. 

S
 As was stated in Section 4.9, the studied machine does not have a suspension system in addition to the 

tires; this is why correct stiffness of the tires is crucial. 
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transmitted to tires via the power train was found to be a major contributor in the result-

ing tire forces
T
 (see Sections 4.1 and 6.5). Tire friction depends on ambient conditions, 

thus the values of friction coefficients have to be more or less “guessed”. A sensitivity 

analysis (see Section 5.4.4) showed that the magnitudes of the force peaks are sensitive 

to the used values of friction coefficients. 

The stress levels of the rear frame and load space were observed to be governed by the 

forces exerted from the weight of the cargo. The rear frame stresses had larger oscilla-

tions due to the tire forces compared to the stresses on the load space (see Section 5.2). 

Since shell elements with coarse discretization were used, the results of local stress con-

centrations are not accurate. 

The force results of this simulation can be used as boundary conditions in a consequent 

implicit fatigue analysis for which a workflow is suggested in Section 6.3. The model 

built in this work can also be used as a basis for simulating other load cases such as car-

go loading (Section 6.1), collisions (Section 6.2) and ROPS/FOPS cases (Section 6.6). 

Studying other machine sizes in the product family (and possibly other product fami-

lies) would be efficient since methods are now developed (Section 6.4). 

Controlling the tire high frequency vibrations proved to be a challenging task and there-

fore the tire model requires some further development if it is desired to be used in a 

simulation with a long duration. Energy ratio and amount of mass scaling start to dra-

matically rise after the tires begin to rupture, both of which in conjunction with the rup-

ture itself will eventually invalidate the results (this happens approximately after 5 sec-

onds of simulation). The use of solid elements in the tires instead of shell elements 

might solve this problem and testing them should be the next step in improving the 

model (see Section 6.7). 

                                                 
T
 Unfortunately, due to instabilities of the differential mechanism, no sensible comparison between dif-

ferent methods of applying tire rotation could be made. 
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APPENDIX A GENERAL CONTROLS, LS-DYNA INPUT 

$# LS-DYNA Keyword file 
*KEYWORD 
*DATABASE_FORMAT 
$    iform   ibinary                                                      unused 
         0         0                                                             
*CONTROL_TERMINATION 
$   endtim    endcyc     dtmin    endeng    endmas                        unused 
         6  10000000     0.001         0    100000                               
*CONTROL_TIMESTEP 
$   dtinit    tssfac      isdo    tslimt     dt2ms      lctm     erode     ms1st 
         0       0.9         0         0    -2E-06         0         1         0 
$   dt2msf   dt2mslc     imscl                                            unused 
         0         0         0                                                   
*CONTROL_CONTACT 
$   slsfac    rwnpal    islchk    shlthk    penopt    thkchg     orien    enmass 
         0         0         1         1         1         0         2         0 
$   usrstr   usrfric     nsbcs    interm     xpene     ssthk      ecdt   tiedprj 
         0         0         0         0         0         0         0         0 
$    sfric     dfric       edc       vfc        th     th_sf    pen_sf    unused 
         0         0         0         0         0         0         0           
$   ignore    frceng   skiprwg    outseg   spotstp   spotdel   spothin   unused1 
         2         1         0         1         0         1       0.5           
$     isym    nserod    rwgaps    rwgdth     rwksf      icov    swradf    ithoff 
         0         0         0         0         0         0         0         0 
$   shledg    pstiff    ithcnt    tdcnof     ftall                       unused2 
         1         0         0         0         1                               
*CONTROL_ENERGY 
$     hgen      rwen    slnten     rylen                                  unused 
         2         2         2         2                                         
*CONTROL_ACCURACY 
$      osu       inn    pidosu                                            unused 
         1         4         0                                                 0 
*CONTROL_BULK_VISCOSITY 
$       q1        q2      type                                            unused 
       1.5      0.06        -2                                                   
*CONTROL_SOLID 
$    esort    fmatrx   niptets    swlocl                                  unused 
         1         0         0         0                                         
$    pm1     pm2     pm3     pm4     pm5     pm6     pm7     pm8     pm9    pm10 
       0       0       0       0       0       0       0       0       0       0 
*CONTROL_SHELL 
$   wrpang     esort     irnxx    istupd    theory       bwc     miter      proj 
        20         1        -1         4         2         1         1         1 
$  rotascl    intgrd    lamsht    cstyp6    tshell    nfail1    nfail4   psnfail 
         0         0         0         0         0         1         1         0 
$   pstupd    irquad     cntco                                            unused 
         0         0         2                                                   
*CONTROL_OUTPUT 
$    npopt    neecho    nrefup    iaccop     opifs    ipnint    ikedit    iflush 
         1         0         0         0         0         0         0         0 
$    iprtf    ierode     tet10    msgmax    ipcurv                        unused 
         0         0         0         0         0                               
*CONTROL_PARALLEL 
$     ncpu    numrhs    consti      para                                  unused 
         0         0         1         0                                         
*CONTROL_SOLUTION 
$     soln       nlq     isnan     lcint                                  unused 
         0         0         0         0                                         
*CONTROL_HOURGLASS 
$      ihq        qh                                                     unused1 
         2      0.05                                                             
*CONTROL_ALE 
$      dct      nadv      meth      afac      bfac      cfac      dfac      efac 
         0         1         1        -1         0         0         0         0 
$    start       end     aafac     vfact      prit       ebc      pref   nsidebc 
         0     1E+20         0         0         0         0         0         0 
*CONTROL_RIGID 
$      lmf      jntf    orthmd     partm    sparse    metalf    plotel     rbsms 
         1         0         0         0         0         0         0         0 
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APPENDIX B MANUAL INPUT, RELATIVE DAMPING 

$*********** RELATIVE DAMPING start *********** 
$*********** Create Load Curve  *********** 
*DEFINE_CURVE 
$ LCID, SIDR, SCLA, SCLO, OFFA, OFFO 
2001, 
$ ABSCISSA, ORDINATE 
0,10 
0.5,10 
0.51,5 
0.52,0 
6,0 
$*********** End of Create Load Curve  *********** 
*DAMPING_RELATIVE 
, 40, 680, 688,, 2001 
*DAMPING_RELATIVE 
, 40, 682, 690, ,2001 
*DAMPING_RELATIVE 
, 40, 681, 689,, 2001 
*DAMPING_RELATIVE 
, 40, 683, 691, ,2001 
*DAMPING_RELATIVE 
, 40, 684, 692, ,2001 
*DAMPING_RELATIVE 
, 40, 686, 694,, 2001 
*DAMPING_RELATIVE 
, 40, 685, 693, ,2001 
*DAMPING_RELATIVE 
, 40, 679, 687, ,2001 
*SET_PART_LIST 
688, 0, 0, 0, 0, MECH 
688, 0, 0, 0, 0, 0, 0, 0 
*SET_PART_LIST 
690, 0, 0, 0, 0, MECH 
690, 0, 0, 0, 0, 0, 0, 0 
*SET_PART_LIST 
689, 0, 0, 0, 0, MECH 
689, 0, 0, 0, 0, 0, 0, 0 
*SET_PART_LIST 
691, 0, 0, 0, 0, MECH 
691, 0, 0, 0, 0, 0, 0, 0 
*SET_PART_LIST 
692, 0, 0, 0, 0, MECH 
692, 0, 0, 0, 0, 0, 0, 0 
*SET_PART_LIST 
694, 0, 0, 0, 0, MECH 
694, 0, 0, 0, 0, 0, 0, 0 
*SET_PART_LIST 
693, 0, 0, 0, 0, MECH 
693, 0, 0, 0, 0, 0, 0, 0 
*SET_PART_LIST 
687, 0, 0, 0, 0, MECH 
687, 0, 0, 0, 0, 0, 0, 0 
$*********** RELATIVE DAMPING end *********** 
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APPENDIX C MANUAL INPUT, MASS DAMPING 

$*********** MASS DAMPING start *********** 
$*********** Create Load Curve  *********** 
*DEFINE_CURVE 
$ LCID, SIDR, SCLA, SCLO, OFFA, OFFO 
2002, 
$ ABSCISSA, ORDINATE 
0,1680.5259 
0.5,1680.5259 
0.51,420.1315 
0.52,42.0131 
6,42.0131 
$*********** End of Create Load Curve  *********** 
*DAMPING_PART_MASS 
573,2002,1 
*DAMPING_PART_MASS 
574,2002,1 
*DAMPING_PART_MASS 
575,2002,1 
*DAMPING_PART_MASS 
576,2002,1 
*DAMPING_PART_MASS 
577,2002,1 
*DAMPING_PART_MASS 
578,2002,1 
$*********** MASS DAMPING end *********** 
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APPENDIX D MANUAL INPUT, DIFFERENTIAL GEAR 

$*********** REAR DIFFERENTIAL start *********** 
$*********** Create Joint RIGHT_side_gear_out to Differential_pinion_right *********** 
*CONSTRAINED_JOINT_COOR_GEARS_ID 
$ ID, HEADING 
1000,RIGHT_side_gear_out_to_Differential_pinion_right 
$ RBID_A,RBID_B,RPS,DAMP,TMASS,RMASS 
729,718,0.1,, 
$X,Y,Z 
0,-50,-16.999 
50,0,-16.999 
0,-100,-16.999 
100,0,-16.999 
35.355,-50,18.356 
50,35.355,18.356 
$# PARM, LCID, TYPE, R1 
1,,,50 
$*********** End of Create Joint RIGHT_side_gear_out to Differential_pinion_right *********** 
$*********** Create Joint Differential_pinion_left to LEFT_side_gear_out *********** 
*CONSTRAINED_JOINT_COOR_GEARS_ID 
$ ID, HEADING 
1001,Differential_pinion_left_to_LEFT_side_gear_out 
$ RBID_A,RBID_B,RPS,DAMP,TMASS,RMASS 
743,727,0.1,, 
$X,Y,Z 
50,0,-16.999 
0,50,-16.999 
100,0,-16.999 
0,100,-16.999 
50,35.355,18.356 
35.355,50,18.356 
$# PARM, LCID, TYPE, R1 
1,,,50 
$*********** End of Create Joint Differential_pinion_left to LEFT_side_gear_out *********** 
$*********** Create Joint LEFT_side_gear_LF to LF_rim_in *********** 
*CONSTRAINED_JOINT_COOR_PULLEY_ID 
$ ID, HEADING 
1002,LEFT_side_gear_LF_to_LF_rim_in 
$ RBID_A,RBID_B,RPS,DAMP,TMASS,RMASS 
725,744,0.1,, 
$X,Y,Z 
0,50,-16.999 
700,1055,-192 
0,100,-16.999 
700,1105,-192 
35.355,50,18.356 
735.355,1055,-156.645 
$# PARM, LCID, TYPE, R1 
1,,,50 
$*********** End of Create Joint LEFT_side_gear_LF to LF_rim_in *********** 
$*********** Create Joint LEFT_side_gear_LR to LR_rim_in *********** 
*CONSTRAINED_JOINT_COOR_PULLEY_ID 
$ ID, HEADING 
1003,LEFT_side_gear_LR_to_LR_rim_in 
$ RBID_A,RBID_B,RPS,DAMP,TMASS,RMASS 
726,747,0.1,, 
$X,Y,Z 
0,50,-16.999 
-700,1055,-192 
0,100,-16.999 
-700,1105,-192 
35.355,50,18.356 
-664.645,1055,-156.645 
$# PARM, LCID, TYPE, R1 
1,,,50 
$*********** End of Create Joint LEFT_side_gear_LR to LR_rim_in *********** 
$*********** Create Joint RIGHT_side_gear_RF to RF_rim_in *********** 
*CONSTRAINED_JOINT_COOR_PULLEY_ID 
$ ID, HEADING 
1004,RIGHT_side_gear_RF_to_RF_rim_in 
$ RBID_A,RBID_B,RPS,DAMP,TMASS,RMASS 
730,745,0.1,, 
$X,Y,Z 
0,-50,-16.999 
700,-1055,-192 
0,-100,-16.999 
700,-1105,-192 
35.355,-50,18.356 
735.355,-1055,-156.645 
$# PARM, LCID, TYPE, R1 
1,,,50 
$*********** End of Create Joint RIGHT_side_gear_RF to RF_rim_in *********** 
$*********** Create Joint RIGHT_side_gear_RR to RR_rim_in *********** 
*CONSTRAINED_JOINT_COOR_PULLEY_ID 
$ ID, HEADING 
1005,RIGHT_side_gear_RR_to_RR_rim_in 
$ RBID_A,RBID_B,RPS,DAMP,TMASS,RMASS 
728,746,0.1,, 
$X,Y,Z 
0,-50,-16.999 
-700,-1055,-192 
0,-100,-16.999 
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-700,-1105,-192 
35.355,-50,18.356 
-664.645,-1055,-156.645 
$# PARM, LCID, TYPE, R1 
1,,,50 
$*********** End of Create Joint RIGHT_side_gear_RR to RR_rim_in *********** 
$*********** Create Load Curve 2000 *********** 
*DEFINE_CURVE 
$ LCID, SIDR, SCLA, SCLO, OFFA, OFFO 
2000, 
$ ABSCISSA, ORDINATE 
0,0 
0.3,0 
0.3,-1.2647 
6,-1.2647 
$*********** End of Create Load Curve 2000 *********** 
$*********** Create Joint Ring_gear_inner to Housing *********** 
*CONSTRAINED_JOINT_COOR_ROTATIONAL_MOTOR_ID 
$ ID, HEADING 
1006,Ring_gear_inner_to_Housing 
$ RBID_A,RBID_B,RPS,DAMP,TMASS,RMASS 
722,10,0.1,, 
$X,Y,Z 
0,-50,-16.999 
0,-50,-16.999 
0,-100,-16.999 
0,-100,-16.999 
35.355,-50,18.356 
35.355,-50,18.356 
$# PARM, LCID, TYPE, R1 
,2000,0, 
$*********** End of Create Joint Ring_gear_inner to Housing *********** 
$*********** REAR DIFFERENTIAL end *********** 
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APPENDIX E MANUAL INPUT, TORQUE LIMITER 

$*********** Create Restrict torque on differential *********** 
$ Track torque input to differential 
*SENSOR_DEFINE_FORCE 
$ SENSID, FTYPE, TYPEID, VID, CRD 
1007, JOINT,1006, YMOMENT, 
$ Set maximum allowable torque 
*SENSOR_SWITCH 
$ SWITID, TYPE, SENSID, LOGIC, VALUE, FILTRID, TIMWIN 
1008,SENSOR,1007,GT,22875000,,0.000045 
$ Control constant rotational velocity of the differential (constant velocity terminated when torque exceeds maximum) 
*SENSOR_CONTROL 
$ CNTLID, TYPE, TYPEID, TIMEOFF, NREP 
1010, JOINT,1006,0,-1 
$ INITSTT, SWIT1, SWIT2, SWIT3, SWIT4, SWIT5, SWIT6, SWIT7 
On,1008, 
$*********** End of Create Restrict torque on differential *********** 
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APPENDIX F ANALYSIS WALKTHROUGH 

  

𝑡 = 0 𝑠 𝑡 = 0.5 𝑠 

  

𝑡 = 1 𝑠 𝑡 = 1.5 𝑠 

  

𝑡 = 2 𝑠 𝑡 = 2.5 𝑠 

  

𝑡 = 3 𝑠 𝑡 = 3.5 𝑠 

 

 

𝑡 = 4 𝑠  

 


	1. Introduction
	1.1 Motivation for analysis
	1.2 John Deere Forestry Oy
	1.3 Cut to length forestry equipment
	1.4 Structure of the report

	2. Computational method
	2.1 Software
	2.1.1 ANSYS®
	2.1.2 LS-DYNA®

	2.2 Validation and verification
	2.3 Finite element method
	2.4 Time integration
	2.4.1 Implicit method
	2.4.2 Explicit method
	2.4.3 Time step controls

	2.5 Contact algorithms
	2.6 Dynamic relaxation
	2.7 Elements
	2.7.1 Solid
	2.7.2 Shell

	2.8 Energy conservation

	3. Field test
	3.1 Test machine
	3.2 Test track
	3.3 Test loads
	3.4 Measured quantities
	3.5 Test results

	4. Model
	4.1 Bogie
	4.2 Boom
	4.3 Bump track
	4.4 Front frame
	4.5 Load space
	4.6 Logs
	4.7 Middle joint
	4.8 Rear frame
	4.9 Tires
	4.9.1 Mesh density
	4.9.2 Material properties
	4.9.3 Damping
	4.9.4 Inflation
	4.9.5 Cross-section layup
	4.9.6 Static testing
	4.9.7 Friction

	4.10 Analysis sequence

	5. Results
	5.1 Tire forces
	5.1.1 12 ton
	5.1.2 9 ton
	5.1.3 Unloaded

	5.2 Global stress state
	5.3 Deformations
	5.4 Solution accuracy
	5.4.1 Energy conservation
	5.4.2 Floating point number accuracy
	5.4.3 Mass scaling
	5.4.4 Tire friction

	5.5 Computing time

	6. Suggested further work
	6.1 Cargo loading
	6.2 Collision simulation
	6.3 Implicit dynamic fatigue model
	6.4 Other machines
	6.5 Power train
	6.5.1 Differential
	6.5.2 Torque limiter

	6.6 Special terrains
	6.7 Tire model improvement

	7. Summary
	Appendix A General controls, LS-DYNA input
	Appendix B Manual input, relative damping
	Appendix C Manual input, mass damping
	Appendix D Manual input, differential gear
	Appendix E Manual input, torque limiter
	Appendix F Analysis walkthrough

