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Multi-touch gestures are widely used on touch screens to scale, rotate, or otherwise
transform geometric objects such as maps and images. Typical gesture recognition
implementations handle one or two touch points successfully but work in various
unnatural and error-prone ways with additional fingers or users which are increas-
ingly common due to growing screen sizes. We claim this deficiency to originate
from the lack of software developer friendly material for estimating transformations
from unlimited and changing number of touch points. We attempt to correct that by
deriving 7 reliable and fast algorithms to estimate an optimal translation, rotation,
scaling, or one of their combinations from any number of touch points. Mathe-
matically this reduces to solving an optimal nonreflective similarity transformation
matrix through the least squares method for each combination. We present the
algorithms in implementation-ready source code, show them to be computation-
ally efficient, and implement them in a production-ready software package called
Nudged.
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Diplomityö, 59 sivua
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Monikosketusohjatut geometriset muunnokset ovat yleinen tapa skaalata, kiertää ja
siirtää kosketusnäytöllä esitettäviä geometrisia kappaleita kuten karttoja ja ku-
via. Tyypilliset muunnoseleen tunnistavat toteutukset ovat suunniteltu yhdelle tai
kahdelle sormelle ja reagoivat vaihtelevin ja virheherkin tavoin näyttöjen kasvaessa
yleistyviin useampiin sormiin tai käyttäjiin. Väitämme tämän ongelman johtu-
van julkisen, toteuttajille suunnatun lähdemateriaalin puutteesta koskien muun-
nosten estimointia rajoittamattomasta ja muuttuvasta määrästä kosketuspisteitä.
Pyrimme täyttämään puuttuvan aukon johtamalla luotettavat ja nopeat algoritmit
laskemaan optimaalisen skaalauksen, kierron, siirron tai näiden yhdistelmän useasta
kosketuspisteestä. Matemaattisesti tämä pelkistyy optimaalisen, ei-peilaavan simi-
laarimuunnoksen ratkaisemiseksi jokaiselle yhdistelmälle pienimmän neliösumman
menetelmää käyttäen. Esitämme algoritmit toteutusvalmiina lähdekoodina, osoi-
tamme niiden olevan laskennallisesti tehokkaita ja tarjoamme ne tuotantovalmiissa
ohjelmistopaketissa nimeltä Nudged.
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1 INTRODUCTION

In this thesis, we present how unlimited number of fingers and users can be equally
respected on a touch screen to rotate, scale, and translate geometric objects in a way
that is more general, natural, and error-free than current, widely spread two-finger
multi-touch transformation gestures. Figure 1.1 gives an initial example of an appli-
cation using the method we are about to present. We provide the results in a format
easily accessible to software developers and show the results to be mathematically
optimal and computationally efficient.

In Chapter 2, we discuss the current state of multi-touch transformations and their
drawbacks. On these drawbacks, we build a motive to propose equal handling of
unlimited fingers and users. We find the proposal be a nontrivial optimal estimation
problem that fortunately has known solutions in literature but unfortunately they
are not yet applied to multi-touch. We also find the solutions in the literature being
represented only in matrix algebra notation, thus making them hard to approach by
a software developer.

In Chapter 3, due to the challenges found in Chapter 2, we establish a mathe-
matical framework to apply the solutions to multi-touch. First, we formulate the
transformation estimation problem and define a matrix representation for 7 types
of geometric transformations that are often needed in user interfaces. These are
translation, rotation around a pivot, scaling around a pivot, and their composites.
Second, we describe known estimation solutions for finding such transformations
that are optimal in a sense that they minimize the sum of squared residuals between
two sequences of points, here the touch points of the fingers.

In Chapter 4, we build a transformation estimator for each of the 7 types. For each,
first we mathematically derive a closed-form solution for an optimal transformation,

Figure 1.1: A 4-finger composite rotation, scaling, and translation on a real device,
made possible by the results of this thesis.
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then we inspect special cases where the closed-form solution is not defined, and
finally and most importantly, represent the results in a consistent, implementation-
ready algorithm written in Python for readability.

In Chapter 5, we propose a method how the newly derived algorithms can be applied
in the real-world touch user interface programming. We also present a production-
ready software package Nudged and more experimental package Taaspace, which
already implement and apply the algorithms to serve needs of web applications. In
addition to touch interaction, we show how the algorithms can be applied to spatial
correction and, interestingly, geometric layout.

In Chapter 6, we analyze the algorithms from the point of view of their computa-
tional efficiency by using computational complexity theoretic concepts time com-
plexity and space complexity. We favorably find the algorithms to be linear in time
and constant in memory consumption. We also measure their actual performance in
two web browsers for reference and conclude them to be applicable even on low-end
hardware. In addition to efficiency, we discuss initial user feedback and possible
improvements such as iteratively weighted least squares to give robustness if input
points occasionally contain large measurement errors.

Finally, we conclude the thesis by giving an overview on the results. We also propose
topics for subsequent research, namely user experience studies, to further validate
the applicability of the results on touch user interfaces.
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2 BACKGROUND

To begin the journey, let us first dive into the palpable world of multi-touch interac-
tion and its current challenges. With them in mind, we then become able to propose
an improvement and finally, by basing on previous research, describe how it can be
made concrete.

2.1 Multi-touch interaction

Since the explosion of mobile devices, touch screens and touch-interactive applica-
tions have become more and more apparent in our daily lives. First touch-enabled
displays were much like the mouse, allowing only one simultaneous touch point [1].
As the displays began to understand multiple touch points, the benefits of multi-
finger interaction became more clear. As a consequence, various methods were
invented for how movements of fingers could be understood by a computer.

A popular one of such methods is a pinch-like gesture called the pinch zoom. In
the pinch zoom, as illustrated in Figure 2.1, two fingers become associated with two
points on a plane, for example a map, a web page, or a photo. As the fingers move,
the plane evenly scales to each direction in a way that the two points remain under
the fingers as close as possible. In addition to this uniform scaling, sometimes also
horizontal and vertical translation and rotation are allowed.

A reason behind popularity of pinch zoom and direct touch manipulation in general
is how they succesfully mimic the interaction in the real world [2]. Imagine that you
have a piece of cardboard on a slick table like in Figure 2.2. With one finger you
can press the piece and move it around. Exactly the same is possible with a touch

Figure 2.1: The pinch zoom is often used on touch devices to scale geographic
maps. The map shrinks when the index finger and the thumb are moved closer to
each other during a pinch-like gesture.
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Figure 2.2: A piece of black cardboard on a slick wooden table.

screen. The familiarity of the interaction makes it easy for users to discover, learn,
and remember the required interaction methods [3].

Another but related benefit of multiple touch points is that they allow the use of
multiple hands and the cooperation of multiple users. Especially when a touch sur-
face is large, the use of both hands is a natural method of interaction and there is
enough room for several users to benefit from it, in a way similar to the traditional
whiteboards used in education and planning. In spite of being still relatively expen-
sive, large touch screens are becoming more and more common. Therefore, robust
methods to interact with them are more and more important.

2.2 Geometric transformations

In pinch zoom, a touch screen first captures the finger movements and then a software
interprets the movements to scale a geometric object represented on the screen.
Scaling, as well as rotation and translation, are geometric transformations. Therefore
on an abstract level, we are discussing about transformations that are first detected
from movements of touch points and then applied to a geometric object.

There are multiple types of geometric transformations and their applications are
very common in computer graphics. For example, projective transformations are
vigorously used in 3D graphics to create a sense of depth. In vector graphics,
affine transformations such as rotation, scaling, translation, shear, and reflection
are common. See Figure 2.3 for visual description of the types.

For the needs of direct touch manipulation, an interesting subset of affine transforma-
tions is called the set of nonreflective similarity transformations [4] or alternatively
rigid-body transformations [5]. We choose to use the former due to its clarity be-
cause the latter is sometimes used synonymously with rigid transformations which
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Figure 2.3: Eight common types of geometric transformations: (1) the identity
i.e. the original image, (2) a translation, (3) a rotation, (4) a uniform scaling, (5)
a perspective projection, (6) a shear, (7) a reflection, and (8) a nonuniform scaling.

prohibits the scaling [6]. Anyhow, what makes the nonreflective similarity transfor-
mations interesting is how they are ubiquitous in our physical world. They include
translation, uniform scaling, and rotation but do not allow shearing, non-uniform
scaling, and, as the name tells, reflection. In nature, we cannot stretch or shear
a piece of wood or a rock but we still can rotate them and move them closer and
farther. Although we can perceive reflection of an object from still water, in our
physical world we cannot manipulate an object directly to make it a mirror of the
original. Therefore, nonreflective similarity transformations offer us a very familiar
and thus powerful interaction space.

2.3 Multi-touch transforming

Rotation, scaling, and translation are common in touch applications. Map appli-
cations where the map surface can be moved around, such as Google Maps for
smartphones, provide a good example. On web browsers, scrolling and zooming
(vertical translation and scaling) are extremely common. In games, game charac-
ters, inventory items, and other objects are being dragged (translated) around.

However, typically the applications take into account only up to two fingers to
compute the transformation. Also, the ways in which the other possible touching
fingers are handled differ from application to application. The restriction as well as
the heterogeneity lead to multiple inconveniences in the interaction.

A popular multi-touch software package Hammer.js is one example [7]. In Ham-
mer.js, the two fingers that define the transformation are the two that first touch
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Figure 2.4: The undesired modal nature of the two-finger largest distance approach.
(1) Three fingers are laid down on a geometric object so that one is between the other
two at the middle of the object. (2) The one is moved away from the middle and
seems not to affect the object in any way. (3) If the one is moved far enough, it
suddenly starts to affect the object by stealing the control from either one of the other
two.

the screen. Additional fingers are totally ignored, except in translation where they
are equally respected. However, if then one of the fingers is lifted and put back, a
sudden unexpected rotation and scaling takes place [8].

The default Maps application of Apple mobile operating system iOS 9.3.1 uses
similar approach but without unexpected rotation or scaling. However, if a third
finger is added and either one of the first two is removed, rotation and scaling
are not anymore possible with the remaining ones. In Google Maps version 4.18.0
for Apple iOS, also translation respects only the first two fingers. For additional
confusion, two-finger translation tilts the map by default, making it look more three-
dimensional, but translates it instead if done directly after a rotate or scale.

Respecting only the first fingers can be inefficient and prone to error [9, p. 254].
For example, if a pinky and a ring finger are the first two, the user is able to
scale relatively little when compared to scaling with a pinky and a thumb. On the
contrary, if the pinky and the ring finger were very close to each other at first, a
small gesture could yield a much larger impact than intended.

Probably the best two-finger approach is where the two are the two with the largest
distance between them. The captured transformation highly correlates with the
gesture [9, p. 254] and works even with two hands because there is probably more
distance between the hands than between fingers. Of course, the other fingers must
be gracefully handled also in this approach. However, even this has its own quirks.
With more than two fingers, it is not always clear which two are respected. Also,
users might experience discontinuity in the interaction. For example, as illustrated
in Figure 2.4, a third finger between the outermost two does not initially affect
the gesture. However, if the third is moved so that it becomes a new outermost,
suddenly it starts to affect.
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All in all, even though all of these approaches work in typical use cases, they only
partially resemble the interaction we are familiar with in the physical world. Any-
thing we touch, the force transmitted to object via our fingertips does neither depend
on their order nor their distance relations. A desire to mimic the real-world intera-
cion is not only common sense but supported by results in usability research [2].
For example, the usability expert Jacob Nielsen’s 10 design heuristics recommend
”match between system and the real world” [3]. The same has been recommended
in both Microsoft’s and Apple’s touch design guidelines [10][11].

Additionally, Microsoft’s guidelines state: ”Don’t use the number of fingers used to
distinguish the manipulation whenever possible.” Where the two-finger approaches
do not precisely follow this guideline, many operating systems (OSs) directly violate
it. Apple iOS 9 by default uses 4 and 5 finger gestures for switching between
applications. Where iOS provides a setting to disable this feature, Linux based
Ubuntu 14.04 reserves 3 finger gestures for the same purpose but does not provide
any easy method to disable them [12]. As a consequence, users are forced to keep
the other fingers off the screen, which is burdensome and prone to error.

From this, and previously mentioned challenges, we can hypothesize that users might
have learned to avoid using more than two fingers concurrently. The trend might
feed itself because users might appear to not need additional fingers. Also, due to
the limitations artificially placed by OSs, the application are designed to work only
with up to two fingers and conversely the restrictions survive as applications do not
ask for support for additional fingers. Therefore in this thesis, it is our job to break
the loop by developing an improved approach that avoids the pitfalls and provides
distinctive and natural touch experience.

2.4 N-pointer approach

To overcome the problems of the two-finger approaches, in this thesis we propose
that by equally taking into account each touch point, we can provide a more natural
and predictable user experience. The improved approach should handle an unlimited
number of concurrent touch points equally and resemble a real physical interaction.
Because not all fingers touch the surface at the same time and new touch points can
appear and some disappear during the transformation gesture, the approach is also
required to handle the dynamics in the number of touch points.

A key challenge in this approach is how to compute the transformation from the
movements of touch points. We can describe the problem as follows (See also Figure
2.5). Given two sequences X and Y of two-dimensional points, find a nonreflective
similarity transformation that optimally models a mapping from X to Y. By opti-
mal, we mean that the transformation should map the Nth point of X as close to
the Nth point of Y as possible, in a way that the sum of their squared distances
is minimized. The sequences are obviously required to have the same number of
points. How should we solve this mathematical problem?
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Figure 2.5: A N-pointer transformation estimation problem illustrated with 3
points. (Left) We are given domain points x1, x2, and x3 and range points y1,
y2, and y3. (Right) Our task is to find such a transformation that when the domain
points are transformed, the sum of their squared distances ε21, ε22, and ε23 to the range
points is minimal.

Fortunately, a similar problem has been confronted in computer vision, computer
graphics, and calibration and called point set registration, point matching, or Pro-
crustes superimposition in literature. The problem has known solutions. For over
three decades, multitude of authors have worked on this exact problem and come up
with well-defined mathematical methods and solutions. The authors include Kab-
sch [13], Haralick et al. [14], Maintz & Viergever [15], Umeyama [16], Challis [17],
and Alexander et al. [18]. The problem is so common that in 2013 the Image Pro-
cessing Toolbox by MathWorks introduced a function fitgeotrans that finds a given
type of geometric transformation between given point pairs [4]. The available types
include the nonreflective similarity.

Despite the number of publications and delicate methods, none represented the re-
sults in a way that would be accessible to an average user interface developer. We
cannot assume each developer to have a deep understanding on matrix algebra con-
cepts such as matrix multiplication and inversion, not to mention pseudo-inverses or
singular value decomposition. To apply the mathematical results from publications,
a developer is required to understand how the matrices behave and what do they
represent. To write error-free, quality code, the develop should be aware of special
cases that might arise in the solutions, such as singular, non-invertible matrices.

None of the mentioned publications and implementations discuss multi-touch inter-
action, further raising the barrier for developers. The meaning of mathematically
represented solutions and their special cases would need to be interpreted into con-
cepts of touch interaction. To raise the barrier even higher, the publications provide
solutions for only a few of the transformation types we are interested in. The de-
veloper would thus need to understand also the methods how the solutions were
derived and reapply them to obtain the full set of solutions. The readily available
fitgeotrans does not help much because it is proprietary and only available for MAT-
LAB, which is not among the programming languages the touch user interfaces are
typically build with. Also, for our case, it would provide a solution only for the
composite translation, scaling, and rotation.



CHAPTER 2. BACKGROUND 9

From all these problems in implementations and shortcomings in literature, no won-
der why multi-touch transformations are commonly limited to two fingers. It seems
that the designers of these implementations did not have publicly available, under-
standable, or purpose-fitting reference material to rely on. Also, even if a reference
was known, the bar was probably too high and benefits too unknown to reject
two-finger approaches. Furthermore, the task of extracting transformation from
a two-finger gesture can be relatively easy and thus even attracting for a skilled
developer, lowering the interest to invest time to study complex material.

It seems that the world is missing a important reference on how to implement multi-
touch transformations for unlimited number of fingers. In this thesis our main goal
is to change that. Therefore we need to present an approach where each finger
is treated equally without an upper limit for their number. The approach must
be capable to handle change in the number of fingers and cover all the important
transformation types needed in touch user interfaces. It also needs to do all this in
a way we are used to in the physical world.

To ensure the approach can reach developers and eventually users, we represent the
set of algorithms in source code listings that are easy to read and implement. The
algorithms need to be production-ready, meaning that special cases are taken into
account and the algorithms shown to be computationally efficient. This ensures
fail-free, fast, and scalable computation and minimizes the need for developers to
dive into the mathematical notation.
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3 METHOD

In this chapter we describe the challenge of transformation estimation in mathe-
matical terms and do groundwork required to derive estimation algorithms. The
mathematical notation used here mostly follows Elementary Linear Algebra: A Ma-
trix Approach by Spence et al. [19]. Matrices are denoted with uppercase letters B,
scalars with lowercase letters b, vectors with bold lowercase letters b, and sets with
calligraphic uppercase letters B.

3.1 Problem formulation

Our problem is to find a best estimate for a nonreflective similarity transformation
between two point sequences. Let us begin by defining the transformations we are
dealing with.

A nonreflective similarity transformation of a two-dimensional real column vector x
to a vector y can be expressed as a combination of a 2x2 scaling matrix S, a 2x2
rotation matrix R, and a displacement vector t:

SRx + t = y (3.1)

Its expanded form is given:

[
λ 0
0 λ

] [
cos θ − sin θ
sin θ cos θ

] [
x1
x2

]
+

[
t1
t2

]
=

[
y1
y2

]
(3.2)

However, as Möbius presented in 1827 [20], if vectors are represented in homogeneous
coordinates we can write Equation 3.2 without addition:



1 0 t1
0 1 t2
0 0 1





λ 0 0
0 λ 0
0 0 1





cos θ − sin θ 0
sin θ cos θ 0

0 0 1





x1
x2
1


=



y1
y2
1


(3.3)
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We can compose the matrices into one:



λ cos θ −λ sin θ t1
λ sin θ λ cos θ t2

0 0 1





x1
x2
1


=



y1
y2
1


(3.4)

By letting s = λ cos θ and r = λ sin θ, we can represent the equation in an alternative,
slightly simpler way:



s −r t1
r s t2
0 0 1





x1
x2
1


=



y1
y2
1


(3.5)

The equation can also be compactly written:

Fx = y (3.6)

Given only one pair of vectors (x, y) we have two equations and four unknowns λ, θ,
t1, and t2. Thus, with only 1 vector pair our system is under-determined and it can
have multiple solutions. With 2 pairs the number of equations matches the number
of unknowns and therefore an exact solution can be found analytically. We would
stop here if we were only interested in two-finger transformations.

However, we are interested in the general case where there is n pairs of vectors. Let us
represent them as two matrices X =

[
x1 x2 · · · xn

]
and Y =

[
y1 y2 · · · yn

]
.

Note that X,Y ∈ R3×n. We call X the domain and Y the range. We write our system
simply:

FX = Y (3.7)

If n > 2 then our system has 2n equations and thus is over-determined. It does not
have solution except in rare cases. Therefore we must incorporate a residual matrix
E to even out differences:

FX = Y + E (3.8)

where E =
[
ε1 · · · ε n

]
∈ R3×n.

Equation 3.8 formalizes our problem: given X and Y , find F that minimizes the
residual E. However, E is a matrix and there could be multiple loss functions to
measure its minimality, for example the sum of absolute values.
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We make a popular decision that the value of the loss function L(E) equals the sum
of squared Euclidean distances of residual vectors ε1 · · · ε n:

L(E) =
n∑

i=1

3∑
j=1

ε2i j =

n∑
i=1

ε i
>ε i (3.9)

Therefore for FX = Y + E, we are interested to find such F̂ that minimizes the loss:

F̂ = argmin
F

L(E)

= argmin
F

L(FX − Y )
(3.10)

Finding F̂ is a well-known and solved problem in linear regression. Before we look
into that, let us define possible restrictions we would place on F̂ in multi-touch
interaction.

3.2 Transformation groups

Here we define the different types of nonreflective similarity transformations in group
theoretic terms. We will find that in the context of this thesis, it is more convenient
to discuss about more vague types than exact algebraic groups. However in this
section, groups are used. Due to the context of transformations, we especially refer
to groups closed under matrix multiplication.

3.2.1 Basic groups

Let us define 3 basic groups of transformations, translations GT and uniform scalings
GS and rotations GR around origin. Given arbitrary parameters λ, θ, t1, t2 ∈ R, their
members T ∈ GT , S ∈ GS, and R ∈ GR can be defined as follows:

T =



1 0 t1
0 1 t2
0 0 1


(3.11)

S =



λ 0 0
0 λ 0
0 0 1


(3.12)

R =



cos θ − sin θ 0
sin θ cos θ 0

0 0 1


(3.13)
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By composing transformations from these 3 basic groups, we are able to derive more
complex groups. As each of the basic groups has its independent free parameters,
the composites have a higher degrees of freedom. In other words the composites are
less restricted.

3.2.2 Composite groups

By composing members from the basic groups we can construct linear systems with
desired set of free parameters. For example the system T RX = Y + E describes a
system where only parallel movement and rotation are allowed. The system with
the most (4) degrees of freedom is given:

T SRX = Y + E (3.14)

where the domain X , the range Y , and the residual E are as previously described in
Section 3.1.

The transformations that result from the composition do not usually belong to any
of the basic groups. Composed translation and rotation move a sequence of points
in a way that often cannot be represented by either alone. Instead, these composites
form their own larger groups. We can immediately think of 4 groups: GT S, GT R,
GSR, and GT SR. Their members are defined as follows:

T S =



λ 0 t1
0 λ t2
0 0 1


(3.15)

T R =



cos θ − sin θ t1
sin θ cos θ t2

0 0 1


(3.16)

SR =



λ cos θ −λ sin θ 0
λ sin θ λ cos θ 0

0 0 1


=



s −r 0
r s 0
0 0 1


(3.17)

T SR =



λ cos θ −λ sin θ t1
λ sin θ λ cos θ t2

0 0 1


=



s −r t1
r s t2
0 0 1


(3.18)

However, the power set of the letters T, S, and R surprisingly yields not 7 but 8
combinations:

P({T, S, R}) =
{
{}, {T }, {S}, {R}, {T, S}, {T, R}, {S, R}, {T, S, R}

}
(3.19)
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Interestingly the empty set {} is included. In group theoretic terms this is called
the trivial subgroup and is included in all the others as a special case. For example
zero-degree rotation as well as zero translation equals the identity. In our case, this
is the transformation group of the identity transformation, GI .

Even though it might seem useless to consider a system like I X = Y + E, it will turn
out to be valuable. We will face situations where the estimation lets at least one
transformation parameter to be arbitrary. In those situations, no unique optimal
solution can be found and a subset of the allowed transformations are equally valid.
However, in multi-touch applications, a randomly chosen arbitrary movement would
be annoying. Therefore, our best choice is to choose the simplest best alternative
that, as we will see, is often the identity and if not identity, then the optimal
translation. Also in machine learning, it is often customary to favor the simplest
models [21, p. 713] as well as simply stated by the Ockham’s razor.

3.2.3 Pivoted groups

The rotation and scaling groups GS, GR contained only transformations around
origin. We are however interested of transformations around any given fixed pivot
point p. In the context of similarity transformations the pivot is also known as a
center of similarity. The pivot cannot move during transformation so we have a
constraint:

Fp = p (3.20)

There is an infinite number of pivots and therefore there is an infinite number
of pivoted groups. Together they do not form a group because for example two
rotations with different pivots cannot necessarily be represented with any single
pivoted rotation. In spite of not being true groups, we label the set of pivoted
rotations as GpR and the set of pivoted scalings as GpS. The set of combined scalings
and rotations around a single pivot we denote by GpSR. The set GpR is a subset of
GT R, as well as GpS is a subset of GT S and GpSR is a subset of GT SR, all constrained
under Equation 3.20.

Thus, in this thesis we are interested of finding optimal transformations within the
following sets and groups, which we collectively call transformation types :

1. GT : the group of translations

2. GpS: the set of scalings around a pivot

3. GpR: the set of rotations around a pivot

4. GT S: the group of translations and scalings

5. GT R: the group of translations and rotations

6. GpSR: the set of scalings and rotations around a pivot
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7. GT SR: the group of translations, scalings, and rotations

The list does not include one-dimensional translations which would form a group
when given a direction vector. Like pivoted groups, there is an infinite number of
direction vectors and thus an infinite number of one-dimensional translation groups.
Although these form a transformation type that would be important for touch ma-
nipulation, we leave them to be handled in subsequent studies.

For each of the 7 types, we will derive an estimation algorithm. The central step in
this estimation is the linear least squares method, which we will discuss next.

3.3 Least squares estimation

The linear least squares method is a popular optimization method to solve linear
over-determined systems in the form:

Aβ = α + ε (3.21)

where β ∈ Rm×1 is unknown, A ∈ Rk×m and α ∈ Rk×1 are known, and ε ∈ Rk×1 is
the residual. Equation 3.21 is known to have an optimal solution for the unknown
vector β if the Gramian matrix A>A has an inverse [22][23]. The solution minimizes
the squared euclidean distance of ε and is given as:

β̂ = (A>A)−1A>α (3.22)

We however cannot apply it directly. By examining Equation 3.8 (FX = Y + E) we
understand that our unknown transformation parameters are placed in the matrix F
among constants, not in a separate vector. In addition to the different placement of
unknowns, X and Y are matrices, not vectors. Thus to apply the solution, Equation
3.8 must be derived to the form of Equation 3.21. Fortunately, we are able to do
this.

As the number and placing of the unknown variables depend on the transformation
type, the derivation will be a bit different for each. To avoid repetitious work, what
we can do independently is the vectorization of the matrices X , Y , and E. We first
redefine them:

X =
[
x1 · · · xn

]
=



a1 · · · an
b1 · · · bn
1 · · · 1


=



a>

b>

1>


∈ R3×n (3.23)

Y =
[
y1 · · · yn

]
=



c1 · · · cn
d1 · · · dn
1 · · · 1


=



c>

d>

1>


∈ R3×n (3.24)
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E =
[
ε1 · · · ε n

]
=



e1 · · · en
f1 · · · fn
0 · · · 0


=



e>

f>

0>


∈ R3×n (3.25)

The vectors a, b, c, d, e, f are column vectors in R3. Let pi j be the elements of F. Now
we are able to rewrite FX = Y + E:



p11 p12 p13
p21 p22 p23
p31 p32 p33





a>

b>

1>


=



c>

d>

1>


+



e>

f>

0>


(3.26)

We multiply the left-hand side:



p11a> + p12b> + p131>

p21a> + p22b> + p231>

p31a> + p32b> + p331>


=



c>

d>

1>


+



e>

f>

0>


(3.27)

Now we are able to turn these 3 × n matrices to 3n × 1 vectors by reshaping and
transposing:



p11a + p12b + p131
p21a + p22b + p231
p31a + p32b + p331


=



c
d
1


+



e
f
0


(3.28)

Furthermore we already know that the bottom row of our homogeneous transfor-
mation matrices always equals to

[
0 0 1

]
. Thus p31 = 0, p32 = 0, and p33 = 1,

allowing us to ignore the last n trivial equations from the system above. Let us also
denote the new residual vector with simple ε :

[
p11a + p12b + p131
p21a + p22b + p231

]
=

[
c
d

]
+ ε (3.29)

We replace pi j with our transformation parameters s, r, t1, and t2 and arrive to
what we call our vectorized system:

[
sa − rb + t11
ra + sb + t21

]
=

[
c
d

]
+ ε (3.30)

Now, when we are about to derive solutions for each transformation type, we can
conveniently begin from this vectorized system. It is much closer to Aβ = α and we
only need to derive it so that the desired set of parameters form a vector β.

The vectorization does not change the optimal solution. Previously (Equation 3.8)
we would liked to minimize the sum ε1

>ε1 + ε2
>ε2 + · · ·+ εn

>εn = e21 + f 21 + e22 + f 22 +
· · · + e2n + f 2n . Now, we would like to minimize ε>ε = e21 + · · · + e2n + f 21 + · · · + f 2n . As
we can see, the expressions contain the same terms. Therefore they are equal and
applying the solution of Equation 3.22 to Equation 3.30 gives us correct estimates.
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4 ALGORITHMS AND DERIVATION

In this chapter, we derive 7 optimal estimation algorithms, one for each transforma-
tion type listed in Section 3.2.3. We begin with the most restricted ones and continue
towards the type with the most free variables, namely GT SR, the unbounded trans-
lation, rotation, and uniform scaling.

For each type, we begin from the vectorized linear system of Equation 3.30. By con-
sidering the restrictions of each type, we derive a mathematical closed-form solution
for estimates of their free parameters. When confronted, we examine the special
cases where a unique best solution cannot be found and discuss how these should
be interpreted to still result with a meaningful transformation.

For each type, we also compact the closed-form solution and the handling of special
cases into an algorithm written in Python. For the needs of the computational
efficiency analysis in Chapter 6, we make note of the number of operations and the
occurrences of computationally expensive functions. We begin with the translation.

4.1 Translation estimation

When only a translation is allowed, the linear system of Equation 3.8 becomes:



1 0 t1
0 1 t2
0 0 1


X = Y + E (4.1)

We note that λ = 1 and θ = 0. Represented in the vectorized form of Equation 3.30
the system thus simplifies to:

[
a + t11
b + t21

]
=

[
c
d

]
+ ε (4.2)

We move the known a and b to right-hand side and then decompose the left-hand
side. We arrive to the desired form of Aβ = α + ε :

[
1 0
0 1

] [
t1
t2

]
=

[
c − a
d − b

]
+ ε (4.3)
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To find β̂ = (A>A)−1A>α, we first rewrite A>A and (A>A)−1:

A>A =
[
1>1 0
0 1>1

]
=

[
n 0
0 n

]
= nI (4.4)

(A>A)−1 = n−1I (4.5)

The inverse exists only if n > 0. If true, then:

β̂ = (A>A)−1A>α

= n−1
[
1> 0>

0> 1>

] [
c − a
d − b

]

= n−1
[
1>c − 1>a
1>d − 1>b

]
(4.6)

which can be written alternatively using summation:

t̂1 =
1

n

n∑
i=1

ci −
1

n

n∑
i=1

ai (4.7)

t̂2 =
1

n

n∑
i=1

di −
1

n

n∑
i=1

bi (4.8)

The interpretation of the result is obvious. If only translation is allowed, the optimal
transformation translates the domain mean to match the range mean.

4.1.1 Special cases

Equations 4.7 and 4.8 were defined only if n > 0. If n = 0 it means that the domain
and the range are empty. Without no data, any transformation would be valid but
as discussed in Section 3.3, our best guess is the identity. Thus, if n = 0 then let
t̂1 = 0 and t̂2 = 0.

4.1.2 Algorithm

An algorithm that estimates an optimal translation is given in Listing 4.1. The
algorithm takes in X and Y as two lists where each element is a two-dimensional
point represented as a two-element list [x1, x2]. The terms a>1 . . . d>1 are computed
as the lists are iterated over. If the length of the lists differ, additional elements in
the longer list are ignored. The existence of an unique solution is tested and if true,
estimates are computed and returned. If false, estimates representing the identity
transformation are returned. The returned 4-tuple defines the matrix in Equation
3.5.
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Listing 4.1: Given a list of domain points X and a list of range points Y and when
only translation is allowed, this function returns optimal similarity transformation
matrix parameters s, r, t1, and t2. The code is written in Python.

def e s t i m a t e t r a n s l a t i o n (X, Y) :

N = min( len (X) , len (Y) )

a1 = b1 = c1 = d1 = 0

for i in range (1 , N) :
a = X[ i ] [ 0 ]
b = X[ i ] [ 1 ]
c = Y[ i ] [ 0 ]
d = Y[ i ] [ 1 ]
a1 += a
b1 += b
c1 += c
d1 += d

i f N < 1 :
return 1 , 0 , 0 , 0

s = 1
r = 0
t1 = ( c1 − a1 ) / N
t2 = ( d1 − b1 ) / N

return s , r , t1 , t2

To analyze computational demand of the algorithm, a single call with n point pairs
requires 4n + 4 floating-point operations and uses only the basic arithmetic opera-
tions. A single call uses a constant amount of memory regardless of n. These are
further inspected in Chapter 6.

4.2 Scaling estimation

Next, we derive a method to find an optimal transformation matrix when only
scaling around a pivot is allowed. With this type of transformation, s = λ and
r = 0. We define the pivot as:

p =



p1
p2
1


(4.9)
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As discussed in Section 3.2.3, the pivot cannot be moved which gives us a constraint:



s 0 t1
0 s t2
0 0 1





p1
p2
1


=



p1
p2
1


(4.10)

From the constraint we can solve the translation parameters:

t1 = (1 − s)p1
t2 = (1 − s)p2

(4.11)

We place the variables into the vectorized system of Equation 3.30:

[
sa + ((1 − s)p1)1
sb + ((1 − s)p2)1

]
=

[
c
d

]
+ ε (4.12)

We rearrange the terms:

[
s(a − p11)
s(b − p21)

]
=

[
c − p11
d − p21

]
+ ε (4.13)

and end up with the desired form Aβ = α + ε :

[
a − p11
b − p21

] [
s
]
=

[
c − p11
d − p21

]
+ ε (4.14)

To simplify notation, let us define primed domain and range vectors:

a′ = a − p11
b′ = b − p21
c′ = c − p11
d′ = d − p21

(4.15)

We compute the Gramian, its inverse, and A>α:

A>A =
[
a′> b′>

] [a′
b′

]
= a′>a′ + b′>b′ (4.16)

(A>A)−1 =
1

a′>a′ + b′>b′
(4.17)
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[
a′> b′>

] [c′
d′

]
= a′>c′ + b′>d′ (4.18)

We arrive to the estimate:

ŝ = (A>A)−1A>α =
a′>c′ + b′>d′

a′>a′ + b′>b′
(4.19)

Therefore to estimate an optimal scaling around p, our estimates are:

ŝ =
a′>c′ + b′>d′

a′>a′ + b′>b′

r̂ = 0

t̂1 = (1 − s)p1
t̂2 = (1 − s)p2

(4.20)

However, they are not defined if the Gramian is singular. Next, we inspect this
special case further.

4.2.1 Special cases

If the Gramian is singular then a′>a′+b′>b′ = 0. Let us rewrite it with summation:

n∑
i=1

a′2i +
n∑

i=1

b′2i = 0 (4.21)

We can now see that all the terms must be positive and thus the Gramian is singular
if and only if all the elements are zero. It is equivalent to all the domain points being
strictly on p because a′i = ai − p1 and b′i = bi − p2.

Because all the domain points are on p, all scalings yield equal loss. Therefore, as
λ would be arbitrary, our best guess is λ = 1 which in this case leads to the identity
transformation.

4.2.2 Algorithm

An algorithm that estimates an optimal scaling around a pivot is given in List-
ing 4.2. The structure of the algorithm is identical to the translation estimation
in Section 4.1.2 with the difference given by the pivot. Also, the test for unique
solution tests g instead of N . Because g is a floating-point number, its representa-
tion for 0 could, due to a floating point rounding error, be not exactly 0 but a very
small number and in this case, a small positive number. Therefore in practice when
testing for its equality to zero, it is customary to instead test it to be smaller than
a small constant epsilon.
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Listing 4.2: Given a list of domain points X, a list of range points Y, and a pivot
point p, and when only a scaling is allowed, this function returns optimal pivotd
scaling matrix parameters s, r, t1, and t2. The code is written in Python.

def e s t i m a t e s c a l i n g (X, Y, p ) :

N = min( len (X) , len (Y) )

ac = 0
bd = 0
aa = 0
bb = 0
for i in range (1 , N) :

a = X[ i ] [ 0 ]
b = X[ i ] [ 1 ]
c = Y[ i ] [ 0 ]
d = Y[ i ] [ 1 ]
ac += a ∗ c
bd += b ∗ d
aa += a ∗ a
bb += b ∗ b

g = aa + bb

i f g < e p s i l o n :
return 1 , 0 , 0 , 0

s = ( ac + bd) / g
r = 0
t1 = (1 − s ) ∗ p [ 0 ]
t2 = (1 − s ) ∗ p [ 1 ]

return s , r , t1 , t2

A single call with n point pairs requires 8n+7 floating-point operations and uses only
the basic arithmetic operations. A single call uses a constant amount of memory
regardless of n. These are further inspected in Chapter 6.
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4.3 Rotation estimation

In rotation estimation the scaling factor λ = 1 and therefore s = cos θ and r = sin θ.
We try to find an optimal rotation θ around a pivot p. Therefore, we have the
following two constraints:



s −r t1
r s t2
0 0 1





p1
p2
1


=



p1
p2
1


(4.22)

s2 + r2 = 1 (4.23)

The second constraint is not linear and thus the linear least squares method cannot
be applied. Instead, we solve the least squares in more raw method by finding the
stationary points of our loss function L. In other words, we find points where the
derivative of the summed squared residuals is zero.

We again begin from the vectorized system of Equation 3.30:

[
sa − rb + t11
ra + sb + t21

]
=

[
c
d

]
+ ε (4.24)

The first constraint allows us to rewrite t1 and t2:

t1 = p1 − p1s + p2r
t2 = p2 − p1r − p2s

(4.25)

Equation 4.24 becomes:

[
sa − rb + (p1 − p1s + p2r)1
ra + sb + (p2 − p1r − p2s)1

]
=

[
c
d

]
+ ε (4.26)

We rearrange the terms and now are able to represent the residual vector ε as:

ε =

[
(a − p11)s − (b − p21)r − (c − p11)
(a − p11)r + (b − p21)s − (d − p21)

]
(4.27)

To simplify notation, let us again define the primed domain and range vectors:

a′ = a − p11
b′ = b − p21
c′ = c − p11
d′ = d − p21

(4.28)
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Now ε is simplified to:

ε =

[
sa′ − rb′ − c′

ra′ + sb′ − d′

]
(4.29)

We remember that s = cos θ and r = sin θ. We are looking for θ that minimizes the
loss L(ε ):

θ̂ = argmin
θ

L(ε ) (4.30)

The loss can be written as a dot product that furthermore can be written as a matrix
multiplication:

L(ε ) =
2n∑
i=1

ε2i = ε · ε = ε>ε (4.31)

We can split it into two terms:

ε>ε =(sa′ − rb′ − c′)>(sa′ − rb′ − c′)

+ (ra′ + sb′ − d′)>(ra′ + sb′ − d′)
(4.32)

The dot product as well as the matrix multiplication is distributive. Thus, to com-
pute the terms, we can rely on the following polynomial expansion rules:

(x − y − z)2 = x2 + y2 + z2 − 2xy − 2xz + 2yz

(x + y − z)2 = x2 + y2 + z2 + 2xy − 2xz − 2yz
(4.33)

Therefore, by keeping in mind that s2 + r2 = 1:

ε>ε = s2a′>a′ + r2b′>b′ + c′>c′ − 2rsa′>b′ − 2sa′>c′ + 2rb′>c′

+ r2a′>a′ + s2b′>b′ + d′>d′ + 2rsa′>b′ − 2ra′>d′ − 2sb′>d′

= a′>a′ + b′>b′ + c′>c′ + d′>d′

− 2sa′>c′ + 2rb′>c′ − 2ra′>d′ − 2sb′>d′

(4.34)

To take derivative with respect to θ, we need the following two lemmas:

ds
dθ
=

d cos θ

dθ
= − sin θ = −r

dr
dθ
=

d sin θ

dθ
= cos θ = s

(4.35)
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We also find that we can neglect the first 4 terms. The derivative becomes:

dε>ε
dθ
=

d
dθ

(
− 2sa′>c′ + 2rb′>c′ − 2ra′>d′ − 2sb′>d′

)
= 2ra′>c′ + 2sb′>c′ − 2sa′>d′ + 2rb′>d′

(4.36)

We set the derivative to zero and rearrange the terms.

(a′>c′ + b′>d′)r + (b′>c′ − a′>d′)s = 0 (4.37)

Therefore we find the optimal solution to occur when:

a′>d′ − b′>c′

a′>c′ + b′>d′
=

r
s
=

sin θ

cos θ
= tan θ (4.38)

which would give us an optimal θ̂. However, we cannot yet directly represent r
without s and vice versa. Fortunately, their trigonometric nature allows us to think
them as edges of a triangle. On a right-angled triangle with catheti a, b and hy-
potenuse γ, let tan θ = a/b so that r = sin θ = a/γ and s = cos θ = b/γ. Now the
Pythagorean theorem gives us r = a/

√
a2 + b2 and s = b/

√
a2 + b2. Hence,

r̂ = γ−1(a′>d′ − b′>c′)

ŝ = γ−1(a′>c′ + b′>d′)
t̂1 = p1 − p1 ŝ + p2r̂
t̂2 = p2 − p1r̂ − p2 ŝ

(4.39)

where

γ =

√
(a′>d′ − b′>c′)2 + (a′>c′ + b′>d′)2 (4.40)

This concludes our task to find an optimal rotation matrix. However, the optimal
solution does not exist if γ = 0. We inspect this special case further.

4.3.1 Special cases

We cannot find a unique solution if γ = 0. By analyzing Equation 4.40 we see that
the root and the squares cannot yield negative value. Therefore γ = 0 if and only
if a′>d′ − b′>c′ = 0 and a′>c′ + b′>d′ = 0. Because they are zero, Equation 4.37
becomes 0r + 0s = 0 which is equivalent to 0 sin θ + 0 cos θ = 0. Therefore any θ
would satisfy this equation, thus be optimal.

Let us inspect with which kind of point configurations this can happen. For example,
if each domain point xi is at the pivot p then all rotations would yield an equal loss;
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Figure 4.1: An example where the loss remains the same regardless of the rotation
but neither the domain points x1, x2 nor the range points y1, y2 are at the pivot p

no domain point cannot move at all. Likewise, if each range point yi lies at p then
no rotation would move the domain points closer or farther from the range. In
the former case, the primed domain vectors a′ = b′ = 0 because a′ = a − p11 and
b′ = b− p21. Identically in the latter case c′ = d′ = 0. The both cases lead to γ = 0.

Another case is illustrated in Figure 4.1. Here none of the points are at pivot but
the domain and the range are arranged so that any rotation would yield an equal
loss. From this, we can infer that there is an infinite number of these special cases.
Fortunately for us, it is enough to know if γ = 0 and that if true, then all rotations are
equally valid. As discussed in Section 3.2.2 we should choose the simplest alternative
which here is the identity transform.

4.3.2 Algorithm

An algorithm that estimates an optimal rotation around a pivot is given in Listing
4.3. The structure of the algorithm is identical to the scaling estimation in Section
4.1.2.

Listing 4.3: Given a list of domain points X, a list of range points Y, and a pivot
point p, this function returns optimal pivoted rotation matrix parameters s, r, t1,
and t2. The code is written in Python.

def e s t i m a t e r o t a t i o n (X, Y, p ) :

N = min( len (X) , len (Y) )

p1 = p [ 0 ]
p2 = p [ 1 ]
ac = 0
ad = 0
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bc = 0
bd = 0
for i in range (1 , N) :

a = X[ i ] [ 0 ] − p1
b = X[ i ] [ 1 ] − p2
c = Y[ i ] [ 0 ] − p1
d = Y[ i ] [ 1 ] − p2
ac += a ∗ c
ad += a ∗ d
bc += b ∗ c
bd += b ∗ d

v = ac + bd
w = ad − bc
g = s q r t ( v ∗ v + w ∗ w)

i f g < e p s i l o n :
return 1 , 0 , 0 , 0

s = v / g
r = w / g
t1 = p1 − p1 ∗ s + p2 ∗ r
t2 = p2 − p1 ∗ r − p2 ∗ s ;

return s , r , t1 , t2

A single call with n point pairs executes 12n+16 floating-point operations, including
1 square root. A single call uses a constant amount of memory regardless of n. These
are further inspected in Chapter 6.

4.4 Translation-scaling estimation

Here we derive a method to estimate a nonreflective similarity transformation when
rotation is not allowed, thus s = λ and r = 0. This differs from the pivoted scaling
estimation in the absence of the pivot constraint. We again start from the vectorized
form of Equation 3.30:

[
sa + t11
sb + t21

]
=

[
c
d

]
+ ε (4.41)

This is equivalent to the following equation in the form of Aβ = α:

[
a 1 0
b 0 1

] 

s
t1
t2


=

[
c
d

]
+ ε (4.42)
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We know it to have an optimal solution β̂ = (A>A)−1A>α if the Gramian A>A has
an inverse. Before deriving the Gramian, let us define three variables for notational
convenience:

u = a>a + b>b

v = a>1 = 1>a

w = b>1 = 1>b

(4.43)

We derive the Gramian, its inverse, and A>α. To compute the inverse, we can use
the computational knowledge engine Wolfram Alpha [24]. The results are as follows:

A>A =



a>a + b>b a>1 b>1
1>a 1>1 0
1>b 0 1>1


=



u v w

v n 0
w 0 n


(4.44)

(A>A)−1 =
1

γ



n2 −nv −nw
−nv nu − w2 vw

−nw vw nu − v2


(4.45)

γ = n2u − nv2 − nw2 (4.46)

A>α =



a> b>

1> 0>

0> 1>



[
c
d

]
=



a>c + b>d
c>1
d>1


(4.47)

We arrive to the estimated vector β̂:

(A>A)−1A>α = γ−1


n2a>c + n2b>d − nvc>1 − nwd>1
−nva>c − nvb>d + (nu − w2)c>1 + vwd>1
−nwa>c − nwb>d + vwc>1 + (nu − v2)d>1


(4.48)

We open v and w and write the estimates:

ŝ = γ−1
(
n2(a>c + b>d) − n(a>1)(c>1) − n(b>1)(d>1)

)
r̂ = r = 0

t̂1 = γ
−1
(
− na>1 a>c − na>1 b>d + nuc>1 − b>1 b>1 c>1 + a>1 b>1 d>1

)
t̂2 = γ

−1
(
− nb>1 a>c − nb>1 b>d + nud>1 − a>1 a>1 d>1 + a>1 b>1 c>1

) (4.49)
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where

γ = n2u − n(a>1)2 − n(b>1)2

u = a>a + b>b
(4.50)

This concludes our task to find an optimal translation-scaling matrix. However, the
optimal solution does not exist if γ = 0. Next, we inspect this special case further.

4.4.1 Special cases

If γ = 0 then a unique solution cannot be found. In software, to choose best
alternative instead of an error, let us first examine when does this happen.

Trivially if n = 0 then γ = 0. No domain points were given so the identity transfor-
mation is the simplest choice.

If n = 1 then γ = a21 + b21 − a21 − b21 = 0, which is true for any a1 and b1. A single
domain and range point were given so any translation-scaling that translates the
domain point to range would do. The simplest best choice is then to let the scaling
factor be 1 and do only optimal translation described in Section 4.1.

If n = 2 then γ = 4(a21 + a22) + 4(b21 + b22) − 2(a1 + a2)2 − 2(b1 + b2)2. Letting γ = 0
and expanding the binomials give us a21 + a22 + b21 + b22 − 2a1a2 − 2b1b2 = 0. By
reordering and simplifying, we arrive to (a1 − a2)2 + (b1 − b2)2 = 0. As the squares
of both binomials are non-negative, γ = 0 if and only if a1 = a2 and b1 = b2 i.e. the
2 domain points equal. Next, we proof this to be true for any n > 0.

Theorem 4.4.1. Let γ = n2a>a + n2b>b − n(a>1)2 − n(b>1)2. Now, γ = 0 if and
only if a1 = a2 = · · · = an and b1 = b2 = · · · = bn for any n > 0.

Proof. We prove this by induction. The previous n = 1 case works as our induction
basis. For the inductive hypothesis, let us assume that for n known points γn = 0
and that γn = 0 ⇔ ∀i, j ∈ [1..n] : ai = a j ∧ bi = b j . To ease manipulation, let us
rewrite γn = 0 with summations:

n
n∑

i=1

a2i + n
n∑

i=1

b2i −
( n∑

i=1

ai

)2
−

( n∑
i=1

bi

)2
= 0 (4.51)

For the inductive step, we add a (n + 1)th point and show that γn+1 = 0 if and only
if ∀i, j ∈ [1..n + 1] : ai = a j ∧ bi = b j .

(n + 1)
n+1∑
i=1

a2i + (n + 1)
n+1∑
i=1

b2i −
( n+1∑

i=1

ai

)2
−

( n+1∑
i=1

bi

)2
= 0 (4.52)
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We take (n+1)th terms out of the summations to find the left-hand side of Equation
4.51:

n
( n∑

i=1

a2i
)
+ na2n+1 +

( n∑
i=1

a2i
)
+ a2n+1

+n
( n∑

i=1

b2i
)
+ nb2n+1 +

( n∑
i=1

b2i
)
+ b2n+1

−

( n∑
i=1

ai

)2
− 2an+1

( n∑
i=1

ai

)
− a2n+1

−

( n∑
i=1

bi

)2
− 2bn+1

( n∑
i=1

bi

)
− b2n+1 = 0

(4.53)

The hypothesis states γn = 0 and therefore Equation 4.53 simplifies to:

na2n+1 +
( n∑

i=1

a2i
)
+ nb2n+1 +

( n∑
i=1

b2i
)

−2an+1

( n∑
i=1

ai

)
− 2bn+1

( n∑
i=1

bi

)
= 0

(4.54)

We note that nx2 =
∑n

i=1 x2, reorder the terms, and apply x2 − 2xy + y2 = (x − y)2:

n∑
i=1

(an+1 − ai)2 +
n∑

i=1

(bn+1 − bi)2 = 0 (4.55)

This is true if and only if ∀i, j ∈ [1..n + 1] : ai = a j ∧ bi = b j , which completes the
proof. �

Therefore if n > 0 and γ = 0, all the domain points are at the same location.
No scaling could spread them, so our best choice for optimal transformation is the
optimal translation to the range mean as described in Section 4.1.

4.4.2 Algorithm

An algorithm that estimates an optimal composite translation and scaling is given
in Listing 4.4. The structure of the algorithm is similar to the translation estima-
tion algorithm in Section 4.1.2. However, handling of special cases is slightly more
complicated. If γ, represented by g in the code, is close to zero, either number of
points is zero or all domain points are equal. If the former, the identity transform
parameters are returned. If the latter, then parameters for an optimal translation
to the mean of the range are returned.
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Listing 4.4: Given a list of domain points X and a list of range points Y, this
function returns optimal translation-scaling matrix parameters s, r, t1, and t2. The
code is written in Python

def e s t i m a t e t r a n s l a t i o n s c a l i n g (X, Y) :

N = min( len (X) , len (Y) )

a1 = b1 = c1 = d1 = 0
a2 = b2 = ac = bd = 0
for i in range (1 , N) :

a = X[ i ] [ 0 ]
b = X[ i ] [ 1 ]
c = Y[ i ] [ 0 ]
d = Y[ i ] [ 1 ]
a1 += a
b1 += b
c1 += c
d1 += d
a2 += a ∗ a
b2 += b ∗ b
ac += a ∗ c
bd += b ∗ d

N2 = N ∗ N
a12 = a1 ∗ a1
b12 = b1 ∗ b1
u = a2 + b2
v = ac + bd
g = N2 ∗ u − N ∗ ( a12 + b12 )

i f g < e p s i l o n :
i f N == 0 :

return 1 , 0 , 0 , 0
return 1 , 0 , ( c1 / N) − a , ( d1 / N) − b

a1c1 = a1 ∗ c1
b1d1 = b1 ∗ d1

s = (N2 ∗ v − N ∗ ( a1c1 + b1d1 ) ) / g
r = 0
t1 = (N ∗ ( c1 ∗ u − a1 ∗ v ) − b12 ∗ c1 + a1 ∗ b1d1 ) / g
t2 = (N ∗ ( d1 ∗ u − b1 ∗ v ) − a12 ∗ d1 + b1 ∗ a1c1 ) / g

return s , r , t1 , t2
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A single call with n point pairs executes 12n + 34 basic arithmetic floating-point
operations. A single call uses constant amount of memory regardless of n. These
are further inspected in Chapter 6.

4.5 Translation-rotation estimation

Here we derive a method to estimate an optimal nonreflective similarity transforma-
tion when scaling is not allowed, thus λ = 1 and furthermore s = cos θ and r = sin θ.
As with the pivoted rotation of Section 4.3, the absence of scaling requires s2+r2 = 1
which makes our linear over-determined system to have non-linear constraints and
thus prevents us from using linear least squares solution of Equation 3.22.

As in Section 4.3, we find the least-squares solution through differentiation, although
this time our system has 3 unknowns, θ, t1, and t2. By forming the loss function
and setting its partial derivatives i.e. the gradient vector to zero, we can find the
minimum of the loss.

We again begin with the vectorized system given in Equation 3.30:

[
sa − rb + t11
ra + sb + t21

]
=

[
c
d

]
+ ε (4.56)

By rearranging the terms, we easily find the residual:

ε =

[
sa − rb + t11 − c
ra + sb + t21 − d

]
(4.57)

The loss ε>ε has a lengthy expression, exceeding the length of the expressions we
saw in Section 4.3 and thus we skip it here. It can however be derived by applying
the following polynomial expansion rule:

(a + b + c + d)2 = a2 + 2ab + 2ac + 2ad + b2 + 2bc + 2bd + c2 + 2cd + d2 (4.58)

Nevertheless, the partial derivatives of the loss are:

δ

δθ
ε>ε = 2r (a>c + b>d − t1a>1 − t2b>1)

−2s(a>d − b>c − t2a>1 + t1b>1)
(4.59)

δ

δt1
ε>ε = 2(sa>1 − rb>1 − c>1 + nt1) (4.60)
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δ

δt2
ε>ε = 2(ra>1 − sb>1 − d>1 + nt2) (4.61)

Setting Equation 4.60 and 4.61 to zero and rearranging the terms gives us:

t1 = n−1(−sa>1 + rb>1 + c>1)

t2 = n−1(−ra>1 − sb>1 + d>1)
(4.62)

Settings Equation 4.59 to zero, expanding t1 and t2, and simplifying the result gives
us:

r
(
na>c + nb>d − (a>1)(c>1) − (b>1)(d>1)

)
− s

(
na>d − nb>c − (a>1)(d>1) + (b>1)(c>1)

)
= 0

(4.63)

Let:

u = na>c + nb>d − (a>1)(c>1) − (b>1)(d>1)
v = na>d − nb>c − (a>1)(d>1) + (b>1)(c>1)

(4.64)

Now Equation 4.63 becomes a simple:

ru − sv = 0 (4.65)

By applying Pythagorean theorem like in Section 4.3, we end up with the estimates.
First, let:

γ =
√

u2 + v2 (4.66)

Then we can write the estimates:

ŝ = γ−1u

r̂ = γ−1v

t̂1 = n−1(−ŝa>1 + r̂b>1 + c>1)

t̂2 = n−1(−r̂a>1 − ŝb>1 + d>1)

(4.67)

The estimates are not defined if n = 0 or γ = 0. Next, we inspect this special case
further.
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4.5.1 Special cases

Trivially, if n = 0 then the identity is the best choice.

For n > 0, if γ = 0 we cannot find a unique solution. As we saw in Chapter 4.3,
γ = 0 if and only if u = 0 ∧ v = 0. By looking Equation 4.65, we can again deduce
that if γ = 0 any θ is equally optimal.

If γ = 0, let us choose not to rotate at all, i.e. θ = 0. Then ŝ = 1 and r̂ = 0, so t̂1
and t̂2 becomes:

t̂1 =
1

n

n∑
i=1

ci −
1

n

n∑
i=1

ai (4.68)

t̂2 =
1

n

n∑
i=1

di −
1

n

n∑
i=1

bi (4.69)

which is equivalent to the translation from the mean of the domain to the mean of
the range. Therefore, as previously seen in Section 4.4.1, the optimal translation is
our simplest best choice.

4.5.2 Algorithm

An algorithm that estimates an optimal translation-rotation is given in Listing 4.5.
The structure and handling of special cases are identical to the translation-scaling
algorithm in Section 4.4.2.

Listing 4.5: Given a list of domain points X and a list of range points Y, this
function returns optimal translation-rotation matrix parameters s, r, t1, and t2.
The code is written in Python

def e s t i m a t e t r a n s l a t i o n r o t a t i o n (X, Y) :

N = min( len (X) , len (Y) )

a1 = b1 = c1 = d1 = 0
ac = ad = bc = bd = 0
for i in range (1 , N) :

a = X[ i ] [ 0 ]
b = X[ i ] [ 1 ]
c = Y[ i ] [ 0 ]
d = Y[ i ] [ 1 ]
a1 += a
b1 += b
c1 += c
d1 += d
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ac += a ∗ c
ad += a ∗ d
bc += b ∗ c
bd += b ∗ d

u = N ∗ ( ac + bd) − a1 ∗ c1 − b1 ∗ d1
v = N ∗ ( ad − bc ) − a1 ∗ d1 + b1 ∗ c1
g = s q r t (u ∗ u + v ∗ v )

i f g < e p s i l o n :
i f N == 0 :

return 1 , 0 , 0 , 0
return 1 , 0 , ( c1 − a1 ) / N, ( d1 − b1 ) / N

s = u / g
r = v / g
t1 = (−a1 ∗ s + b1 ∗ r + c1 ) / N
t2 = (−a1 ∗ r − b1 ∗ s + d1 ) / N

return s , r , t1 , t2

A single call with n point pairs executes 12n + 27 basic arithmetic floating-point
operations and 1 floating-point square root. A single call uses constant amount of
memory regardless of n. These are further inspected in Chapter 6.

4.6 Scaling-rotation estimation

Here we derive a method to estimate a nonreflective similarity transformation when
both scaling and rotation are allowed around a pivot. We now have the full set of
free variables s, r, t1, and t2 with the pivot constraint:



s −r t1
r s t2
0 0 1





p1
p2
1


=



p1
p2
1


(4.70)

With the constraint we can solve t1 and t2:

t1 = p1 − sp1 + rp2
t2 = p2 − rp1 − sp2

(4.71)

We again place our variables in the vectorized system of Equation 3.30:

[
sa − rb + t11
ra + sb + t21

]
=

[
c
d

]
+ ε (4.72)
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We open t1 and t2, rearrange, and decompose left-hand side to a matrix A and a
vector of the unknowns s and r. We end up with a system in the desired form
Aβ = α + ε :

[
a − p11 −b + p21
b − p21 a − p11

] [
s
r

]
=

[
c − p11
d − p21

]
+ ε (4.73)

For convenience, let us denote:

a′ = a − p11
b′ = b − p21
c′ = c − p11
d′ = d − p21

γ = a′>a′ + b′>b′

(4.74)

Hence, Equation 4.73 becomes:

[
a′ −b′

b′ a′

] [
s
r

]
=

[
c′

d′

]
+ ε (4.75)

We again derive the Gramian, its inverse, and A>α:

A>A =
[
a′> −b′>

b′> a′>

] [
a′ −b′

b′ a′

]
=

[
γ 0
0 γ

]
= γI (4.76)

(A>A)−1 = γ−1I (4.77)

A>α =
[
a′> −b′>

b′> a′>

] [
c′

d′

]
=

[
a′>c′ + b′>d′

−b′>c′ + a′>d′

]
(4.78)

From Equation 4.71, Equation 4.77, and Equation 4.78 we can directly derive the
estimates:

ŝ = γ−1(a′>c′ + b′>d′)

r̂ = γ−1(−b′>c′ + a′>d′)
t̂1 = p1 − ŝp1 + r̂ p2
t̂2 = p2 − r̂ p1 − ŝp2

(4.79)

The estimates are not defined if γ = 0. Next, we inspect this special case further.
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4.6.1 Special cases

The estimates are undefined if γ = 0. Let us open γ = 0 to get a better understand-
ing:

γ =

n∑
i=1

(ai − p1)2 +
n∑

i=1

(bi − p2)2 = 0 (4.80)

Because x2 ≥ 0 for any x ∈ R, we can see that γ = 0 if and only if all domain
points ai, bi and the pivot are equal. A scaling or a rotation that could move them
elsewhere does not exist, so they all yield equal loss.

In this case, again due to simplicity, we choose the scaling factor λ = 1 and θ = 0 to
be the best choice. Therefore also ŝ = 1 and r̂ = 0, thus causing t̂1 = p1 − 1p1 + 0p2
and t̂2 = p2 − 0p1 − 1p2 both become zero, yielding the identity transformation.

4.6.2 Algorithm

An algorithm that estimates an optimal scaling and rotation transformation around
a pivot is given in Listing 4.6. The structure is identical to both scaling and rotation
algorithms in Section 4.2.2 and Section 4.3.2.

Listing 4.6: Given a list of domain points X, a list of range points Y, and a pivot
point p, this function returns optimal pivoted scaling-rotation matrix parameters s,
r, t1, and t2. The code is written in Python.

def e s t i m a t e s c a l i n g r o t a t i o n (X, Y, p ) :

N = min( len (X) , len (Y) )

p1 = p [ 0 ]
p2 = p [ 1 ]
a2 = b2 = 0
ac = ad = bc = bd = 0
for i in range (1 , N) :

a = X[ i ] [ 0 ] − p1
b = X[ i ] [ 1 ] − p2
c = Y[ i ] [ 0 ] − p1
d = Y[ i ] [ 1 ] − p2
a2 += a ∗ a
b2 += b ∗ b
ac += a ∗ c
ad += a ∗ d
bc += b ∗ c
bd += b ∗ d
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g = a2 + b2

i f g < e p s i l o n :
return 1 , 0 , 0 , 0

s = ( ac + bd) / g
r = ( ad − bc ) / g
t1 = p1 − s ∗ p1 + r ∗ p2
t2 = p2 − r ∗ p1 − s ∗ p2

return s , r , t1 , t2

A single call with n point pairs executes 16n + 13 basic arithmetic floating-point
operations. A single call uses constant amount of memory regardless of n. These
are further inspected in Chapter 6.

4.7 Translation-scaling-rotation estimation

The least constrained of the transformation estimators derived in this thesis is able
to estimate an optimal transformation that transforms a sequence of domain points
as close to a sequence of range points as possible by translating, scaling, and rotating.

We begin with the vectorized system given in Equation 3.30 with the full set of free
parameters. Now, s = λ cos θ and r = λ sin θ.

[
sa − rb + t11
ra + sb + t21

]
=

[
c
d

]
+ ε (4.81)

We add zero vectors to emphasize that each equation is a linear combination of s,
r, t1, and t2:

[
sa − rb + t11 + t20
bs + ar + t10 + t21

]
=

[
c
d

]
+ ε (4.82)

We decompose the left-hand side to a matrix and a column vector and arrive to the
desired form Aβ = α + ε :

[
a −b 1 0
b a 0 1

]


s
r
t1
t2



=

[
c
d

]
+ ε (4.83)

To apply the linear least squares solution of Equation 3.22, we need to derive the
Gramian A>A, its inverse, and A>α. As with the translation-scaling in Section
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4.4, the Gramian is large, this time in R4×4, and requires us to define simplifying
notation. Thus, let:

u = a>a + b>b

v = a>1

w = b>1

(4.84)

We also note in advance that 1>1 = n and that x>y = y>x for any x, y ∈ Rn. Now
we are ready to open the Gramian:

A>A =



a> b>

−b> a>

1> 0>

0> 1>



[
a −b 1 0
b a 0 1

]

=



a>a + b>b −a>b + b>a a>1 + b>0 a>0 + b>1
−b>a + a>b b>b + a>a −b>1 + a>0 −b>0 + a>1
1>a + 0>b −1>b + 0>a 1>1 + 0>0 1>0 + 0>1
0>a + 1>b −0>b + 1>a 0>1 + 1>0 0>0 + 1>1



=



u 0 v w

0 u −w v

v −w n 0
w v 0 n



(4.85)

Its inverse (A>A)−1 can be found by hand by using the block matrix inversion [25].
The method is especially suitable in the cases where the upper left quarter of the
matrix is diagonal, which applies to our Gramian:

A>A =



u 0 v w

0 u −w v

v −w n 0
w v 0 n



=



U V
W N


(4.86)

where U,V,W, N ∈ R2×2. To inverse this block matrix, the following inversion for-
mula can be applied [25]:

[
U V
W N

]−1
=



U−1
+U−1V (N −WU−1V )−1WU−1

−U−1V (N −WU−1V )−1

−(N −WU−1V )−1WU−1 (N −WU−1V )−1


(4.87)
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However, we skip the details and provide only the result of the inversion:

(A>A)−1 =
[
U V
W N

]−1

= γ
−1



n 0 −v −w

0 n w −v

−v w u 0
−w −v 0 u



= γ
−1



n 0 −a>1 −b>1
0 n b>1 −a>1
−a>1 b>1 a>a + b>b 0
−b>1 −a>1 0 a>a + b>b



(4.88)

where

γ = un − v2 − w2 = n(a>a + b>b) − (a>1)2 − (b>1)2 (4.89)

We continue by opening A>α:

A>α =



a> b>

−b> a>

1> 0>

0> 1>



[
c
d

]
=



a>c + b>d
−b>c + a>d

c>1
d>1



(4.90)

Finally, we have arrived to:

β̂ =



ŝ
r̂
t̂1
t̂2



= γ
−1



n 0 −a>1 −b>1
0 n b>1 −a>1
−a>1 b>1 a>a + b>b 0
−b>1 −a>1 0 a>a + b>b





a>c + b>d
−b>c + a>d

c>1
d>1



(4.91)

from which we can take out the desired transformation parameter estimates:

ŝ = γ−1
(
n(a>c + b>d) − a>1 c>1 − b>1 d>1

)
r̂ = γ−1

(
−n(b>c − a>d) + b>1 c>1 − a>1 d>1

)
t̂1 = γ

−1
(
−a>1(a>c + b>d) − b>1(b>c − a>d) + c>1(a>a + b>b)

)
t̂2 = γ

−1
(
−b>1(a>c + b>d) + a>1(b>c − a>d) + d>1(a>a + b>b)

) (4.92)

The estimates are not defined if γ = 0. Next, we inspect this special case further.
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4.7.1 Special cases

Trivially, if n = 0 we choose the identity to be the best choice.

If γ = 0 the estimates are not defined. To inspect the case, let us open γ = 0:

γ = n(a>a + b>b) − (a>1)2 − (b>1)2

= n
n∑

i=1

a2i + n
n∑

i=1

b2i −
( n∑

i=1

ai
)2
−

( n∑
i=1

bi
)2
= 0

(4.93)

Theorem 4.4.1 states that this is equivalent to all the domain points being equal. As
translation is allowed, the identity would not be optimal. Our simplest best option
is to keep the initial scaling λ = 1 and rotation θ = 0 and translate the domain to
the mean of the range as described in Section 4.1.

4.7.2 Algorithm

An algorithm that estimates an optimal composite translation, uniform scaling, and
rotation is given in Listing 4.7. The structure is identical to the translation-scaling
algorithm presented in Section 4.4.2.

Listing 4.7: Given a list of domain points X and a list of range points Y, this
function returns optimal translation-scaling-rotation matrix parameters s, r, t1, and
t2. The code is written in Python.

def e s t i m a t e t r a n s l a t i o n s c a l i n g r o t a t i o n (X, Y) :

N = min( len (X) , len (Y) )

a1 = b1 = c1 = d1 = 0
a2 = b2 = ac = ad = bc = bd = 0
for i in range (1 , N) :

a = X[ i ] [ 0 ]
b = X[ i ] [ 1 ]
c = Y[ i ] [ 0 ]
d = Y[ i ] [ 1 ]
a1 += a
b1 += b
c1 += c
d1 += d
a2 += a ∗ a
b2 += b ∗ b
ac += a ∗ c
ad += a ∗ d
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bc += b ∗ c
bd += b ∗ d

g = N ∗ a2 + N ∗ b2 − a1 ∗ a1 − b1 ∗ b1

i f g < e p s i l o n :
i f N == 0 :

return 1 , 0 , 0 , 0
return 1 , 0 , ( c1 − a1 ) / N, ( d1 − b1 ) / N

acbd = ac + bd
adbc = ad − bc

s = (N ∗ acbd − a1 ∗ c1 − b1 ∗ d1 ) / g
r = (N ∗ adbc + b1 ∗ c1 − a1 ∗ d1 ) / g
t1 = (−a1 ∗ acbd + b1 ∗ adbc + a2 ∗ c1 + b2 ∗ c1 ) / g
t2 = (−b1 ∗ acbd − a1 ∗ adbc + a2 ∗ d1 + b2 ∗ d1 ) / g

return s , r , t1 , t2

A single call with n point pairs executes 16n + 29 basic arithmetic floating-point
operations. A single call uses constant amount of memory regardless of n. These
are further inspected in Chapter 6.

This concludes the derivation of our 7 estimation algorithms. Next we will look into
what we can do with them.
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5 APPLICATIONS

From the results presented in this thesis, we have created and published two open-
source software packages, Nudged and Taaspace. They both are available at GitHub,
a popular repository for open source projects, and easily installable via NPM, a
package manager for JavaScript projects. See [26] for Nudged and [27] for Taaspace.

Nudged, available for JavaScript programming language, implements the 7 algo-
rithms we have presented here. Nudged provides an easy-to-install and software
package and a documented programming interface, along with a unit test suite and
a set of multi-touch application examples. We describe the way how we implemented
the multi-touch in Nudged in Section 5.1. Nudged also has a stripped down imple-
mentation in Python which was developed for the needs of spatial correction of eye
tracking data. We explain the application to spatial correction further in Section
5.2.

Taaspace, available for JavaScript, is a zoomable user interface toolkit for web
browsers. It depends vigorously on Nudged both in geometric layout and input
gesture recognition. Taaspace provides an easy-to-install package with documenta-
tion, unit tests, and example applications. We describe the application to geometric
layout in Section 5.3.

5.1 Multi-touch

Although we now have the estimators for each of our 7 types, one big question
remains: how should we apply them on real-world devices equipped with a touch
screen? Here we discuss and analyze the issue and propose a method to connect
the finger movements to the estimators so that applying the estimates to geometric
objects makes sense.

5.1.1 Concepts

For the task, let us first define a set of concepts. These concepts help us to model
the touch interaction and manage it algorithmically within an application.

1. Pointer : a stylus, finger, mouse, or other type of pointer that provides a
two-dimensional location.
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2. Pointer API : an application programming interface through which pointer
location information is emitted for the application.

3. Target shape: a geometric two-dimensional shape to where we are applying
the transformation. For example a rectangular image.

4. Bound pointer : a pointer whose movement should affect the target shape. For
example, in the drag and drop gesture the mouse becomes a bound pointer of
the dragged shape when a mouse button is pressed down. The mouse pointer
reverts back to the unbound state when the button is released.

5. Pointer sampling frequency : the frequency at which the pointer location up-
date is emitted for the application through the pointer API.

6. Pointer event : a single sample of the pointer location emitted through the
pointer API.

7. Pointer session: the life span from the first to the last pointer event of that
pointer. For a finger, the session starts when the finger touches the screen and
ends when the finger leaves. For a mouse, the session starts when the mouse
is connected and ends when disconnected.

8. Pointer identifier : a name of the pointer. The identifier is unique for each
pointer session.

With these concepts, we are now able to first describe the devices that our algorithms
can be applied on and then how to apply them.

5.1.2 Applicable devices and interfaces

We require that the devices and their pointer APIs provide data about the pointers
as follows:

1. The device samples the locations of pointers at constant interval. If a location
of a pointer changes, the API notifies about it.

2. The first and last pointer event of a pointer session are distinguishable from
the events between them. With that, we can be certain on which event the
session started or ended.

3. The device can decide whether two pointer events are from the same pointer
or not by giving each pointer an pointer identifier and letting each pointer
event to known the identifier of the pointer that produced the event.

4. The API emits the pointer events in temporal order. In other words, events
are emitted in the same order as the locations are measured.
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The Touch Events recommendation by W3C [28] fulfills these requirements and thus
are implemented in all modern mobile web browsers [29]. Therefore, we can more
generally assume that these requirements are fulfilled by most if not all web-capable
devices with a touch screen.

We also assume that devices are able to record more than two concurrent pointer
sessions. Even though the algorithms handle two pointers as well, there would not
be much gain when compared to the existing methods. Fortunately, most current
mobile devices with a touch screen allow from 5 to 10 simultaneous touches. Some
larger touch screens, such as ones produced by a company named MultiTaction, can
track practically unlimited number of touch points [30].

Final requirement for the devices is that the pointer sampling frequency as well as the
screen refresh frequency is high enough for smooth interaction. Any frequency higher
than 25 Hz would be suitable. Fortunately, most touch screens fill this requirement
and some, like Apple iPad Pro, even go as high as 120 Hz [31].

5.1.3 Challenges

At first, it might seem that integrating the pointer API and the algorithms would
be straightforward. Just record where the bound pointers first were and where they
traveled. Pass these two point sequences to one of the estimators as the domain and
the range, receive the fitted transformation, and apply it to the target shape.

However, a first challenge in that approach is that the user would not receive direct
feedback until the fingers become lifted. Therefore to provide a real-time experience,
we should recompute and apply the transformation frequently enough if not each
time when we receive a pointer event for one of the bound pointers. As a result,
if the computational delay is low, the user can experience a smooth and reactive
geometric transformation, alike to its physical counterpart.

Figure 5.1: Dynamics of the number of concurrent touch points. (1) At first, a user
is translating a geometric object with one finger. (2) Then, during the translation,
the user applies a small rotation to the object with a second finger. (3) The user
lifts the second finger and should be able to continue the translation with the first.
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A second challenge is that in practice, the number of concurrent pointer sessions does
not stay constant. New pointers might appear and some become removed during
the transformation gesture. For example, a user might first translate an object by
a single finger and then bring in a second finger to apply a small rotation along the
way, as illustrated in Figure 5.1. The user most probably expects the rotation to
happen because that is how objects would behave in the physical world. Therefore
we must be able to react to these appearing and disappearing pointers.

5.1.4 Solution

Probably the simplest approach is to compare the previously know locations of
bound pointers to their new locations. Each time the API notifies us that one or
several pointers moved, we estimate a microtransformation. For the domain we use
the sequence of previously known locations. For the range we update the sequence
with the new locations. After the estimation, the sequence of previously locations
is updated to match the range. Typically in practice the API emits pointer updates
so frequently that only 1 or 2 pointers moved by only a few pixels, hence the prefix
micro.

When a new pointer appears we add its location to a dictionary (also called an
associative array or a map) of previously known locations by its pointer identity.
Likewise, when a pointer disappears, it is removed from the dictionary. The addition
is needed to make the domain and range include all the bound pointers. The removal
is needed to remove the newly unbound pointers from the estimation. Otherwise
they would appear as stationary, still ongoing pointers and thus the movements of
the real bound pointers would have less effect than expected.

Listing 5.1: This function enables multi-touch translation and rotation on a given
geometric shape by using the microtransformation approach. The code is written
in Python-like pseudocode and is based on how touch events are handled in web
applications.

def m a k e t r a n s l a t a b l e r o t a t a b l e ( shape ) :
l o c a t i o n s = {}

def o n p o i n t e r s t a r t ( event ) :
l o c a t i o n s [ event . id ] = [ event . x , event . y ]

def on pointer move ( event ) :
new loca t i on s = l o c a t i o n s . copy ( )
new loca t i on s [ event . id ] = [ event . x , event . y ]
dom = l o c a t i o n s . va lue s ( )
ran = new loca t i on s . va lue s ( )
t r = e s t i m a t e t r a n s l a t i o n r o t a t i o n (dom, ran )
shape . trans form by ( t r )
l o c a t i o n s = new loca t i on s



CHAPTER 5. APPLICATIONS 47

def on po in te r end ( event ) :
i f event . id in l o c a t i o n s :

del l o c a t i o n s [ event . id ]

shape . on ( ’ p o i n t e r s t a r t ’ , o n p o i n t e r s t a r t )
shape . on ( ’ pointermove ’ , on pointer move )
shape . on ( ’ po interend ’ , on po in te r end )

The microtransformation approach can be implemented relatively simply as shown
in Listing 5.1. We assume here that a geometric shape emits 3 types of pointer
events: pointerstart, pointermove, and pointerend. The types are handled separately
by 3 event handler functions. The previously known locations of each pointer are
stored to a dictionary locations and they are fed into a transformation estimator
as described above. The estimated small transformation is then applied to the
shape. We assume that the update is then immediately presented on the screen.
The estimator estimate_translation_rotation could be replaced by any of the
7 estimators we have presented, given that a pivot point is included if needed.

As a result, users are able to translate and rotate the shape and perceive it to follow
the pointers in real-time in a way that would be expected with a lightweight physical
shape on a frictionless surface. The approach does not place any restrictions on the
number of concurrent pointers, the number of users, or even the number of shapes.
Multiple users can simultaneously manipulate multiple shapes with multiple fingers,
of course within the limits of the device and the pointer API.

During the development Nudged and Taaspace, we experienced with a few alterna-
tive approaches. However, we found the microtransformation approach to be the
most practical due to its simplicity. The other approaches tried to overcome a mi-
nor drawback of the microtransformations, namely accumulation of residuals and
floating-point rounding errors. For a general reference on the effects on rounding
errors, see [32]. Because of the accumulation, the shape can slightly drift under the
fingers during a uncommonly long-lasting and complex transformation. For exam-
ple, if the shape is vigorously transformed for multiple seconds without lifting any
fingers and then the fingers are moved back to their initial positions, the shape has
slightly drifted from its initial position. However, the drift is so imperceptible that
additional computational or programming demand of the other approaches were not
justified.

5.2 Spatial correction

In addition to multi-touch, we have deployed the Python version of Nudged for eye
tracker calibration at Infant Cognition Laboratory at University of Tampere (ICL)
[33]. At ICL, eye trackers record the location of gaze on a screen. Often it happens
that the participant is not in an optimal alignment with the camera or alternatively
the screen and the camera have slightly moved. A calibration procedure is provided
by the tracker manufacturer and usually run before actual measurements.
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However, in the case of infants, the calibration procedure is often unsuccessful and
the data needs to be gathered using a default calibration. The default calibration
does provide precise but, with high probability, not accurate results. Fortunately,
during the experiment there is moments when we known with a high certainty
the exact position on the screen where to the child’s focus is lured. By feeding
these positions and corresponding measured positions into Nudged’s translation-
scaling-rotation estimator, we are able to sufficiently correct the other measured
positions with the resulting transformation. One would still argue that a more
general transformation estimation, including projective transformations, would be
more suitable to eye tracking calibration. However, their performance would not
necessarily be better due to increased number of free parameters, which could lead
the model to overfit the data.

5.3 Geometric layout

The usefulness of Nudged algorithms to geometric layout was unexpected. With
them, to move a shape to a place on two-dimensional space, we no longer needed to
know the exact transformation that would do that. Before Nudged, with an earlier
version of Taaspace, a lot of development time went to figuring out distances and
angles between shapes and target places. This was tedious work and prone to error.

Figure 5.2: In Taaspace, HTML elements can be translated, scaled, and rotated
into nontrivial arrangements thanks to the algorithms presented in this thesis.

Instead, now we only need to provide a sequence of points on the shape and a corre-
sponding sequence of points on the target place. Given these two point sequences,
Nudged is able to compute the required transformation. In other words, we only
need to give an example of the results of the transformation without knowing the
transformation itself. This example-driven programming, as we call it, has at least
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initially shown to be an efficient way to implement even complex arrangements of
content. See Figure 5.2 for an example where three varying sized rectangular HTML
elements have been positioned to match their corners. Without Nudged, calculat-
ing the required transformations for such an arrangement would be anything but a
trivial programming task.
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6 ANALYSIS AND DISCUSSION

6.1 Computational efficiency

To avoid unwanted perception of delay, input devices such as mouses, styluses, and
touch screens sample their location with a fast enough sampling rate [34]. Typical
sampling rate (also scan rate) of a touch device is about 60 Hz to 120 Hz [35]. There-
fore in practice, transformation estimation can be needed to be executed over 100
times a second. A computationally intensive algorithms would thus be unacceptable.

To analyze the efficiency we exploit two concepts commonly used to analyze algo-
rithms. These are the time complexity and the space complexity where the former
characterizes the computation time and latter the use of memory in relation to input
size. They can reveal if an algorithm would turn out to be unusable in practice and
especially with large input.

In addition, we should be aware if the algorithms internally call relatively time-
consuming functions such as trigonometric functions. However, we already have
seen that the algorithms consists of relatively simple, constant time operations, the
square root being the most expensive of them. During iteration, only addition,
subtraction, and multiplication are used, thus minimizing the effect of the division
and the square root, which are considered more expensive although still very basic.
We can safely conclude that the operations should not be a problem. [36]

6.1.1 Time and space complexity

For time and space complexity, we use the big-O notation. An algorithm that
executes 3n2 + n + 2 operations to yield a result has a quadratic time complexity
O(n2) where n is the input size. An algorithm that executes 22n + n2 operations
has exponential time complexity 2O(n). As we can perceive, only the term with the
fastest growth matters. When n is large, as often is the case in practice, the term
with the fastest growth will determine the computation time of the algorithm in
the end. An algorithm that executes 2n constant time operations in a single call
would execute 1024 operations when n = 10 but when n = 100, the required about
1030 operations would make the algorithm totally unusable. Thus, the complexity
matters. A good formal definition and introduction to computational complexity is
given for example in [37].
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Table 6.1: Required number of arithmetic floating-point operations (FLOs), FLOs
in a second (FLOPS), and time and space complexities for the algorithms.

Algorithm FLOs Time Space FLOs (n=10) FLOPS (n=10, f=120 Hz)
T 4n + 4 O(n) O(1) 44 5280
S 8n + 7 O(n) O(1) 87 10440
R 12n + 16 O(n) O(1) 136 16320
TS 12n + 34 O(n) O(1) 154 18480
TR 12n + 27 O(n) O(1) 147 17640
SR 16n + 13 O(n) O(1) 173 20760
TSR 16n + 29 O(n) O(1) 189 22680

The space complexity of an algorithm, also described thoroughly in [37], gives the
order of magnitude of additional memory units required to run the algorithm. For
example, the arithmetic mean of a number sequence requires two memory units, one
for the sum and another for the length of the sequence. Thus the space complexity
of such algorithm is O(1).

The number of arithmetic operations of our 7 algorithms and their time and space
complexities are given in Table 6.1. The table also gives the number of operations
required in a single call and during 1 second in 10-fingered multi-touch when esti-
mation frequency of 120 Hz is assumed.

Table 6.1 shows us that all the algorithms have a linear time complexity [37, p. 253]
and a constant space complexity. This is a very desirable result and ensures that
the algorithms can be applied even on large data sets. In high-performance multi-
touch interaction with 10 fingers, the heaviest of them requires 22680 floating-point
operations per second (FLOPS). Given that the mobile processors in 2013 were
capable of computing 109 FLOPS [38], this should consume only a fraction of the
available computing power.

If the algorithms are written in an interpreted language, lots of computation is
required in addition to the arithmetic operations. Even though the time and space
complexities remain the same, the FLOPS in Table 6.1 might not tell us much about
the real computational requirements. Therefore in Section 6.1.2, we will measure the
performance of the algorithms when written in interpreted JavaScript and running
on real-world hardware.

6.1.2 Running time on web browsers

To give an example of the efficiency of the algorithms, we conduct a benchmark
on two web browsers. The results depend highly on the given environment, which
includes features of hardware, operating system, programming language and other
ongoing computational activity. Therefore we expect the results not to be generally
conclusive but however give a representative order of magnitude of the running
times.

The environment for the benchmark is the following. For hardware we have an
Apple MacBook Air Mid 2012 laptop with an 1.8 GHz Intel Core i5 processor. The
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laptop is connected to a power adapter. The benchmark will be run on two web
browsers, Google Chrome version 49.0.2623.112 and Apple Safari 9.1 (11601.5.17.1).
The browsers in turn run on Apple OS X 10.11.4. There is a few computationally
insignificant applications running on the background.

For the benchmark, we measure the algorithms implemented in Nudged (See Chapter
5) which are written in JavaScript. We measure the running time of each algorithm
separately for 5 varisized data sets. Each data set contain two point sequences,
one for the domain and one for the range. The sizes are 10, 100, 1000, 10000,
and 1000000 points per a point sequence. The points are generated randomly and
uniformly into a unit square. For a benchmarking tool, we use Benchmark.js v2.1.0
[39]. At each execution cycle, Benchmark.js calls Nudged to estimate a given type
of transformation between point sequences. The execution time is recorded and the
execution repeated from 20 to 60 times depending on the variance.

Figure 6.1: Estimation computa-
tion speed differences between Google
Chrome and Apple Safari and the 7 al-
gorithms with 10 point pairs. A higher
bar is better.

Figure 6.2: Estimation computa-
tion speed differences between Google
Chrome and Apple Safari and the 7 al-
gorithms with 100 point pairs. A higher
bar is better.

Figure 6.3: Estimation computa-
tion speed differences between Google
Chrome and Apple Safari and the 7 al-
gorithms with 10,000 point pairs. A
higher bar is better.

Figure 6.4: Estimation computa-
tion speed differences between Google
Chrome and Apple Safari and the 7 al-
gorithms with 1,000,000 point pairs. A
higher bar is better.

We present the benchmark results here without going into much details. For multi-
touch, most important results are given in Figure 6.1. With 10 points in the domain,



CHAPTER 6. ANALYSIS AND DISCUSSION 53

even the slowest result was over 200,000 estimations per seconds, which is 3 orders
of magnitude higher than the high-end sampling rate of 120 Hz. On Chrome, inter-
action with 10,000 fingers would still be manageable from Nudged’s perspective, as
shown in Figure 6.3. All in all, it seems unlikely that the estimation would become
a computational bottleneck even on low-end mobile devices.

The average execution times between the algorithms vary. As illustrated in Fig-
ure 6.1, Figure 6.2, Figure 6.3, and Figure 6.4 and as expected from the number
of arithmetic operations, translation-scaling-rotation estimation is typically slower
than plain translation estimation. Unexpectedly on Chrome, scale-rotation seems to
be occasionally significantly faster than translation-scaling and translation-rotation
whereas on Safari, translation-rotation seems the most efficient of the three. An
interesting finding is also the difference between the web browsers. Chrome seems
to do poorly with small sequences but outperform Safari by an order of magnitude
when the sizes increase.

6.2 Robustness

The transformation gestures in example applications of Nudged and Taaspace have
shown to work well and received positive comments from users. The users claimed
the interaction to feel exceptionally natural and free from errors. Of course, a num-
ber of unbiased user experience studies are required to proof these claims. However,
the examples already work as the proof-of-concept: the algorithms can be harnessed
to provide a distinctive multi-touch experience.

Even though we have claimed the algorithms being robust in the sense of error-
free interaction, in the sense of pattern recognition they are not. The least-squares
method is known [14] to be vulnerable to outliers and this is also the case with
our algorithms. A single unrealistic measurement can yield the result unusable.
Fortunately, in our experience the touch APIs and devices provide the touch points
in accurate manner. In eye tracking data calibration however, outliers are common.

A method to improve the robustness to outliers is called the iteratively weighted
least-squares. Its application to transformation estimation is discussed for example
by Haralick et al. [14] and Holland and Welsch [40]. In weighted least-squares, each
sample point has a weight between 0 and 1 what determines its relative impact on the
estimate. In iteratively weighted least-squares, the sample points are first equally
weighted and estimation is conducted as in plain least-squares. The samples are
then reweighted by their residuals so that the more they deviate from the estimate
the smaller their weight. The estimation and reweighting phases are iterated until
convergence which typically is rapidly achieved. As a consequence, the weights of
the outliers tend to approach zero.

The multi-touch algorithm we presented in Section 5.1.4 have worked as expected
in most of the situations. However, when the fingers are drawn together, we occa-
sionally experience vibrations in the output geometry. We hypothesize this to be
caused by the inability of the devices to recognize the closely packed fingertips as
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separate fingers and repeatedly misjudging two tips as one. The caused unnatural
interaction could be alleviated by detecting unrealistically quick finger movements
especially when the fingers are close to each other.

A greater, and more general challenge for robust interaction is the variety of over-
lapping operating system level gestures that prohibit applications to benefit from
more than 2 or 3 fingers. We discussed this issue in Section 2.3. During the devel-
opment of Nudged and Taaspace, we repeatedly faced this challenge when testing
the software on different devices. Nevertheless, even with 3 fingers the benefits are
noticeable, not only because the equal respect but the robust handling of dynamics
in the number of fingers.
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7 CONCLUSION

In this thesis we have mathematically derived and compactly and software-developer-
friendly represented 7 computationally robust and fast algorithms to estimate op-
timal nonreflective similarity transformations especially for purposes of geometric
multi-touch manipulation. The algorithms let unlimited number of fingers simul-
taneously and equally being taken into account when geometric objects are being
manipulated and by that remove limitations and pitfalls of traditional multi-touch
transformation methods that are based on two fingers.

The algorithms are being implemented in a production-ready software library Nudged
and already applied in a zooming user interface library Taaspace and at Infant Cog-
nition Laboratory at University of Tampere. They have shown to be useful not only
in multi-touch, but surprisingly in geometric layout and spatial data calibration.

Regardless of being already in use and computationally sound, the enhanced touch
interaction they provide is not yet validated by user experience studies. Initial feed-
back shows promising but further studies on ergonomics and user error rates similar
to [41] and [42] are needed to yield valid conclusions. Nevertheless, the hypothesis
is that the multi-touch interaction methods made possible by the algorithms have
the potential to supersede current publicly available methods. This is not only be-
cause the presented methods are sound and promising but because they are now
made freely available for the public in well-documented and implementation-ready
manner.
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